用户名: 密码: 验证码:
烟气循环流化床脱硫塔内气液固混合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量二氧化硫的排放是我国酸雨产生的主要原因,我国是一个以煤炭为主要能源的国家,火电厂的二氧化硫排放量在全国二氧化硫总排放量中占有相当的比例,因此控制火电厂燃煤导致的二氧化硫的排放,对于改善我国的大气环境有十分重要的意义。与传统的石灰石石膏法脱硫相比,循环流化床脱硫技术具有系统简单,工程投资、维修和运行费用低,占地面积小等特点,适于现有电厂及工业锅炉的改造,但是在实际运行过程中由于循环流化床内烟气、喷水、脱硫剂混合效果差,脱硫效率与设计值相差甚远。本文以循环流化床脱硫技术中遇到的实际问题为出发点,以提高脱硫塔内气液固的混合程度为目标,通过试验和数值模拟来获得提高塔内气、液、固混合程度的方法,以便指导循环流化床脱硫设计和运行。
     首先,本文以吉林市松花江热电厂烟气脱硫设备为原型,自行设计和搭建了烟气循环流化床脱硫冷态试验台,通过粒子成像测速仪(PIV)研究了不同给料方式下塔内气固混合情况,发现在导流板前给料工况下,对右侧壁面具有较大冲击,单侧给料工况下,对壁面的冲击最大,是颗粒冲壁最危险的工况,在双侧给料工况下,固体颗粒的冲壁能力最小,有利于防止塔内壁的脱硫灰结垢和给料口堵灰。同时双侧给料具有最大的密相区床层高度,颗粒运动整体速度最大,且呈现明显的“环核流动结构”,加速度也较大,既具有高床层又具有较高的颗粒回落内循环,颗粒运动情况最理想。
     其次,本文通过对不同喷嘴角度布置和不同喷嘴层数布置下,脱硫塔内气、液流动情况进行冷态实验研究。研究发现单喷嘴布置时,喷嘴采取逆流布置时雾化水在塔内停留时间长,有利于增加脱硫反应时间。采用喷嘴直管段与径向成-45度布置时轴向速度相对较小,刷壁不明显,同时成-45度布置时湍流强度和涡量大,有利于混合。扩散段单层布置与双层布置相比较,采用双层布置较优,特别是在扩散段与径向成45度直管段与径向成-45度布置时,向下运动的雾化水和向上运动的雾化水相互扰动造成湍动能和涡量较大,有利于混合,但是在直管段-45布置与双层布置比较,直管段-45度布置在湍流强度和轴向速度较大,直管段-45度布置较好。
     最后,采用数值模拟的方法并考虑塔内温度的影响,进一步研究了喷嘴布置角度对气液混合情况的影响,并从速度、温度和湍动能三个方面进行了比较,同时建立了脱硫传质模型,研究了喷水量和钙硫比对脱硫效率的影响,研究发现喷嘴在扩散段45度布置时,进入脱硫塔的气体对左侧壁面冲刷较严重,左侧壁面的湍流强度高于右侧壁面,湍流强度变化不规律;喷嘴在直管段-45度布置时,进入脱硫塔的气体有向左侧壁面偏移的趋势,但是对壁面冲刷不是很严重,速度场变化比较平缓,在脱硫塔底湍流强度较高,湍流强度随着塔高的增加有加速上升然后缓慢下降的趋势,这样有助于气液混合;喷嘴为扩散段45度布置时,脱硫塔进出口温差比较大,出口温度比较大;喷嘴在直管段-45度布置时,脱硫塔进出口温差比较理想,出口温度较低且温度分布呈中间高、周围低的趋势,能够很好的保护壁面。利用建立的传质模型计算脱硫塔出口烟气含湿量和钙硫比对脱硫效率的影响,结果表明脱硫系统在典型工况下的的最佳出口烟气含湿量为0.059kg/kg左右,最佳Ca/S为1.3左右,此时的脱硫效率预计能达到85%。该模型可作为电厂脱硫系统的参考。
The main reason of acid precipitation in China is the emission of large quantities of sulfur dioxide. As coal is the main energy resource in our country, sulfur dioxide emission by power plants accounts for a certain proportion in the total emission of sulfur dioxide of the country. To improve the atmospheric environment, it is of great significance to control sulfur dioxide emission caused by burning coal in our country. Comparing to traditional lime-gypsum process for desulphurization, circulating fluidized bed desulfurization technology has such features as simple system, low engineering investment, maintenance and operation cost, and small floor area, which is suitable for retrofit of existing power plants and industrial boilers. But in the process of actual operation, there is a big difference between desulfurization efficiency and the designed value, as the result of the poor mixing effect of flue gas, water spray, and desulfurizer in the circulating fluidized bed. Based on the actual problems in circulating fluidized bed desulfurization technology and targeted to improving the mixture of gas, liquid and solid in desulfurization tower, this paper is designed to find a method to improve mixture of gas, liquid, and solid through experiment and numerical simulation, so as to guide the design of circulating fluidized bed desulfurization.
