用户名: 密码: 验证码:
钙基固硫过程中无机矿物转化及可资源化矿物形成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
要改变我国对燃中固硫渣综合利用水平较低的现状,就必须深入了解无机矿物质间的多相反应过程,并能控制固硫过程中灰渣的矿相组成。本文紧扣“资源、能源、环境”一体化这一思路,借助化学分析、X衍射分析等测试方法,进行了钙基固硫过程中无机矿物的资源化形成与含硫物相的控制机理研究,这对于指导燃煤污染问题的高效、全面治理,具有重要的现实意义。
     通过固硫制度对其灰渣产物矿相的影响研究,发现温度、Ca/S比、煤种及添加剂的影响很大。低温下固硫过程是以固硫反应为主要反应,高温下则以固相反应和部分矿物的分解反应为主要反应,因而升高温度或增加Ca/S比,在850℃~1050℃内利于CaSO_4的形成,此后则主要促进C_4AF、C_2AS、β-C_2S等矿物形成与进一步转化。煤种的影响取决于煤中硫含量及煤灰中其它无机成分的含量,煤中硫含量越高,越利于CaSO_4的形成。以Al_2O_3为添加剂,会形成较多的铝酸盐,有效降低体系中f-CaO的含量,促进C_4A_3S~-形成,但铝酸盐仅在高钙硫比下才能全部转化为C_4A_3S~-。
     对固硫过程中无机矿物转化行为的研究结果则表明,Ca/S≥16或同时以铝硫比为3.82掺入Al_2O_3,都有利于形成高温含硫物相C_4A_3S~-,有效延缓高温下S的释放,并促使灰渣中形成较多的硅酸盐矿相,有助于资源化无机矿物的形成。得到的较优固硫制度为:1050~1150℃、Ca/S=2~3、有一定Al_2O_3掺入或1200~1350℃、Ca/S=8;此时不仅固硫率高于38%,其灰渣产物的矿相还能以C_4A_3S~-、铝酸盐或硅酸盐矿相为主。
     固硫率的高低,关键取决于固硫产物的矿相存在形式及含硫物相的含量大小。Ca/S≤5时,固硫产物多为CaSO_4,但其高温稳定性差,因而固硫率在高温时往往很低。对几种含硫物相的研究结果表明,C_4A_3S~-是最为理想的固硫产物,不仅易于形成控制,还利于固硫灰渣的再利用。在固硫过程中,C_4A_3S~-可在1050℃时由C_2AS与CaSO_4反应形成,也可在950℃时由铝酸盐和CaSO_4形成,于1350℃时分解。
In order to improve our country's lower present status in the comprehensive utilization of desulfurization residues formed during the coal combustion, the ployphase reactions among inorganic minerals must be lucubrated and the residues' mineral constituents be controlled. With focus on the idea of resource-energy-environment integration, the desulfurization process transforming inorganic composition into resource and the control mechanism of the sulfur-contained mineral matters were investigated by the means of chemical analysis, XRD and SEM in this paper. The results are of important practical meaning and can instruct to efficiently solve coal-burning pollution problems.
    After various desufurizing systems were studied, the combustion temperature, Ca/S ratio, coal type and addictive have been found to have great influences on the mineral constituents of the residues. The desulfurization reaction occurs mainly at low temperature, while the solid phase reaction and the decomposition reaction of some mineral matters do at high temperature. So higher temperature and Ca/S ratio can both promote CaSO4 to grow at temperatures ranging from 850 C to 1050 C, then mainly accelerate C4AF, C2AS and C2S to form and further transform at temperatures above 1050 C. The sulfur content and other inorganic constituents of coal can also affect the desulfurization process. The higher sulfur content is, the more easily CaSO4 forms. Aluminate can be attained largely after adding Al2O3 into the desufurizing system, so the free CaO is reduced effectively and C4A3S- was promoted to form in the residues. Yet aluminate can be totally transformed into C4A3S- only in a higher Ca/S ratio.
