用户名: 密码: 验证码:
北冰洋、白令海、南海南部海域氟氯烃分布特征及其水团示踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟氯烃(Chlorofluorocarbon, CFC)化学示踪是海洋水团结构及其相互作用研究的有效工具,在世界大洋环流实验海洋计划中被列为常规测定项目。本研究以CFC作为示踪物对北冰洋、白令海以及南海南部海域的水团年龄及水体运移进行了研究。主要研究结果如下:
     1.根据对北冰洋、白令海及南海南部表层海水中CFC的测定结果分析表明:北冰洋海区表层水中的CFC皆处于不饱和状态,CFC-11的饱和度在66.1%~97.83%之间,CCl4的饱和度在65.40%~92.93%,CFC-113的饱和度在61.68~97.98%之间,这主要是由于海冰长期覆盖及低CFC的径流输入或太平洋水入侵导致的。白令海及南海南部海区的表层水的CFC则皆处于饱和或接近饱和状态。
     2.加拿大海盆层化结构明显,根据CFC垂直断面图可明显地分为表层、次表层、中层及深层水团,采用pCFC-11定年法对各水团年龄估算的结果为次表层水团的年龄约为19a,中层水团的年龄约为27a,深层水团的年龄约为38a。采用pCCl4对次表层水团年龄估算的结果要比pCFC-11得到的结果稍大一些。另外,在加拿大海盆2000m深度,仍存在相当浓度的CFC,表明加拿大海盆深层水与周围水体存在交换与更新。
     3.楚科奇海表层及20m深水的CFC、营养盐、DO数据分析表明Chinare2003在研究海区考察期间,20m以浅水体主要被阿拉斯加沿岸水及海冰融化水所占据。楚科奇海R断面的CFC、温盐等分布特征表明确有一支太平洋水经中央水道流入北冰洋,这一研究结果与Weingartiner等人及Woodgate等人的研究结果一致。白令海峡入口处BS06A、BS07A及BS09A三个站位的CFC及温盐数据分析表明,BS09A站位所在的水团为阿拉斯加沿岸水,而BS06A,BS07A站位附近海域很可能就是阿拉斯加沿岸水与白令陆坡水或阿纳德尔水三个水团之间交汇的地点。
     4.楚科奇海台北部的P2断面在300~800m深度存在CFC极大值,表明在楚科奇海台北部至少存在北极边界流的一个分支。楚科奇海台南部的M07站位CFC的垂直分布显示,150~200m间CFC浓度差异较小,表明位于该深度范围内的大西洋水和太平洋水存在相互混合,由于太平洋水密度较小,不可能向下与
Chlorofluorocarbon chemical tracing is a useful tool to study the structure and their interplay of seawater masses. CFC was conventional survey items in the World Ocean Circulation Experiment (WOCE). In this paper, CFC are used as tracers to study the age of water masses and their movement in the Arctic,Bering Sea and the southern South China Sea. Main conclusions are obtained as follows:
     1. The CFC data from the Arctic Ocean indicated that the CFC in surface water is in undersaturation, The degrees of saturation of CFC-11 in the surface water lies in the range of 70.54% to 84.70%, and that of CCl4 within 76.54% to 91.53%, CFC-113 within 61.68% to 97.98%, probably caused by local ice cover, runoff and the invasion of the Pacific water with low CFC concentration. Contrast to the Arctic, the saturation in the Bering Sea and the southern South Sea is in or near saturation.
     2. The vertical distributions of CFC confirmed that the water masses in the Canada Basin were stratified. From the CFC section the water masses in the Canada Basin can be divided into surface water, subsurface water, intermediate water and deep water. The age of these water masses from the pCFC-11 are 19 years for subsurface water, 27 years for intermediate water, and 38 years for deep water. The age of the subsurface water mass from the pCCl4 is older than that from the pCFC-11. The significant concentration of CFC at the depth of 2000 m indicated that deep water in the Canada Basin was exchanged and replaced with the open seawater outside.
     3. The distribution of the CFC, nutrients, DO showed that there are two water masses in the shallower 20m, ACW and ice-melted water. The R section distribution of CFC in the Chukchi Sea confirmed that there is an inflow of Pacific water into the Arctic through the Central Channel, consistent with the results of Weingartiner et al. and Woodgate et al. The CFC and T-S data from the stations of the Bering Sea indicate that the water mass at the station BS09A is the Alaskan Coast Water, and the BS06A, BS07A are in the mixing area of the Alaskan Coast Water, Bering Shelf Water and
引文
[1] Aagaard K On the deep circulation in the Arctic Ocean [J]. Deep-Sea Research, 1981, 28A(3): 251-268.
    [2] Aagaard K., Coachman L. K., Carmack E., On the halocline of the Arctic Ocean [J]. Deep-Sea Research, 1981, 28A(6):529 -545.
    [3] Aagaard K., Swift J.H., Carmack E.C. Thermohaline Circulation in the Arctic Mediterranean Seas [J]. Journal of Geophysical Research, 1985, 90(C3): 4833-4846.
    [4] Aagaard K., Carmack E.C. The role of the sea ice and other fresh water in the Arctic circulation [J]. Journal of Geophysical Research, 1989, 94, 14495-14498.
    [5] Aagaard, K. Roach A.T. Arctic Ocean-Shelf Exchange: Measurements inBarrow Canyon [J], J. Geophys. Res., 1990,95 (C10): 18163 - 18175.
    [6] Abell J. Emerson S.,Renaud P. Distribution of TOP,TON and TOC in the North Pacific subtropical gyre:Implications for Nutrient supply in the surface ocean and remineralization in the upper thermocline [J].J.Mar.Res.,2000, 58, 203-222.
    [7] Anderson L. G., Jones E. P., Koltermann K. P., et al, The first oceanographic section across the Nansen Basin in the Arctic Ocean [J]. Deep-Sea Research, 1989, 36(C3):475-482.
    [8] Anderson L.G., Bjork G., Holby O., et al. Water masses and circulation in the Eurasian Basin: Results from the Oden 91 expedition [J]. Journal of Geophysical Research, 1994, 99(C2): 3273-3283.
    [9] Anderson L.G., Jones E.P., Rudels B. Ventilation of the Arctic Ocean estimated by a plume entrainment model constrained by CFCs [J]. Journal of Geophysical Research, 1999, 104(C6): 13423-13429.
    [10] Andrie C., Rhein M., Freudenthal S., et al.CFC time series in the deep water masses of the western tropical Atlantic, 1990-1999 [J]. Deep-Sea Rcscarch I, 2002, 49, 281-304.
    [11] Andrié C., Temon J-F., Gouriou Y., et al. Tracer distributions and deep circulation in the western tropical Atlantic during CITHER 1 and ETAMBOT cruises, 1993-1996 [J]. Journal of Geophysical Research, 1999, 104(C9):21195-21215.
    [12] Azetsu-Scott K., Jones E. P., Yashayaev I., et al. Time series study of CFC concentrations in the Labrador Sea during deep and shallow convection regimes(1991-2000) [J]. Journal of Geophysical Research, 2003, 108,C11, 3354, doi:10. 1029/2002JC001317.