     Taken the gas desulfurization system of Jilin Songhua River Power Plant as the prototype, we designed and built flue gas circulating fluidized bed cold state experiment table. Particle Image Velocimetry (PIV) was chosen to research gas-solid mixture under different feeding ways in the tower. We find that the condition of feeding before the guide plate has a bigger impact on the right side of the wall; the extent of the impact on the wall of solid particles in the tower under unilateral feeding condition is the biggest, which is the most dangerous condition; the extent of the impact on the wall of solid particles in the tower under bilateral feeding condition is the smallest, which is beneficial to reduce scaling of the desulfurated ash on wall and the ash clogging in feeding entrance.
     Then we conducted cold state experiments on the flow of gas and liquid inside the desulfurization tower based on the layout of nozzles in different angles and different layers. It showed that when single nozzle was arranged, the atomized water stayed for a long time in the tower, which was better to increase reaction time of desulfurization. When we decorated the nozzle and radial direction into-45°in the straight section, the axial velocity was relatively small and there was no obvious wall-scouring. And when we decorate them both into-45°, it is good for mixing as the result of big turbulence intensity and vorticity. Comparing single arrangement and double arrangement in the diffuser section, it was better to use double arrangement. Especially when we decorated the nozzle and radial direction into45°in the straight section and-45°in the diffuser section, the mutual interference of the atomized water moving up and down led to the bigger turbulence energy and vorticity, which was helpful for mixing. While comparing the two conditions, the nozzle and radial direction with-45°in the straight section and the double-layer arrangement, the former was better with higher turbulence intensity and bigger axial velocity.
     Further study was conducted to research the gas-liquid mixing at different nozzle angles, with numerical simulation method and considering the impact of tower temperature as well. We compared from three aspects, velocity, temperature and turbulent kinetic energy. Desulfurization mass transfer model was built to study the impact of spray quantities and calcium to sulfur ratio on the desulfurization efficiency. The study found that, when nozzle in the diffuser section was arranged45°, the left wall of desulfurization tower was eroded more seriously, and the turbulence intensity of the left wall appeared to be higher than that of the right side wall, and changed irregularly. When nozzle was disposed-45°in straight section, gas flowing into the desulfurization tower tended to offset to the left side of the wall without serious wall-scouring. Velocity field changed moderately. The turbulence intensity is very high in the bottom of the desulfurization tower, and turbulence intensity tended to accelerate following the increase of desulfurization tower height, and then slightly downward which helped the mixing of gas and liquid. When nozzle was fixed radial45°in the diffuser section, there was a big gap between inlet and outlet temperature of the desulfurization tower. The outlet temperature is higher. When the nozzle is fixed radial-45°in the straight section, there was a satisfied temperature difference between the inlet and outlet with lower outlet temperature. The temperature was distributed in the trend of high middle and low around, which can protect the wall very well. The proposed model for mass-transfer was applied to simulate the tower outlet flue gas moisture content and Ca/S molar ratio on the desulfurization efficiency. The results showed that under the conditions of the tower outlet flue gas moisture content range of0.059kg/kg and the Ca/S range of1.3, the desulphurization efficiency is expected to be improved to85%. The model would be helpful for the desulfurization system of the power plant.