    The transformation of inorganic composition in desulfurization process was studied. The results show that the releasing of sulfur at high temperature can be prolonged effectively for the formation of C4A3S- when Ca/S 6 or Al2O3 largely added synchronously, and more silicate mineral phase is promoted to form in the clinker. And the inorganic particle is more likely to be transformed into resource. The suitable desufurizing system is 1050-1150 C, Ca/S=2~3 with a quantitative Al2O3 or 1200-1350 C , Ca/S=8. Their desulfurization efficiency is higher than 38%. The mineral constitute of the former residue's system are
    
    
    
    mainly aluminate and C4A3S , while the mineral phases of the latter are mainly silicate and C4A3S-.
    The desulfurization efficiency is decided by the existence form of mineral constituents and the content of sulfur-contained mine in the desulfurization products. The desulfurization product is mainly CaSO4 when Ca/S 5. However, the desulfurization efficiency at high temperature is usually very low for the bad stability of CaSO4. Several sulfur-contained mines were reseached, and the results show that C4A3S- is the perfect desulfurization product for its higher stability at high temperature, its easily controlling to form and the possible recycle of the desulfurization clinker with it. C4A3S- can be synthesized by C2AS and CaSO4 at 1050C or by aluminate and CaSO4 at 950C, and it will decompose at 1350C.
引文
[1] 戴和武,李连仲,谢可玉.谈高硫煤资源及其利用.中国煤炭,1999,25(11):27-31
    [2] 张基伟.国外燃煤电厂烟气脱硫技术综述.中国电力,1999,(7):61—65
    [3] 吴世梁,秦介海.燃煤电厂脱硫技术的应用和发展.山东电力技术,2002,(2):21-23
    [4] 杨道武,朱志平,周晓蓉.我国火电厂脱硫技术的应用及分析.长沙电力学院学报(自然科学版),2002,17(2):74—76
    [5] 雷放鸣.燃煤脱硫技术述评.节能,2002,(10):16—18
    [6] 刘随芹,陈怀珍,崔凤海.燃煤高温固硫技术的现状及进展.中国煤炭,1999,25(9):14—16
    [7] Gomes, S.; Francois, M.; Pellissier, C.; Evrard, O. Characterization and comparative study of coal combustion residues from a primary and additional flue gas secondary desuifurization process. Cement and Concrete Research, 1998, 28(11). 1605-1619
    [8] Li, Yan; Nishioka, Masateru; Sadakata, Masayoshi. High calcium utilization and gypsum formation for dry desulfurization process. Energy and Fuels, 1999, 13(5). 1015-1020
    [9] A. Acosta, M. Aineto, I. Iglesias, et al. Physico-chemical characterization of slag waste coming from GICC thermal power plant. Materials Letters, 50(2001) 246-250
    [10] 宋拙夫,朱跃,张铁柱等.干法、半干法烟气脱硫技术脱硫渣的综合利用.电站系统工程,2002,18(2):49—50