    [13] Beining P., Roether W. Temporal evolution of CFC 11 and CFC 12 concentrations in the ocean interior [J]. Journal of Geophysical Research, 1996, 101(C7): 16455-16464.
    [14] Beismann J.O., Redler R. Model simulations of CFC uptake in North Atlantic Deep Water: Effects of parameterizations and grid resolution [J]. Journal of Geophysical Research, 2003, 108(C5):3159, doi:10.1029/2001JC001253.
    [15] Bj?rk G. The Vertical Distribution of Nutrients and Oxygen 18 in the Upper Arctic Ocean [J]. Journal of Geophysical Research, 1990, 95(C9):16025-16036.
    [16] Brewer P.G., Sarmiento J.L. and Smethie Jr W. M., The Transient Tracers in the Ocean (TTO) Program: The North Atlantic Study,1981;The Tropical Atlantic Study,1983 [J], J.Geophys. Res, 1985, 90: 6903-6905.
    [17] Bonisch G., Blindheim J., Bullister J. L., Schlosser P., Wallace D. W. R. Long-term trends of temperature, salinity, density, and transient tracers in the central Greenland Sea [J]. Journal of Geophysical Research, 1997, 18553-18571.
    [18] Bu X., Warner M.J. Solubility of chlorofluocarbon 113 in water and seawater [J]. Deep-Sea Research Ⅰ,1995,42(7): 1151-1161.
    [19] Bullister J.L., Weiss R.F. Anthropogenic Chlorofluoromethanes in the Greenland and Norwegian Seas [J]. Science, 1983, 221: 265-268.
    [20] Bullister J.L., Weiss R.F. Determination of CCl3F and CCl2F2 in seawater and air [J]. Deep-Sea Research, 1988, 35(5): 839-853.
    [21] Bullister J.L. Chlorofluorocarbons as time-dependent tracers in the ocean [J]. Oceanography, 1989, 12–17.
    [22] Bullister J.L., Wisegarver D.P. The solubility of carbon tetrachloride in water and seawater [J]. Deep-Sea Research Ⅰ,1998,45:1285-1302.
    [23] Bulsiewicz K., Rose H., Klatt O., et al. A capillary-column chromatographic system for efficient chlorofluorocarbon measurement in ocean waters [J]. Journal of Geophysical Research, 1998, 103(C8):15959-15970.
    [24] Busenberg E., Plummer L.N. Use of Chlorofluorocarbons (CCl3F and CCl2F2) asHydrologic Tracers and Age-Dating Tools: The Alluvium and Terrace System of Central Oklahoma [J]. Water Resources Research, 1992, 28(9): 2257-2283.
    [25] Carmack E.C., Macdonald R W, Perkin R G et al. Evidence for warming of Atlantic water in the Southern Canadian Basin of the Arctic Ocean: Results from the Larsen-93 Expedition [J]. Geophys. Res. Lett., 1995, 22, 1061-1064.
    [26] Carmack E.C., Aagaard K., Swift J.H., et al. Changes in temperature and tracer distributions within the Arctic Ocean: results from the 1994 Arctic Ocean section [J]. Deep-Sea Research II, 1997, 44(8): 1487-1502.
    [27] Cavalieri D.J., Martin S. The contribution of Alaskan, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean [J]. Journal of Geophysical Research, 1994, 99(C9):18343-18362.
    [28] Cavalieri D.J., Martin S. The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean [J]. Journal of Geophysical Research, 1994, 99(C9): 18343-18362.
    [29] Chao S.Y., Shaw P.T., Wu S.Y. Deep water ventilation in the South China Sea [J]. Deep-Sea Research I, 1996, 43(4): 445-466.
    [30] Chen C.A. Tracing tropical and intermediate waters from the South China Sea to the Okinawa Trough and beyond [J]. Journal of GeophysicalResearch, 2005, 110: C05012, doi: 10.1029/2004JC 002494.
    [31] Chen S.M., Firing E. Currents in the Aleutian Basin and subarctic North Pacific near the dateline in summer 1993 [J]. Journal of Geophysical Research, 2006, 111: C03001, doi: 10. 10 29/2005JC003064.
    [32] Coachman, L.K., Aagaard, K., Tripp, R.B., 1975. Bering Strait: the Regional Physical Oceanography. University of Washington Press, Seattle, WA (172pp).
    [33] Coachman L. K., Aagaard K. Transports Through Bering Strait: Annual and Interannual Variability [J]. Journal of Geophysical Research , 1988, 93(C12):15535-15539.
    [34] Coachman L. K., On the flow field in the Chirikov Basin [J].Continental Shelf Research. 1993,13:481-508.
    [35] Coatanoan C., Goyet C., Gruber N. etal. Comparison of two approaches to quantify anthropogenic CO2 in the Ocean: Results from the northern Indian Ocean, GlobalBiogeochem.Cycles,2001, 15:11-26.
    [36] Cooper L. W., Hong G. H., Beasley T. M., et al. Iodine-129 Concentration in Marginal Seas of the North Pacific and Pacifiv-in fluenced Waters of the Arctic Ocean [J]. Marine Pollution Bulletin, 2001, 42(12):1347-1356.
    [37] Cooper L.W., Whitledge T.E., Grebmeier J.M., Weingartner T. The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait [J]. Journal of Geophysical Research, 1997, 102 (C6): 12563-12573.
    [38] D’Asaro E.A.,Observations of small eddies in the Beaufort Sea [J]. Journal of Geophysical Research, 1988,93(C6),6669~6684.
    [39] Doney S.C., Bullister J. L. A chlorofluorocarbon section in the eastern North Atlantic [J]. Deep-sea research, 1992, 39(11/12):1857-1883.
    [40] Doney S.C., Jenkins W.J., Bullister J.L. A comparison of ocean tracer dating techniques on a meridional section in the eastern North Atlantic [J]. Deep-Sea Research I, 1997, 44(4): 603-626.
    [41] Dutay J.-C., Bullister .J.L., Doney S. C., et al. Evaluation of ocean model ventilation with CFC-11:comparison of 13 global ocean models [J]. Ocean Modelling, 2002, 4: 89-120.
    [42] Ekdahl A., Abrahamsson K. A simple and sensitive method for the determination of volatile halogenated organic compounds in sea water in the amol l-1 to pmol l-1 range [J]. Analytica Chimica Acta, 1997, 357: 197-209.
    [43] Ekwurzel B., Schlosser P., Mortlock R. A., et al. River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean [J]. Journal of Geophysical Research, 2001, 106(C5):9075-9092.
    [44] Elkins J.W., Thompson T.M., Swanson T.H., et al. Decrease in the growth rates of atmospheric chlorofluorocarbons 11 and 12 [J]. Nature, 1993, 364: 780-783.
    [45] England M.H,Reimer E.M, Using chemical tracers to assess ocean Models [J]. Reviews of Geophysics , 2001, 39: 29-70.