引文
[1]李永亭.烟气CFB干法脱硫与湿法脱硫的比较及应用前景[J].发电设备,2009,24(1):65-68
    [2]孟军磊,李永光.烟气脱硫技术的应用与进展[J].上海电力学院学报,2009,31(6):593-598
    [3]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版,2002:1-11
    [4]王志轩,潘荔,彭俊.电力行业二氧化硫排放控制现状、费用及对策分析[J].环境科学研究,2005,18(4):16
    [5]赵毅,李守信.有害气体控制工程[M].北京:化工出版社,2001:1-32
    [6]袁莉莉.半干法烟气脱硫技术研究进展[J].山东化工,2009,18(8):19-22+25
    [7]李忠华,薛建明,王小明,等.循环流化床烟气脱硫技术分析及工程应用[J].电力科技与环保,2010,42(2):50-52
    [8]刘炳江,郝吉明,贺克斌,等.酸雨控制区和二氧化硫污染控制区区划及政策实施影响分析研究[J].中国环境科学,1998,18(1):1-7
    [9]孙克勤.电厂烟气脱硫设备及运行[M].北京:中国电力出版社,2007:4-11
    [10]S. Bhusarapu, P. Fongarland, M. H. Al-Dahhan, et al. Measurement of Overall Solids Mass Flux in a Gas-solid Circulating Fluidized Bed[J]. Powder Technology, 2004,24(3):158-171
    [11]GB13223-2011,火电厂大气污染物排放标准[S].北京:环境保护部,2011
    [12]于建国.如何理解火电厂大气污染物排放新标准[J].化学工业,2012,30(1):60
    [13]薛艳龙,李大伟,魏征.循环流化床烟气脱硫技术在燃煤机组脱硫工程中的应用[J].承德石油高等专科学校学报,2010,14(1):12-15
    [14]管维佳.循环流化床烟气脱硫技术经济评价[J].广东化工,2008,24(10):90-92+74
    [15]Jason Makansi. CFB Technology Injects Life into Dry Scrubbing[J]. Power,1993, 137(10):79-81
    [16]柳青.半干法烟气脱硫技术研究现状及展望[J].广东化工,2011,27(9):74-75+86
    [17]赖毅强.CFB-FGD在660MW燃煤电站锅炉烟气净化中的应用[J].龙岩学院学报,2010,21(2):40-43+51
    [18]林福林.CFB-FGD在垃圾焚烧烟气净化中的应用[J].中国环保产业,2008, 16(1):51-53
    [19]马双忱,赵英,李守信.先进的烟气脱硫工艺-CT121[J].电力环境保护,1998,14(1):27-31
    [20]孙青斌.循环流化床烟气脱硫技术探讨[J].河南机电高等专科学校学报,2011,26(3):30-32
    [21]Tom Ohlmacher. Circulating Dry Scrubber Debuts with New Unit[J]. Power,1995, 139(4):88-91
    [22]Hibscher C. W. Developments in Batch Plant Technology[J]. Glass Industry,1979, 60(2):144-145
    [23]李飞,祁海鹰,由长福.中温循环流化床烟气脱硫基础——曳力模型与流动的数值研究[J].工程热物理学报,2009,14(8):1335-1338
    [24]Karsten Felsvang, Peter Boolsen. The GSA Dry Scrubbing Technology for Retrofit Applications[J]. Environmental Progress,1995,18(2):75-79
    [25]Martin, M. P., C. Derouin, et al. Catalytic Cracking in Riser Reactors[J]. Chemical Engineering Science,1992,47(9):23-29
    [26]M. Jason. CFB Technology Injects Lime into Dry Scrubbing[J]. Power,1993, 137(10):79-81
    [27]D. Gera, M. Gautam, Y. Tsuji, et al. Computer Simulation of Bubbles in Large-particle Fluidized Beds[J]. Powder Technology,28(11):1998:38-47
    [28]Rhodes M J. Modeling the Flow Strucuture of Upward-flowing Gas-solid Suspensions[J]. Powder Technology,1990,26(2):27-38