    [11] 周全.火电厂LIFAC脱硫灰渣的处置与应用.粉煤灰综合利用,1995,(2):9—12
    [12] 王雁,郑楚光,游小清.煤燃烧过程中硫化物的生成特性研究.煤炭转化,2002,25(3):43-46
    [13] 何云华.煤质与燃烧固硫效果分析.煤炭加工与综合利用,2003,(3):36-37
    [14] 盛昌栋,徐益谦.我国发电用煤的碱性成分在煤灰固硫中的作用.燃烧科学与技术.1998,4(1):99—103
    [15] 何云华.煤灰成分对燃煤固硫效果的影响.洁净煤技术,2002,8(2):52—54
    [16] 邱宽嵘,张洪,蒋玢.石灰石和白云石脱硫反应的加压热重分析研究.环境科学,1996,17(6):37—39
    
    
    [17] 周静,武利军等.型煤周硫效果影响因素的研究,洁净煤技术,2001,7(2):28-31
    [18] 寇鹏,武增华,李亚栋等.颗粒尺度对钙基周硫剂的固硫反应影响规律.燃料化学学报,2000,28(6):504—507
    [19] 寇鹏,武增华,杨海波等.烧结程度对CaO固硫反应转化率及动力学参数的影响.燃料化学学报,2001,29(3):273—276
    [20] 刘泽常,邱学明.应用热力学函数研究不同钙基固硫试剂的固硫特性.山东科技大学学报(自然科学版),2000,19(1):21-24
    [21] 高洪阁,李白英,刘泽常等.钙基固硫剂的动力学和热力学机理及其影响固硫产物二次分解的因素.山东科技大学学报(自然科学版),2002,21(1):99—101
    [22] 王宏光,刘瑛.氧化钙固硫特性的研究.辽宁化工,31(1):9-10
    [23] 宋永玮,李新生,郝新民等。影响型煤固硫率的主要因素.煤炭转化,1999,22(3):44-48
    [24] 韩翔宇、陈皓侃、李保庆.石灰石在煤燃烧过程中固硫反应机理研究进展.煤炭转化,2000,23(12):22-28
    [25] 杨海波,武增华,邱新平.CaO固硫反应机理研究的新进展.燃料化学学报,2003,31(1):92-26
    [26] O Hsia, G R St Pierre. Diffusion Through CaSO_4 Formed During the Reaction of CaO with SO_2 and O_2. AICHE, 1993, 39(4): 696-700
    [27] Hartman M, Coughlin RW. Reaction of sulfur dioxide with limestone and grain mode. AIChEJ, 1976, 22(3): 490-498
    [28] 杨剑锋,刘豪,谢峻林等.煤洁净燃烧高效钙基复合固硫剂的研究进展.煤炭转化,2003,26(4):10-14
    [29] Sasaoka E, Sada N. Novel. Preparation Method of Macroporous Lime from Limestone for High-temperature Desulfurization. Industrial & Engineering Chemistry Research, 1997, 36(9): 3639-3646
    [30] Paolo D. Gennaro D M. Pado G. An Investigation of the Influence of Sodium Chloride on the Desulphurization Propertiesof Limestone. Fuel, 1992, 71 (7): 831-834
    [31] 李宁,刘维屏,周俊虎等.新型钡基高温燃烧固硫剂的研究与应用.化工学报,2002,53(11):1198-1201
    [32] 张雷,路春美,程世庆等.贝壳类新型钙基脱硫剂的试验研究.环境科学学报,2003,23(5):647-651
    
    
    [33] 刘建忠,吴晓蓉,程军等.工业废弃物在煤燃烧过程中脱硫行为的研究.环境科学学报,2000,20(6):790-793
    [34] 于陶然,李松庚,周赵兵等.MgO硫酸盐化反应动力学及镁基固硫剂型煤燃烧的实验研究.节能,1998,(4):12-14
    [35] 陈列绒,殷屈娟,王济洲.燃煤固硫中钙基固硫添加剂的研究进展.陕西煤炭,2003,(2):9-11
    [36] 邵忠宝,张丽,沈峰满.稀土化合物对氧化钙固硫性能的影响.东北大学学报(自然科学版),2003,23(6):610-612
    [37] 陈云嫩,王海宁.烟气脱硫石膏的利用新途径。矿业安全与环保,2002,29(3):34-35
    [38] Lindroth, David E Microwave drying of flue gas desulfurized (by-product) gypsum. International Journal of Surface Mining, Reclamation and Environment. 1995,9 (4): 169-177
    [39] 代伟,饶应福.电厂烟气脱硫废渣的资源化.矿山环保,2002,(2):23-25
    [40] 冯金煌,江水.脱硫石膏及综合利用探讨.非金属矿。2000,23(6):18-20
    [41] 傅伯和,葛介龙,郑月华.干法脱硫灰用作水泥混合材及缓凝剂的可行性研究.电力环境保护,2000,16(4):35—38