    [46] England M.H., Garcon V., Minster J.F. Chlorofluorocarbon uptake in a world ocean model 1. Sensitivity to the surface gas forcing [J]. Journal of Geophysical Research, 1994, 99(C12): 25215-25233.
    [47] England M.H., Hirst A.C. Chlorofluorocarbon uptake in a World Ocean model 2. Sensitivityto surface thermohaline forcing and subsurface mixing parameterizations [J]. Journal of Geophysical Research, 1997, 102(C7): 15709-15731.
    [48] Fine R.A., Lukas R., Bingham F.M., Warner M.J., Gammon R.H. The western equatorial Pacific: A water mass crossroads [J]. Journal of Geophysical Research, 1994, 99(C12): 25063-25080.
    [49] Fine R.A., Maillet K.A., Sullivan K.F., Willey D. Circulation and Ventilation flux of the Pacific Ocean [J]. Journal of Geophysical Research, 2001, 106(C10): 22159-22178.
    [50] Fine R.A., Rhein M., Andrie C. Using a CFC effective age to estimate propagation and storage of climate anomalies in the deep western North Atlantic Ocean [J]. Geophysical Research Letters, 2002, 29(24):2227,doi:10.1029/2002GL015618.
    [51] Fine R.A., Warner M.J., Weiss R.F. Water mass modification at the Agulhas Retroflection chlorofluoromethane studies [J]. Deep-Sea Research, 1988, 35(3): 311-332.
    [52] Fleischmann U., Hildebrandt H., Putzka A., Bayer R. Transport of newly ventilated deep water from the Iceland Basin to the Westeuropean Basin [J]. Deep-Sea Research,2001, 48, 1793 -1819.
    [53] Fogelqvist E., Blindheim J., Tanhua T., et al. Greenland- Scotland overflow studied by hydro-chemical multivariate analysis [J]. Deep-Sea Research I, 2003, 50: 73-102.
    [54] Freeland H.J., Bychkov A.S., Whitney F., et al. WOCE section P1W in the Sea of Okhotsk 1. Oceanographic data description [J]. Journal of Geophysical Research, 1998, 103(C8): 15613-15623.
    [55] Frolkis V A, Karol I L, Kiselev A A, Global warming potential, global warming commitment and other indexes as characteristics of the effects of greenhouse gases on Earth’s climate, Ecological Indicators, 2002.2, 109-121.
    [56] Gammon R.H., Cline J., Wisegarver D. Chlorofluoromethanes in the Northeast Pacific Ocean: Measured Vertical Distributions and Application as Transient Tracers of Upper Ocean Mixing [J]. Journal of Geophysical Research, 1982, 87(C12): 9441-9454.
    [57] Ganachaud A. Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data [J]. Journal of Geophysical Research, 2003, 108(C7): 3213,doi: 10.1029/ 2002 JC001565.
    [58] Gao Y.Q., Drange H. The Effect of Diapycnal Mixing on the Ventilation and CFC-11Uptake in the Southern Ocean [J]. Advances in Atmospheric Sciences, 2004, 21(4): 1-12.
    [59] Gawarkiewicz G. Effects of ambient stratification and shelfbreak topography on offshore transport of dense water on continental shelves [J]. Journal of Geophysical Research, 2000,105(C2):3307-3324.
    [60] Grebmeier J. M., Cooper L. W., Deniro M. J. Oxygen isotopic composition of bottom seawater and tunicate cellulose as indicators of water masses in the northern Bering and Chukchi Seas [J]. Limnol. Oceanogr. 1990, 35(5):1182-1195.
    [61] Haine T. W. N., Richards K. J., The influence of the seasonal mixed layer on oceanic Uptake of CFCs [J]. Journal of Geophysical Research, 1994, 99, 10727-10744.
    [62] Haine T.W.N., Watson A.J., Liddicoat M.I. Chlorofluorocarbon- 113 in the northeast Atlantic [J]. Journal of Geophysical Research, 1995, 100(C6): 10745-10753.
    [63] Hahne A., Volz A., et al. Depth profiles of chlorofluoromethanes in the Norwegian Sea [J]. Pageoph, 1978,116: 575-582.
    [64] Hammer P.M., Hayes J.M. et al. Exploratory analysis of trichlorofluoromethane(F-11) in North Atlantic water columns [J].Geophys.Res.Ltrs.,1978,5: 645-648.
    [65] Heinze C., Schlosser P., Koltermann K.P., Meincke J. A tracer study of the deep water renewal in the European polar seas [J]. Deep-Sea Research, 1990, 37(9): 1425-1453.
    [66] Huang B., Mehta V.M. Response of the Indo-Pacific warm pool to interannual variations in net atmospheric freshwater [J]. Journal of Geophysical Research, 2004, 109: C06022, doi: 10.1029/2003JC002114.
    [67] Huhn O., Roether W., Beining P., Rose H. Validity limits of carbon tetrachloride as an ocean tracer [J]. Deep-Sea Research I, 2001, 48: 2025-2049.
    [68] Itaki T., Ito M., Narita H., et al . Depth distribution of radiolarians from the Chukchi and Beaufrot Seas, western Arctic [J]. Deep-Sea Research I, 2003, 50:1507-1522.
    [69] Jean-Baptiste P., Mantisi F., Memery L., Jomous D. 3He and chlorofluorocarbons (CFC) in the Southern Ocean: tracers of water masses [J]. Marine Chemistry, 1991, 35: 137-150.
    [70] Johnson W.R. Current Response to Wind in the Chukchi Sea: A Regional Coastal Upwelling Event [J]. Journal of Geophysical Research, 1989, 94(C2): 2057-2064.
    [71] Johnson W.R. Current Response to Wind in the Chukchi Sea: A Regional Coastal Upwelling Event [J]. Journal of Geophysical Research, 1989, 94(C2): 2057-2064.
    [72] Jones E. P., Swift J. H., Anderson L.G., Lipizer M., Civitarese G., Falkner K. K., Kattner G., McLaughlin F. Tracing Pacific water in the North Atlantic Ocean [J]. Journal of Geophysical Research, 2003, 108(C4): 3116, doi:10. 1029/2001JC001141.
    [73] Jones E.P., Rudels B., Anderson L.G. Deep waters of the Arctic Ocean: orgins and circulation [J]. Deep-Sea Research I, 1995, 42(5):737-760.
    [74] Jones L.G., Anderson L.G. On the Origin of the Chemical Properties of the Arctic Ocean Halocline [J]. Journal of Geophysical Research, 1986, 91(C9):10759-10767.
    [75] Joyce T. M., Hernandez-Guerra A., Smethie Jr W. M. Zonal circulation in the NW Atlantic and Caribbean from a meridional World Ocean Circulation Experiment hydrographic section at 66oW [J]. Journal of Geophysical Research,2001, 106(C10): 22095 -22113.
    [76] Smethie Jr W.M., Fine R.A., Putzka A., Jones E.P. Tracing the flow of North Atlantic Deep Water using chlorofluorocarbons [J]. Journal of Geophysical Research, 2000, 105(C6): 14297-14323.