    [29]Jiayu Xu, Shigenori Osada, Kunio Kato. Limiting Efficiency For Continuous Drying of Microparticle Slurrie Sina Powder-Particl Spouted Bed[J]. Journal of Chemical Engineering of Japan,1998,31(1):35-40
    [30]王建春.CFB-FGD在大型燃煤电站锅炉烟气净化中的应用[J].中国环保产业,2011,19(6):27-30
    [31]Pedro Arce, Martin Aznar. Modeling the Thermodnamie Behavior of Poly(lactide-co-glyeolide) SuPereritieal Fluid Mixtures with Equations of state[J]. Fluid Phase Equilibria,2006,244(5):16-25
    [32]张立强.烟气循环流化床脱硫塔物料内循环特性研究[D].济南:山东大学,2008
    [33]陈秋,张志强,郁金星.循环流化床烟气脱硫系统运行的技术分析[J].电力建设,2011,28(11):51-54
    [34]郝晓文,马春元,王春冰,等.循环流化床旋直复合流化下的两相流动试验研 究[J].热能动力工程,2008,23(6):620-624
    [35]李兆东,鄢璐,王小明,等.湿法烟气脱硫喷淋塔不同喷嘴布置雾化性能比较试验[J].热能动力工程,2008,23(3):303-305
    [36]崔琳,张立强,马春元,等.旋/直复合流化对脱硫塔内粘壁问题的影响[J].环境工程,2009,24(6):69-73
    [37]M. X. Jiang. The Use of Circulating Fluidized Bed Absorber for the Control of Sulfur Dioxide Emissions by Calcium Oxide Sorbet Vain Situ Hydration[J]. Powder Technology,1995,18(85):115-126
    [38]李伟.多管文丘里循环流化床烟气脱硫冷态试验台试验研究及数值模拟[D].南京:东南大学,2006
    [39]李少华,王虎,董文华,等.锅炉运行工况对循环流化床烟气脱硫效率影响的实验研究[J].电站系统工程,2011,18(3):5-8
    [40]申丽,李洪全.循环流化床烟气脱硫系统控制技术[J].环境工程,2012,34(2):61-63+67
    [41]Veeraya Jiradilok, DimitriGidas, Pow Somsak Damronglerd. Kinetic Theory Based CFD Simulation of Turbulent Fluidization of FCC Particles in A Riser[J]. Chemieal Engineering Seienee,2006,61(17):5544-5559
    [42]马双忱,赵毅.新型脱硫剂在燃煤电厂烟气治理中的研究与应用[J].环境保护,2001,28(7):44-46
    [43]杨柳春,杨文奇,童志权.内循环流化床烟气脱硫技术的实验研究[J].环境污染治理技术与设备,2005,6(2):62-65
    [44]何大阔,王福利,李振中.循环流化床烟气脱硫效率的研究[J].动力工程,2005,25(4):582-586
    [45]韩旭.双循环流化床烟气脱硫的试验研究[J].环境工程,2003,21(3):31-33
    [46]赵旭东.双循环流化床烟气悬浮脱硫技术工业化试验及机理研究[D].哈尔滨:哈尔滨工业大学,2002
    [47]张立强,马春元,宋占龙,等.循环流化床回流物料循环的特性[J].化学工程,2008,26(06):22-25
    [46]曾芳,陈力,李晓芸.湿式脱硫塔流场数值计算[J].华北电力大学学报,2002,29(2):106-110
    [48]刘道银,陈晓平,唐智,等.侧面进料在循环流化床密相区混合特性的试验研究[J].工程热物理学报,2009,3(30):529-532
    [49]张立强,马春元,宋占龙,等.集成内循环烟气流化床脱硫塔内流动特性[J].环 境工程,2010,32(02):83-86
    [50]李大骥,冯斌,吴颖海,等.循环流化床烟气脱硫多层喷水的试验研究及其产物分析[J].热能动力工程,2002,17(4):349-352
    [51]王益农,童钧耕.喷雾脱硫过程中喷雾特性对脱硫效率影响的数值研究[J].四川环境,2003,22(1):19-22
    [52]韩旭,韩增山.石灰石-石膏湿法FGD中喷嘴的选择及布置设计[J].电力设备,2004,36(11):38-40
    [53]李兆东,王世和,王小明.湿法烟气脱硫旋流喷嘴雾化特性研究[J].热能动力工程,2006,21(1):662-669