    [42] 任宪德.脱硫增钙粉煤灰在加气混凝土生产中应用的探讨.加气混凝土,2000,2(84):21—23
    [43] 刘宗炎.煤灰与烟气脱硫渣的利用——一种新的土木材料(Poz-O-Tec)的制造及应用.粉煤灰综合利用,1998,(6):63-66
    [44] 王文龙,施正伦,骆仲泱等.流化床灰渣的特性与综合利用研究.电站系统工程,2002,18(5):19-21
    [45] Andre Hauster, Urs Eggenberger and Tjerk Peters。Origin and Characterisation of Fly Ashes from Cellulose Industries Containing High Proportion of Free Lime and Anhydrite. Cement and Concrete Research 29 (1999) 1569-1573
    [46] J Blondin, E J Anthony. A Selective Hydration Treatment to Enhance the Utilization of CFBC Ash in Concrete [C]. 1995 Int. Conf. on FBC, vol. 2:1123
    [47] 郑洪伟,王智,钱觉时等.流化床燃煤固硫渣活性评判方法.粉煤灰综合利用,2002,(2):6-9
    [48] 闫维勇,高廷源,熊仁森.循环流化床锅炉脱硫灰渣综合利用研究.洁净煤技术,2000,6(1):31—36
    
    
    [49] 郑洪伟,王智,董孟能.流化床燃煤固硫灰渣的综合利用.粉煤灰综合利用,2000,(4):53-56
    [50] 梁文泉.固硫渣混合水泥的研究及钙矾石相的定量分析.武汉水利电力大学学报,1994,27(5):492—499
    [51] 王智,钱觉时等.流化床燃煤固硫渣混凝土的试验研究.粉煤灰综合利用,2002,(5):19—22
    [52] 周广柱,林国珍.固硫型煤渣烧制水泥熟料的研究初探.环境材料进展,1999,7(3):105—109
    [53] 丁庆军,李悦,胡曙光等.粉煤灰烧制低钙水泥的研究.粉煤灰综合利用,1998,(2):29—32
    [54] 叶巧明,黄文熙,蒋友新.电厂锅炉生产水泥的开发研究.西南工学院学报,1998,13(4):21-23
    [55] 刘豪,邱建荣,李骏等.煤灰与复合添加剂的固相反应过程分析.燃料化学学报,2002,30(4):306-309
    [56] 周英彪,李帆,张鹏.煤燃烧中钙基脱硫灰样矿物质的电子探针分析.发电设备,2003,(3):31-35
    [57] 王海瑞编.水泥化验室常用手册,北京:中国建材出版社,2001
    [58] 余琨主编.材料结构分析基础,北京:科学出版社,2000
    [59] 杨南如,岳文海主编.无机非金属材料图谱手册.武汉:武汉工业大学出版社,2000;
    [60] 许玲,武增华,寇鹏等.以CaS为燃煤固硫产物的热力学可行性和实验探索.环境保护,2001,(11):16-18;
    [61] 吕欣,林国珍,周广柱等.型煤燃烧过程中CaS的形成及其固硫作用.环境化学,1998,17(6):528~531.
    [62] 李宁.煤高温燃烧过程中脱硫反应机理的研究及其工业性应用[D].杭州:浙江大学,2000.
    [63] 王燕谋,苏慕珍,张量著.硫铝酸盐水泥.北京:北京工业大学出版社,1999
    [64] 湖南省建材工业学校.硅酸盐晶体结构及相图[M].北京:中国建筑工业出版社,1981.
    [65] 李宁,周俊虎,芩可法.高温固硫物相的研究[J].浙江大学学报(工学版),2003,37(5):612-616;
    [66] 王永华,刘文荣编.矿物学.北京:地质出版社,1985;
    
    
    [67] Rovena J. Torres-Ordonez, et al. Sulphur retention as CaS during coal combustion: a modeling study to define mechanisms and possible technologies. Fuel, 1993, 72:633-643
    [68] 赵惠富,赵启伟,吕清刚.还原和氧化气氛下CaS固硫的模型及预燃室技术.燃烧科学与技术,2003,9(2):174-177;
    [69] 刘光启,马连湘,刘杰主编.化学化工物性数据手册(无机卷).北京:化学工业出版社,2002;
    [70] 李文,韩翔宇,陈皓侃等.加压下硫化钙氧化反应动力学和模型.化工学报,2003,54(5):626-631;
    [71] Davies, N. H.; Hayhurst, A. N. On the Formation of Liquid Melts of CaS and CaSO_4 and their Importance in the Absorption of SO_2 by CaO. Combustion and flame, 1995.
    [72] Torres-Ordonez Rovena J. Intrinsic kinetics of CaS(s) oxidation. Energy & Fuel, 1989, 3: 506-515;
    [73] 尹仕吉,路春美,程世庆.热天平对CaS的形成及其稳定性的试验研究.发电设备,1997:(4):14-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700