    [77] Kadko D., Muench R. Evaluation of shelf-basin interaction in the western Arctic by use of short-lived radium isotopes: The importance of mesoscale processes [J]. Deep-Sea Research II, 2005, 52:3227-3244.
    [78] Karcher M.J., Oberhuber J.M. Pathways and modification of the upper and intermediate waters of the Arctic Ocean [J]. Journal of Geophysical Research, 2002, 107(C6): 10.1029/2000JC000530.
    [79] Karstensen J., Tomczak M. Age determination of mixed water masses using CFC and oxygen data [J]. Journal of Geophysical Research, 1998, 103(C9): 18599-18609.
    [80] Karstensen., Schlosser P., Wallace D. W. R., et al. Water mass transformation in the Greenland Sea during 1990s [J]. Journal of Geophysical Research, 2005,110:C07022, doi: 10.1029/2004 JC002510.
    [81] Kikuchi T., Wakatsuchi M., Ikeda M. A numerical investigation of the transport of dense shelf water from a continental shelf to a slope [J]. Journal of Geophysical Research, 1999, 104(C1): 1197-1210.
    [82] Kim K., Kim K-R., Min D-H., et al. Warming and Structural Changes in the East(Japan) Sea: A Clue to Future Changes in Global Oceans? [J]. Geophysical Research Letters, 2001, 28(17):3293-3296.
    [83] KINDER T H, COACHMAN L K, GALT J A, et al. The Bering slope current system [J].J.Phys.Oceanogr, 1975, 5:231-243.
    [84] KINDER T H, CHAPMAN D C, WHITEHEAD JR J A, et al. Westward intensification of the mean circulation on the Bering Sea shelf [J].J Phys Oceanogr,1986,16:1217-1229.
    [85] Klatt O., Roether W., Hoppema M., et al. Repeated CFC sections at the Greenwich Meridian in the Weddell Sea [J]. Journal of Geophysical Research, 2002, 107(C4):10.1029/2000JC 000731.
    [86] Kortzinger A., Rhein M., Mintrop L. Anthropogenic CO2 and CFCs in the North Atlantic Ocean – A comparison of man-made tracers [J]. Geophysical Research Letters, 1999, 26(14): 2065-2068.
    [87] Krysell M. Carbon tetrachloride and methyl chloroform as tracers of deep water formation in the Weddell Sea, Antarctica [J]. Marine Chemistry, 1992, 39: 297-310.
    [88] Krysell M., Wallace D.W.R. Arctic Ocean Ventilation Studied with a Suite of Anthropogenic Halocarbon Tracers [J]. Science, 1988, 242: 746-748.
    [89] Ladd C., Kachel N.B., Mordy C.W., Stabeno P.J. Observations form a Yakutat eddy in the northern gulf of Alaska [J]. Journal of Geophysical Research, 2005, 110: C03003, doi: 1029/2004 JC002710.
    [90] Lee B.S., Bullister J.L., Murray J.W., Sonnerup R.E. Anthropogenic chlorofluorocarbons in the Black Sea and the Sea of Marmara [J]. Deep-Sea Research I, 2002, 49: 895-913.
    [91] Li L., Du L., Zhao J.P., Zuo J.C., Li P.L. The fundamental characteristics of current in the Bering Strait and the Chukchi Sea from July to September 2003 [J]. Acta Oceanologica Sinica, 2005, 24(6): 1-11.
    [92] Li L., Qu T. Thermohaline circulation in the deep South China basin inferred from oxygen distributions [J]. Journal of Geo- physical Research, 2006, 111: C05017, doi: 10.1029/2005- JC003164.
    [93] Li X.W., Wunsch C. Constraining the North Atlantic circulation between 4.5oS and 39.5oN with transient tracer observations [J]. Journal of Geophysical Research, 2003, 108(C10):3318, doi: 10. 1029/2002JC00 1765.
    [94] Liu Q.Y., Jiang X., Xie S.P., Liu W.T. A gap in the Indo-Pacific warm pool over the South China See in boreal winter: Seasonal development and interannual variability [J]. Journal ofGeophysical Research, 2004, 109: C07012, doi: 10. 1029/ 2003 JC002179.
    [95] Lovelock J.E., Maggs R.J., Wade R.J. Halogenated Hydrocarbons in and over the Atlantic [J]. Nature, 1973, 241: 194-196.
    [96] Maamaatuaiahutapu K., Provost C., Andrie C., Vigan X. Origin and ages of mode waters in the Brazil-Malvinas Confluence region during austral winter 1994 [J]. Journal of Geophysical Research, 1999, 104(C9): 21051-21061.
    [97] Maamaatuaiahutapu K., Provost C., Andrie C., Vigan X. Origin and ages of mode waters in the Brazil-Malvinas Confluence region during austral winter 1994 [J]. Journal of Geophysical Research,1999, 104(C9):21051 -21061.
    [98] Mantisi F., Beauverger C., Poisson A., Metzl N. Chlorofluoromethanes in the western Indian sector of the Southern Ocean and their relations with geochemical tracers [J]. Marine Chemistry, 1991, 35:151-167.
    [99] Martin S., Drucker R. The effect of possible Taylor columns on the summer ice retreat in the Chukchi Sea [J]. Journal of Geophysical Research, 1997, 102(C5):10473-10482.
    [100] Matear R.J., Wong C.S. Estimation of vertical mixing in the upper ocean at Station P from chlorofluorocarbons [J]. Journal of Marine Research, 1997, 55:507-521.
    [101] Mayer H., Spiekermann M., Bergmann M. Determination of volatile organic compounds in water by Purge & Trap -Gas chromatography - Mass spectrometry [J]. Journal of Molecular Structure, 1995, 348: 389-392.
    [102] McLaughlin F., Carmack E. Macdonald R., Weaver A.J., Smith J. The Canada Basin, 1989-1995: Upstream events and far-field effects of the Barents Sea [J]. Journal of Geophysical Research, 2002, 107(C7): 10.1029/2001JC000904.
    [103] McLaughlin F.A., Carmack E.C., Macdonald R.W., Bishop J.K.B. Physical and geochemical properties across the Atlantic/Pacific water mass front in the southern Canadian Basin [J]. Journal of Geophysical Research, 1996, 101(C1): 1183-1197.
    [104] McLaughlin F.A., Carmack E.C., Macdonald R.W., et al. The joint roles of Pacific and Atlantic-origin waters in the Canada Basin, 1997-1998 [J]. Deep-Sea Research I, 2004, 51: 107-128.
    [105] McNeil B.I., Matear R.J., Key R.M., et al. Anthropogenic CO2 Uptake by the Ocean Based on the Global Chlorofluorocarbon Data Set [J]. Science, 2003, 299:235-239.
    [106] Mecking S., Warner M. J. On the subsurface CFC maxima in the subtropical North Pacific thermocline and their relation to mode waters and oxygen maxima Journal of Geophysical Research, [J]. 2001, 106(C10):22179-22198.
    [107] Mecking S., Warner M.J. Ventilation of Red Sea Water with respect to chlorofluorocarbons [J]. Journal of Geophysical Research, 1999, 104(C5): 11087-11097.