    [54]张力,钟毅,施平平.湿法烟气脱硫系统喷淋塔喷嘴特性与布置研究[J].湖南电力,2007,27(5):106-110
    [55]李兆东,王世和,王小明.湿法脱硫螺旋喷嘴雾化性能[J].东南大学学报(自然科学版),2008,38(3):493-495.
    [56]陶敏,金保升,仲兆平,等.循环流化床烟气脱硫多层喷水数学模型[J].东南大学学报(自然科学版),2010,40(1):144-148
    [57]Neathery, J. K. Model for Flue-gas Desulfurization in A Circulating Dry Scrubber[J]. AiehE Journal,1996,42(1):259-268
    [58]Benyahia, H. Arastoopour. Simulation of Particles and Gas Flow Behavior in the Riser Section of a Circulating Fluidized Bed Using the Kinetic Theory Approach for the Particulate Phase[J]. Powder Technology,2000,42(6):24-33
    [59]赵旭东,吴少华,马春元,等.循环流化床烟气悬浮脱硫技术中试及机理分析[J].环境科学,2002,32(2):109-112
    [60]赵旭东,项光明,李振山,等.循环流化床烟气脱硫中物料平衡计算及试验研究[J].燃烧科学与技术,2006,12(1):15-20
    [61]谭忠超,项光明.循环流化床排烟脱硫模型[J].环境科学,1999,20(3):21-25
    [62]马双忱,赵毅,华伟.烟气循环流化床脱硫数学模型及应用[J].中国电机工程学报,2004,21(10):228-232
    [63]马双忱,赵毅.循环流化床烟气脱硫数学模型参数的确定[J].动力工程,2006,26(5):716-719
    [64]赵毅,许佩瑶,张艳,等.气力输送状态下利用高活性吸收剂的循环流化床烟气脱硫模型[J].动力工程,2006,28(3):420-426
    [65]许佩瑶,赵毅,张艳,等.快速流态化下烟气循环流化床脱硫数学模型[J].中国电机工程学报.2006,20(9):54-61
    [66]颜湘华,朱廷枉,王威,等.基于Aspen Plus软件的循环流化床烟气脱硫模型[J].计算机与应用化学,2009,26(7):80-85
    [67]G H. Newton, J. Kramlich, R. Payne. Modeling the SO2-Slurry Droplet Reaction[J]. AIChE Journal,1990,36(12):1865-1872
    [68]颜岩,彭晓峰,贾力,等.循环流化床烟气脱硫过程特性分析[J].应用基础与工程科学学报,2003.11(1):77-85
    [69]颜岩,彭晓峰,王补宣.循环流化床内烟气脱硫模拟分析[J].中国电机工程学报,2003.23(11):173-177
    [70]李艳平.循环流化床脱硫反应器流动特性的实验研究与数值模拟[D].天津:天津大学,2005
    [71]宫国卓,叶树峰,陈运法,等.循环流化床烟气脱硫塔进口流场模拟及优化[J].中国矿业大学学报,2010.39(1):716-737
    [72]宋健斐,彭园园,郭本玲,等.循环流化床烟气脱硫塔入口结构改进的数值模拟[J].环境工程学报,2010,24(10):2283-2286
    [73]C. Guenther, M. Syamlal. The Effect of Numerical Diffusion on Simulation of Isolated Bubbles in a Gas-solid Fluidized Bed[J]. Powder Technoligy,2001,116: 142-154
    [74]H. Arastoopour. Numerical Simulation and Experimental Analysis of Gas/solid Flow Systems[J]. Powder Technology,2001,25(10):59-67
    [75]周月桂,彭军,朱贤,等.循环流化床烟气脱硫气固两相流动特性的试验研究[J].动力工程,2009,16(6):559-564
    [76]许宏庆,Adrian R J.粒子像测速技术(PIV)和激光散斑测速技术(LSV)的实验研究[J].气动实验与测量控制,1995,9(2):9-15
    [77]Wei F., Lu F B., Jin Y, et al. Mass Flux Distribution in Circulating Fluidized Bed[J]. Powder Technology,1997,91(3):189-195
    [78]S. Malcus., E. Cruz., C. Rowe., et al. Radial Solid Mass Flux Profiles in a High-suspension Density Circulating Fluidized Bed[J]. Powder Technology,2002, 25(1):5-9