    [108] Melling H. Hydrographic changes in the Canada Basin of the Arctic Ocean, 1979-1996 [J]. Journal of Geophysical Research, 1998, 103(C4): 7637-7645.
    [109] Melling H., Lewis E.C. Shelf drainage flows in the Beaufort Sea and their effect on the Arctic Ocean pycnocline [J]. Deep Sea Res.,1982, 29: 967-985.
    [110] Mensch M., Bayer R., Bullister J.L., et al. The Distribution of Tritium and CFCs in the Weddell Sea during the mid-1980s [J]. Prog. Oceanog, 1996, 38: 377-415.
    [111] Meredith M. P., Watson A.J., Van Scoy K. A., Haine T. W. N., Chlorofluorocarbon-derived formation rates of the deep and bottom waters of the Weddell Sea [J]. Journal of Geophysical Research, 2001, 106(C2):2899-2919.
    [112] Meredith M.P., Locarnini R.A., Van Scoy K.A., et al. On the sources of Weddell Gyre Antarctic Bottom Water [J]. Journal of Geophysical Research, 2000, 105(C1): 1093-1104.
    [113] Min D.H., Bullister J.L., Weiss R.F. Constant ventilation age of thermocline water in the eastern subtropical North pacific Ocean from chlorofluorocarbon measurements over a 12-year period [J]. Geophysical Research Letters, 2000, 27(23): 3909-3912.
    [114] Min D.H., Studies of large-scale intermediate and deep waters circulation and ventilation in the North Atlantic, South Indian and Northeast Pacific Oceans, and in the East Sea (sea of Japan), using chlorofluorocarbons as tracers, University of California, San Diego, 1999, 1-171.
    [115] Min D.H., Warner M.J. Basin-wide circulation and ventilation study in the East Sea (Sea of Japan) using chlorofluorocarbon tracers [J]. Deep-Sea Research II, 2005, 52: 1580-1616.
    [116] Min D-H., Bullister J. L., Weiss R. F. Anomalous chlorofluorocarbons in the Southern California Borderland Basins [J]. Geophysical Research Letters, 2002, 29:20, 1955, doi:10.1029/2002GL015408.
    [117] Mizobata K., Saitoh S.I., Shiomoto A., et al. Bering Sea cyclonic and anti-cyclonic eddies observed during summer 2000 and 2001 [J]. Progress in Oceanography, 2002, 55: 65-75.
    [118] Mountain, D.G., Coachman L.K. and Aagaard K. On the Flow Through Barrow Canyon [J]. J. Phys. Oceanogr., 1976, 6(4):461-470.
    [119] Moore R. M., Lowings M. G., Tan F. C. Geochemical Profiles in the Central Arctic Ocean: Their Relation to Freezing and Shallow Circulation [J]. Journal of Geophysical Research, 1983, 88(C4):2667-2674.
    [120] Muench R. D., Gunn J. T., Whitledge T. E., et al. An Arctic Oecan cold core eddy [J]. Journal of Geophysical Research, 2000, 105(C10):23997-24006.
    [121] Muench R.D., Mensch M., Frank M., Bayer R. Wind-driven transport pathways for Eurasian Arctic river discharge [J]. Journal of Geophysical Research, 2001, 106(C6):11469-11480.
    [122] Muench R.D., Schumacher J.D., Salo S.A. Winter currents and hydrographic conditions on the northern central Bering sea shelf [J].Journal of Geophysical Research, 1988, 93(C1):516-526.
    [123] Orsi A. H., Smethie Jr. W. M., Bulister J. L. On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements [J] Journal of Geophysical Research, 2002, 107:C8, 10.1029 /2001JC000976.
    [124] Orsi A.H., Johnson G.C., Bullister J.L. Circulation, mixing, and production of Antarctic Bottom Water [J]. Progess in Oceanography, 1999, 43: 55-109.
    [125] Ostlund H.G., Hut G. Arctic Ocean Water Mass Balance From Isotope Data [J]. Journal of Geophysical Research, 1984, 89(C4): 6373-6381.
    [126] Ostlund H.G., Possnert G., Swift J.H. Ventilation rate of the deep Arctic Ocean from Carbon 14 data [J]. Journal of Geophysical Research, 1987, 92(C4): 3769-3777.
    [127] Overland J. E., Stabeno P. J., Salo S. Direct evidence for northward flow on the northwestern Bering Sea shelf [J]. Journal of Geophysical Research, 1996, 101(C4): 8971-8976.
    [128] OVERLAND J E, et al. A numerical study of the circulation of the Bering Sea Basin and exchange with the North Pacific Ocean [J]. J Phys Oceanogr, 1994, 24: 736-758.
    [129] Overland J.E., Roach A.T. Northward Flow in the Bering and Chukchi Seas [J]. Journal of Geophysical Research, 1987, 92(C7): 7097-7105.
    [130] Piatt J.F., Springer A.M. Advection, pelagic food webs and the biogeography of seabirds in Bering Strait [J].Marine Ornithology, 2003, 31(2):141-154.
    [131] Pickart R.S., Hogg N.G., SmethieJR W.M. Determining the Strength of the Deep Western Boundary Current Using the Chlorofluoro-methane Ratio [J]. Journal of Physical Oceanography, 1989, 19: 940-951.
    [132] Pickart R.S., Weingartner T.J., Pratt L.J., et al. Flow of winter-transformed Pacific water into the western Arctic [J]. Deep-Sea Research II, 2005, 52: 3175-3198.
    [133] Prather M.J. Continental sources of halocarbons and nitrous oxide [J]. Nature, 1985, 317: 221-225.
    [134] Pruvost J., Connan O., Marty Y., Corre P.L. A sampling device for collection and analysis of volatile halocarbons in coastal and oceanic waters[J]. The Analyst, 1999, 124:1389-1394.
    [135] Quadfasel D., Sy A., Wells D., Tunik A. Warming in the Arctic [J]. Nature, 1991, 350(4): 385.
    [136] Qu T., Mitsudera H., Yamagata T. Intrusion of the North Pacific waters into the South China Sea [J]. Journal of Geophysical Research, 2000,105(C3):6415-6424.
    [137] Radchenko V. I., Khen G. V., Slabinsky A. M. Cooling in the western Bering Sea in 1999: quick propagation of La Ni?a siganl or compensatory processes effect? [J]. Progress in Oceanography, 2001, 49:407-422.
    [138] Reed R. K. On Geostrophic Reference Levels in the Bering Sea Basin [J]. Journal of Oceanography, 1995, 51:489-498.
    [139] Rhein M. Ventilation rates of then Greenland and Norwegian Seas derived from distributions of then chlorofluoromethanes F-11 and F-12 [J]. Deep-Sea Research, 1991, 38(4): 485-503.
    [140] Rhein M., Fischer J., Smethie W.M., et al. Labrador Sea Water: Pathways, CFC Inventory, and Formation Rates [J]. Journal of Physical Oceanography, 2000, 32: 648-665.
    [141] Rivaro P., Bergamasco A., Budillon G., et al. Chlorofluorocarbon distribution in the Ross Sea water masses [J]. Chemistry and Ecology, 2004, 20(1): S29-S41.
    [142] Roach A.T., Aagaard K., Pease C.H., et al. Direct measurements of transport and water properties through the Bering Strait [J]. Journal of Geophysical Research, 1995, 100(C9): 18443-18457.
    [143] Roden G.I. Aleutian Basin of the Bering Sea: Thermohaline, oxygen, nutrient, and current structure in July 1993 [J]. Journal of Geophysical Research, 1995, 100(C7): 13539-13554.
    [144] Roether W., Beitzel V., Sültenfu? J.,Putzka A. The Eastern Mediterranean tritium distribution in 1987 [J]. Journal of Marine Systems, 1999, 20: 49-61.
    [145] Roether W., Klein B., Beitzel V., Manca B.B. Property distributions and transient-tracer ages in Levantine Intermediate Water in the Eastern Mediterranean [J]. Journal of Marine Systems, 1998, 18: 71-87.
    [146] Roether W., Klein B., Bulsiewicz K. Apparent loss of CFC-113 in the upper ocean [J]. Journal of Geophysical Research, 2001, 106(C2): 2679-2688.
    [147] Rudels B., Anderson L. G., Jones E. P., Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean [J]. Journal of Geophysical Research, 1996, 101(C4):8807-8821.
    [148] Rudnick D.L., Luyten J.R. Intensive surveys of the Azores Front 1. Tracers and dynamics [J]. Journal of Geophysical Research, 1996, 101(C1): 923-939.
    [149] Sabine C.L., Key R.M., Johnson K.M. etal. Anthropogenic CO2 inventory of the Indian Ocean[J]. Global Biogeochem. Cycles, 1999, 13: 179-198.
    [150] Sasaki Y.N., Minobe S. Seasonally dependent inter-annual varibility of sea ice in the Bering sea and its relation to atmospheric fluctuations [J]. Journal of Geophysical Research.2005, 110:C05011, doi: 1029/2004 JC 002486.
    [151] SCHUMACHER J D,KINDER T H. Low frequency current regimes over the Bering Sea shelf[J]. J Phys Oceanogr, 1983,13:607-623.
    [152] Schlosser P., Bayer R., Smethie W. M., et al. Pathways and mean residence times of dissolved pollutants in the ocean derived from transient tracers and stable isotopes [J]. The Science of the Total Environment, 1999, 237/238, 15-30.
    [153] Schlosser P., Bonisch G., Kromer B., Munnich O., Koltermann K. P. Ventilation Rates of the Waters in the Nansen Basin of the Arctic Ocean Derived From a Multitracer Approach [J]. Journal of Geophysical Research, 1990, 95(C3):3265-3272.
    [154] Schlosser P., Bullister J.L., Bayer R. Studies of deep water formation and circulation in the Weddell Sea using natural and anthropogenic tracers [J]. Marine Chemistry, 1991, 35: 97-122.
    [155] Schlosser P., Bauch D.,Fairbanks R. et al. Arctic river-off :Mean Residence time on the shelves and in the halocline [J]. Deep Sea Res., 1994, 41:1053-1048.
    [156] Shapiro G.I., Huthnance J.M., Ivanov V.V. Dense water cascading off the continental shelf [J]. Journal of Geophysical Research, 2003, 108(C12):3390,doi: 10. 1029/2002JC001610.
    [157] Shapiro S.D., Schlosser P., Smethie Jr W.M., Stute M. The use of 3H and tritiogenic 3He to determine CFC degradation and vertical mixing rates in Framvaren Fjord, Norway [J]. Marine Chemistry, 1997, 59:141-157.
    [158] Shimada K., McLaughlin F., Carmack E., Proshutinsky A., Nishino S., and Itoh M. Penetration of the 1990s warm temperature anomaly of Atlantic Water in the Canada Basin, Geophys. Res. Lett., 2004, 31, doi:10. 1029/2004GL020860.
    [159] Shimada K., Carmack E. C., Hatakeyama K. et al. Varieties of Shallow Temperature Maximum Waters in the Western Canadian Basin of the Arctic Ocean [J]. Geophys.Res.Lett., 2001,28(18):3441-3444.
    [160] Shi J.X., Cao Y., Zhao J.P., Gao G.P., Jiao Y.T., Li S.J. Distribution of Pacific-origin water in the region of the Chukchi Plateau in the Arctic Ocean in the summer of 2003 [J]. Acta Oceanologica Sinica, 2005, 24(6): 12-24.
    [161] Shi J.X., Zhao J.P., Li S.J., Cao Y., Qu P. A double-halocline structure in the Canada Basin of the Arctic Ocean [J]. Acta Oceanologica Sinica, 2005, 24(6): 25-35.
    [162] Shuert P.G., Wash J.J. A coupled physical-biological model of Bering-Chukchi Seas [J]. Continental Shelf Research, 1993, 13:543-573.
    [163] Signorini S.R., Cavalieri D.J. Modeling dense water production and salt transport form Alaskan coastal polynyas [J]. Journal of Geophysical Research, 2002, 107(C9): 3136,doi: 10.1029/2000 JC000491.
    [164] Singh H.B., Salas L.J., Stiles R.E. Selected Man-made halogenated Chemicals in the Air and Oceanic Environment [J]. Journal of Geophysical Research, 1983, 88(C6): 3675-3683.
    [165] Smethie W.M., Chipman D.W., Swift J.H., Koltermann K.P. Chlorofluoromethanes in the Arctic Mediterranean seas: evidence for formation of bottom water in the Eurasian Basin and deep-water exchange through Fram Strait [J]. Deep-Sea Research, 1988, 35(3): 347-369.
    [166] Smethie W.M., Fine R.A. Rates of North Atlantic Deep Water formation calculated from chlorofluorocarbon inventories [J]. Deep-Sea Research I, 2001, 48: 189-215.
    [167] Smethie W.M., Schlosser P., Bonisch G. Renewal and circulation of intermediate waters inthe Canadian Basin observed on the SCICEX 96 cruise [J]. Journal of Geophysical Research, 2000, 105(C1):1105-1121.
    [168] Smethie Jr W.M. Tracing the thermohaline circulation in the western North Atlantic using chlorofluorocarbons [J]. Prog.Oceanog, 1993, 31: 51-99.
    [169] Smethier Jr W. M., Fine R. A., Putzka A., Joens P. E. Tracing the flow of North Atlantic Deep Water using chlorofluorocarbons [J] Journal of Geophysical Research, 2000, 105(C6):14297-14323.
    [170] Smith J. N., Jones E. P., Moran S. B., Smethie W. M., Kieser W. E. Iodine 129/CFC 11 transit times for Denmark Strait Overflow Water in the Labrador and Irminger Seas [J]. Journal of Geophysical Research, 2005, 110: C05006, doi: 10.1029/2004 JC002516.
    [171] Smith J.N., Moran S.B., Macdonald R.W. Shelf-basin interactions in the Arctic Ocean based on 210Pb and Ra isotope tracer distributions [J]. Deep-Sea Research I, 2003, 50: 397-416.