    [79]Yuegui Zhou, Jun Peng, Xian Zhu, et al. Hydrodynamics of Gas-solid Flow in the Circulating Fluidized Bed Reactor for Dry Flue Gas Desulfurization[J]. Powder Technology,2011,205(3):208-216
    [80]Xiaoxun Ma, Takao Kaneko, Tsutomu Tashimo, et al. Use of Limestone for SO2 Removal from Flue Gas in the Semidry FGD Process with a Powder-particle Spouted Bed[J]. Chemical Engineering Science,2000,55(20):4643-4652
    [81]Glicksman. Scaling Relationships for Fluidized Beds[J]. Chemical Engineering Science,1984,39(9):1373-1379
    [82]Cheng Chen, Fei Li, Haiying Qi. Modeling of The Flue Gas Desulfurization in a CFB Riser Using the Eulerian Approach with Heterogeneous Drag Coefficient[J]. Chemical Engineering Science,2012,69(1):659-668
    [83]J. M. Barton, S. F. Birt. Numerical Modeling of Three Dimensional Turbulent Jet Flows[J]. American Institute of Aeronautics and Astronautics,1980,18(2):284-288
    [84]M. A. Leschziner,W. Rodi. Calculation of Annular and Twin Parallel Jets. Using Various Discretion Schemes and Turbulence-Model Variation[J]. ASME Journal of Fluids Engineering,1981,103(5):352-360
    [85]王虎,李少华,雷宇.塔内运行温度对循环流化床烟气脱硫效率影响的试验研究[J].东北电力大学学报,2012,26(2):21-25
    [86]E. H. van der Meer, R. B. Thorpe, et al. Dimensionless Groups for Practicable Similarity of Circulating Fluidized Beds[J]. Chemical Engineering Science,1999, 54(22):5369-5376
    [87]Vander Meer E. H., R. B. Thorpe, J. F. Davidson. Flow Patterns in the Square Cross-Section Riser of a Circulating Fluidized Bed and the Effect of Riser Exit Design[J]. Chemical Engineering Science,2000,55(1):40-45
    [88]Bai D. R., Y. Jin, Z. Q. Yu, et al. The Axial Distribution of the Cross Sectionally Averaged Voidage in Fast Fluidized Beds[J]. Powder Technol,1992,71(5):51-53
    [89]Pugsley T., D. Lapointe, B. Hirschberg, et al. Exit Effects in Circulating Fluidized Bed Risers[J]. Canadian Journal of Chemical Engineering,1997,75(3):1001
    [90]Horio, M., Ishii, H., Kobukai, Y, Yamanishi, N. A Scaling Law for Circulating Fluidized Beds[J]. Journal of Chemical Engineering of Japan,1989,22(6):587-592
    [91]陶文铨.计算传热学的近代发展[M].北京:科学出版社,2002,1-6
    [92]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版社,1994,5-20.