    [172] Smythe-Wright D., Gordon A.L., Chapman P., Jones M.S. CFC-113 shows Brazil Eddy crossing the South Atlantic to the Agulhas Retroflection region [J]. Journal of Geophysical Research, 1996, 101(C1): 885-895.
    [173] Sonnerup R.E. On the relations among CFC derived water mass ages [J]. Geophysical Research Letters, 2001, 28(9): 1739-1742.
    [174] Sonnerup R.E., Quay P.D., Bullister J.L. Thermocline ventilation and oxygen utilization rates in the subtropical North Pacific based on CFC distributions during WOCE [J]. Deep-Sea Research I, 1999,46:777-805.
    [175] Sonnerup R.E., Quay P.D., Bullister J.L. Thermocline ventilation and oxygen utilization rates in the subtropical North Pacific based on CFC distributions during WOCE [J]. Deep-Sea Research I, 1999, 46:777-805.
    [176] Stark S., Jenkins W. J., Doney C. Deposition and recirculation in the North Pacific Ocean [J]. Journal of Geophysical Research, 2004, 109, C06009, doi: 10.1029/2003JC002150.
    [177] Steele M., Boyd T. Retreat of the cold halocline layer in Arctic Ocean [J]. Journal of Geophysical Research, 1998, 103(C5):10419-10435.
    [178] Steele M., Morison J., Ermold W., et al. Circulation of summer Pacific halocline water in the Arctic Ocean [J]. Journal of Geophysical Research, 2004, 109: C02027, doi: 10.1029/ 2003 JC002009.
    [179] Steinfeldt R. Ages and age spectra of Eastern Mediterranean Deep Water [J]. Joumal of Marine Systems, 2004, 48:67-81.
    [180] Sun F.Y., Van S.K., Huang B., Wang D.X. Water exchange between the subpolar and subtropical North Pacific in an OGCM [J]. Science in China Ser. D Earth Sciences, 2004, 47(1): 37-48.
    [181] Swift J. H., Aagaard K., Timokhov L., et al. Long-term variability of Arctic Ocean waters: Evidence from a reanalysis of the EWG data set [J]. Journal of Geophysical Research, 2005, 110, C03012, doi: 10.1029/2004JC002312.
    [182] Swift J.H., Jones E.P., Aagaard K., et al. Waters of the Makarov and Canada basins [J]. Deep-Sea Research II, 1997, 44(8):1503-1529.
    [183] Sy A., Rhein M., Lazier J.R.N., et al. Surprisingly rapid spreading of newly formed intermediate waters across the North Atlantic Ocean [J]. Nature, 1997, 386: 675-679.
    [184] Takahashi k. The Bering and Okhotsk Seas: modern and past paleoceanographic changes and gateway impact [J].Journal of Asian Earth Sciences, 1998, 16(1):49-58.
    [185] Takata H., Kuma K., Iwade S., Isoda Y., Kuroda H., Senjyn T. Comparative vertical distributions of iron in the Japan Sea, the Bering Sea, and the western North Paciffic Ocean [J]. Journal of Geophysical Research, 2005, 110: C07004, doi: 10.1029/2004 JC002783.
    [186] Talley, L.D. Distribution and formation of North PaciTc intermediate water [J]. Journal of Physical Oceanography,1993,23, 517-537.
    [187] Thiele G., Sarmiento J.L. Tracer Dating and Ocean Ventilation [J]. Journal of Geophysical Research, 1990, 95(C6): 9377-9391.
    [188] Timmermans M-L., Garrett C., Carmack E. The thermohaline structure and evolution of the deep waters in the Canada Basin, Arctic Ocean [J]. Preprint submitted to Deep Sea Research Part I 2003.
    [189] Tokieda T., Watanabe S., Tsunogai S. Chlorofluorocarbons in the Western North Pacific in 1993 and Formation of North Pacific Intermediate Water [J]. Journal of Oceanography, 1996, 52: 475-490.
    [190] Top Z. Evolution fo dissolved oxygen in the arctic mixed layer [J]. Journal of Geophysical Research, 1987, 92(C7):7191-7194.
    [191] Trumbore S.E., Jacobs S.S., Smethie Jr W.M. Chlorofluorocarbon evidence for rapidventilation of the Ross Sea [J]. Deep-Sea Research, 1991, 38(7):845-870.
    [192] Tsunogai S., Kawada K., Wtanabe S., Aramaki T. CFC indicating Renewal of the Japan Sea Deep Water in Winter 2000-2001 [J]. Journal of Oceanography, 2003, 59: 685-693.
    [193] Vollmer M.K., Weiss R.F. Simultaneous determination of sulfur hexafluoride and three chlorofluorocarbons in water and air [J]. Marine Chemistry, 2002, 78: 137-148.
    [194] Wallace D.W.R., Beining P., Putzka A. Carbon tetrachloride and chlorofluorocarbons in the South Atlantic Ocean, 19oS [J]. Journal of Geophysical Research, 1994, 99(C4): 7803-7819.
    [195] Wallace D.W.R., Lazier J.R.N. Anthropogenic chlorofluoromethanes in newly formed Labrador Sea Water [J]. Nature, 1988, 332:61-63.
    [196] Wallace D.W.R., Moore R.M. Vertical profiles of F-11 and F-12 in the central Arctic Ocean basin [J]. Journal of Geophysical Research, 1985, 90(C1): 1155-1166.
    [197] Wallace D.W.R., Moore R.M., Jones E.P. Ventilation of the Arctic Ocean cold halocline: rates of diapycnal and isopycnal transport, oxygen utilization and primary production inferred using chlorofluoromethane distributions [J]. Deep-Sea Research, 1987, 34(12): 1957-1979.
    [198] Walker S.J., Weiss R.F. and Salameh P.K. Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-12, CFC-113, and carbon tetrachloride [J]. J.Geophys.Res. 2000, 105: 14285-14296.
    [199] Wang H.Q., Yuan Y.C., Guan W., Lou R., Wang K. Circulation in the South China Sea during summer 2000 as obtained from observations and a generalized topography-flowing ocean model, Journal of Geophysical Research, 2004, 109:C07007, doi:10. 1029/2003JC002134.
    [200] Warner M. J., Roden G. I. Chlorofluorocarbon evidence for recent ventilation of the deep Bering Sea [J]. Nature, 1995, 373:409-412.
    [201] Warner M.J., Bullister J.L., Wisegarver D.P., et al. Basin-wide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific: 1985-1989 [J]. Journal of Geophysical Research, 1996, 101(C9): 20525-20542.
    [202] Warner M.J., Weiss R.F. Chlorofluoromethanes in South Atlantic Antarctic Intermediate Water [J]. Deep-Sea Research, 1992, 39(11/12): 2053-2075.
    [203] Warner, M.J., Weiss, R.F., Solubilities of chlorofluorocarbons 11 and 12 in water andseawater. Deep-Sea Research ,1985,32:1485– 1497.