    [93]Maragos P, Schafer R W. Morphological Filters-Part Ⅱ Their Set Theoretic Analysis and Relation to Linear Shift Invariant Filters[J]. IEEE Transactions on ASSP,1987, 35(8):1153-1169
    [94]李戈,池作和,潘维,等.切向燃烧煤粉锅炉燃烧和污染物排放的数值模拟[J].动力工程,2003,23(6):2774-2776
    [95]潘维,池作和,李戈,等.四角切圆燃烧锅炉燃烧和污染物排放数值模拟[J].浙江大学学报(工学版),2004,38(6):761-764
    [96]Hubert F, Hibscher C. W. Pneumatically Based Batch Plant Performs well for Certain Teed[J]. Glass Industry,1989,70(7):10-18
    [97]马银亮.高浓度气固两相流的数值模拟研究[D].杭州:浙江大学,2001
    [98]D. Gidaspow. Hydrodynamics of Fluidization and Heat Supercomputer Modeling[J]. Applied Mechanics Reviews.1986,39(1):15-23
    [99]Y.P. Tsuo, D. Gidaspow. Computer of Flow Patterns in Circulating Fluidized Beds[J]. AICHE Journal.1990,36(6):885-896
    [100]Yang Y-L, Jin Y, Yu Z-Q, et al. Investigation on Slip Velocity Distributions in the Riser of Dilute Circulating Fluidized Bed[J]. Powder Technology,1992,73(1): 67-73
    [101]Savage, S. B., Jeffrey, D. J., The Stress Tensor in Granular Flow at High Shear Rates[J]. Journal of Fluid Mechanics.1981,110(9):255-272
    [102]Jenkins, J. T., Savage, S. B., A Theory for the Rapid Flow of Identical [J]. Journal of Fluid Mechanics.1983,130(2):187-202
    [103]Johnson, P, C., Jackson, R. Frictional-collisionai Constitutive Relations for Granular Materials with Aplication to Plane Shearing[J]. Journal of Fluid Mechanics, 1987,134(6):67-93
    [104]Lun. C. K. K., Savage. F B., Jefrey. D. J., et al. Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in A General Flow Field[J]. Journal of Fluid Mechanics.1984,131(8) 223-256
    [105]Noymer, P. D., Glicksman L. R. Cluster Motion and Particle-convective Heat Transfer at the Wall of a Circulating Fluidized Bed[J]. International Journal of Heat and Mass Transfer,1998,41(1):147-158
    [106]Campbell, S. C., Wang, D. G. Particle Pressure in Gas-fluidized Beds[J]. Journal of Fluid Mechanics,1991,22(7):495-508
    [107]Ding, J., Gidaspow, D. A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow[J]. AIChE Journal.1990,36(5):523-538
    [108]Lim, K. S., J.X.Zhu, et al. Hydrodynamics of Gas-Solid Fluidization[J]. International Journal of Multiphase Flow,1995,21(1):14-18
    [109]吴春亮.稠密颗粒两相流的理论与数值模拟[D].杭州:中山大学.2004
    [110]Fariborz Taghipour, Naoko Ellis, Clayton Wong. Experimental and Computational Study of Gas-solid Fluidized Bed Hydrodynamics[J]. Chemical Engineering Science.2005,60(24):6857-5657
    [111]Ranjeet P., Utikar, Vivek V. Ranade. Single Jet Fluidized Beds:Experiments and CFD Simulations with Glass and Polypropylene Particles[J]. Chemical Engineering Science.2007,62(1):167-183
    [112]H. Arastoopour. Numerical Simulation and Experimental Analysis of Gas/solid Flow Systems[J]. Powder Technology,2001,119:59-67
    [113]Won NamKung, SangDone Kim. Gas Back Mixing in a Circulating Fluidized Bed[J]. Powder Technology,1998,99(7):70-78
    [114]Rhodes M., Mineo, H.&Hirama, T. Particle Motion at the Wall of a Circulating Fluidized Bed[J]. Powder Technology,1992,70(8):207-214
    [115]Xiaowen Hao, Chunyuan Ma, Yong Dong, et al. Composite Fluidization in a Circulating Fluidized Bed for Flue Gas Desulfurization[J]. Powder Technology, 2012,216(5):46-53
    [116]T. H. Shah,W. W. Liou,A. Shabbir, et al. A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows Model Development and Validation[J]. Computers Fluids.1995,24(3):227-238
    [117]Noymer P. D.,& Glicksman, L. R. Near 2 wall Hydrodynamics in a Scale 2 Model Circulating Fluidized Bed[J]. International Journal of Heat and Mass Transfer,1999, 42(4):1389-1393
    [118]J. Kliysport. Simulatrates Betes Between Lime and Limestone in Wet-dry Scrubbing[J]. Chemical Engineering And Processing,1984,18(2):239-247
    [119]G. H. Newton, R. P. Kramlich. Modeling the S02-slurry Droplet Reaction[J]. AIChE Journal,1990,36(12):1865-1872
    [120]Peter D. Noymer, Leon R. Glicksman. Descent Velocities of Particle Clusters at the Wall of a Circulating Fluidized Bed[J]. Chemical Engineering Science,2000,55(3): 5283-5289
    [121]Bai D., Jin Y.,Yu Z., et al. The Axial Distribution of the Cross-Sectionally Averaged Voidage in Fast Fluidized Beds[J]. Powder Technology,1992,71(5):51-58
    [122]Griffith A. E.,&Louge, M. Y. The Scaling of Cluster Velocity at the Wall of Circulating Fluidized Bed Risers[J]. Chemical Engineering Science,1998,53(9): 2475-2477
    [123]Martin, M. P., P. Turlier, G. Wild, et al. Gas and Solid Behaviour in Cracking Circulating Fluidized Beds[J]. Powder Technology,1992,70(7):24-29
    [124]Kinzey, M. Modeling the Gas and Liquid-Phase Resistances in the Dry Scrubbing Process for Removal[D]. Ithaca:Cornall University.1988
    [125]Rabe A. E., Harris J. E. Vapor Liquid Equilibrium Data for the Binary System Sulfur dioxide and Water [J]. Journal of Chemical and Engineering Data,1963 (8):133-136
    [126]A.J.博尼科,L.西奥多.气态污染物工业控制设备[M].北京:化学工业出版社,1982:23-24
    [127]马双忱,赵毅.循环流化床烟气脱硫数学模型参数的确定[J].动力工程,2006,26(5):716-719+738
    [128]崔琳,张立强,李林,等.复合增湿方式下CFB-FGD塔内液-固相浓度分布及其对脱硫过程的影响[J].中国电机工程学报,2011,24(17):59-66
    [129]廖琎,王林,谢剑英.CFB-FGD半干法烟气脱硫网络控制系统的设计与实现[J].微型电脑应用,2010,21(7):26-27+5
    [130]R. Ortiz de Salazar, P. Ollero, A. Cabanillas, et al. Flue Gas Desulfurization in a Circulating Fluidized Bed[J]. Coal Science and Technology,1995,24(4):1843-1846
    [131]范丽婷,李鸿儒,王福利,等.循环流化床烟气脱硫系统数学模型研究[J].中国电机工程学报,2008,17(32):12-17
    [132]彭正标,袁竹林.基于蒙特卡罗法的脱硫塔内气固流动数值模拟[J].中国电机工程学报,2008,27(14):6-14
    [133]Sinclair., J. L., Jackson R. Gas-Particle Flow in a Vertical Pipe with Particle-particleinteractions[J]. AIChE Journal,1989,35(1):1473-1486
    [134]Grace., J. R. High Velocity Fluidized Bed Reactors[J]. Chemical Engineering Science,1990,45(8):49-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700