    [204] Walsh, J.J., McRoy, C.P., Coachman, L.K., Goering, J.J., Nihoul, J.J., Whitledge, T.E., Blackburn, T.H., Springer,A.M., Tripp, R.D., Hansell, D.A., Djenidi, S., Deleersnijder, H.K., Lund, B.A., Andersen, P., Muller-Karger, F.E., Dean,K.K., Carbon and nitrogen cycling within the Bering/Chukchi Seas: source regions for organic matter effecting AOU demands of the Arctic Ocean[J]. Progress in Oceanography, 1989, 22, 277–359.
    [205] Watanabe Y. W., Harada K., Ishikawa K. Dilution of North Pacific Intermediate Water Studied with Chlorofluorocarbons [J]. Journal of Oceanography, 1995, 51:133 to144.
    [206] Watanabe Y. W., Ono T., Shimamoto A. Increase in the uptake rate of oceanic anthropogenic carbon in the North Pacific determined by CFC ages [J]. Marine Chemistry, 2000, 72: 297-315.
    [207] Watanabe Y.W., Harada K., Ishikawa K. Chlorofluorocarbons in the central North Pacific and southward spreading time of North Pacific intermediate water [J]. Journal of Geophysical Research, 1994, 99(C12): 25195-25213.
    [208] Watanabe Y.W., Ishida A., Tamaki M., et al. Water column inventories of chlorofluorocarbons and production rate of intermediate water in the North Pacific [J]. Deep-Sea Research I, 1997, 44(7): 1091-1104.
    [209] Watanabe Y.W., Shimamoto A., Ono T. Comparison of Time-Dependent Tracer Ages in the Western North Pacific: Oceanic Background Levels of SF6, CFC-11, CFC-12 and CFC-113 [J]. Journal of Oceanography, 2003, 59: 719-729.
    [210] Waugh D. W., Hall T. M., Haine T. W. Relationships among tracer ages [J]. Journal of Geophysical Research, 2003, 108(C5): 3138, doi: 1029 /2002 JC001325.
    [211] Waugh D.W., Haine T.W.N., Hall T.M. Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean [J]. Deep-Sea Research I, 2004, 51:1475-1491.
    [212] Weingartner T., Aagaard K., Woodgate R., et al. Circulation on the north central Chukchi Sea shelf [J]. Deep-Sea Research II, 2005, 52: 3150-3174.
    [213] Weingartner T.J., Cavalieri D.J., Aagaard K., Sasaki Y. Circulation, dense water formation, and outflow on the northeast Chukchi shelf [J]. Journal of Geophysical Research, 1998, 103(C4): 7647-7661.
    [214] Weiss R.F., Bullister J.L., Gammon R.H., Warner M.J. Atmospheric chlorofluoromethanesin the deep equatorial Atlantic [J]. Nature, 1985, 314: 608-610.
    [215] Willey D.A., Fine R.A., Sonnerup R.E., et al. Global oceanic chlorofluorocarbons inventory [J]. Geophysical Research Letters, 2004, 31: L01303,doi: 10.1029/2003GL018816.
    [216] Winsor P., Chapman D.C. Distribution and interannual variability of dense water production from coastal polynyas on the Chukchi Shelf [J]. Journal of Geophysical Research, 2002, 17(C7): 10.1029/2001JC000984.
    [217] Winsor P., Chapman D.C. pathways of Pacific water across the Chukchi Sea: A numerical model study [J]. Journal of Geophysical Research, 2004, 109: C03002, doi: 10.1029 /2003JC001962.
    [218] Wisegarver D.P., Gammon R.H. A new transient tracer: measured vertical distribution of CCl2FCClF2 (F-113) in the north pacific subarctic gyre [J]. Geophysical Research Letters, 1988, 15(2):188-191.
    [219] Wong C.S., Matear R.J., Freeland H.J., et al. WOCE line P1W in the Sea of Okhotsk 2. CFCs and the formation rate of intermediate water [J]. Journal of Geophysical Research, 1998, 103(C8):15625-15642.
    [220] Woodgate, R. A., Aagaard K., Muench R. D., Gunn J., Bjork G., Rudels B., Roach A. T., and Schauer U. The Arctic Ocean boundary current along the Eurasian slope and the adjacent Lomonosov Ridge: Water mass properties, transports and transformations from moored instruments [J], Deep-Sea Res.,Part I, (2001), 48, 1757-1792.
    [221] Woodgate R.A., Aagaard K. Revising the Bering strait freshwater flux into the Arctic Ocean [J]. Geophysical Research Letters, 2006 , 32:L02602, doi: 10.1029/2004GL021747
    [222] Woodgate R.A., Aagaard K., Swift J.H., et al. Atlantic water circulation over the mendeleev ridge and chukchi borderland from thermohaline intrusions and water mass properties [J]. Journal of Geophysical Research, accepted.
    [223] Woodgate R.A., Aagaard K., Swift J.H., Falkner K.K. Smethie W.M. Pacific ventilation of the Arctic Ocean’s lower halocline by upwelling and diapycnal mixing over the continental margin [J]. Geophysical Research Letters, 2006, Accepted.
    [224] Woodgate R.A., Aagaard K., Weingartner T. A Year in the Physical Oceanography of the Chukchi Sea: Moored measurements from Autumn 1990-1991 [J]. Deep-Sea Research II, 2005, 52: 3116-3149.
    [225] Woodgate R.A., Aagaard K., Weingartner T.J. Monthly temperature, salinity, and transport variability of the Bering Strait through flow [J]. Geophysical Research Letters, 2005, 32: L04601, doi: 10.1029/2004GL021880.
    [226] Xie S.P., Xie Q., Wang D.X., Liu W.T. Summer upwelling in the South China Sea and its role in regional climate variations [J]. Journal of Geophysical Research, 2003, 108(C8):3261, doi: 10.1029/2003JC001867.
    [227] Xie S.P., Xie Q., Wang D.X., Liu W.T. Summer upwelling in the South China Sea and its role in regional climate variations [J]. Journal of Geophysical Research, 2003, 108(C8): 3261, doi: 10.1029/2003JC001867.
    [228] Xue H.J., Chai F., Pettigrew N., Xu D., Shi M.C., Xu J.P. Kuroshio intrusion and the circulation in the South China Sea [J]. Journal of Geophysical Research, 2004, 109: C02017, doi: 10.1029/2002 JC001724.
    [229] Yamamoto-Kawai M., Watanabe S., Tsunogai S., Wakatsuchi M. Chlorofluorocarbons in the Sea of Okhotsk: Ventilation of the intermediate water [J]. Journal of Geophysical Research, 2004, 109: C09S11,doi: 10.1029/2003JC001919.
    [230] Yamanaka G., Kitamura Y., Endoh M. Formation of North Pacific Intermediate Water in Meteorological Research Institute ocean general circulation model 1. Subgrid-scale mixing and marginal sea fresh water [J]. Journal of Geophysical Research, 1998, 103(C13): 30885-30903.
    [231] Yamanaka G., Kitamura Y., Endoh M. Formation of North Pacific Intermediate Water in Meteorological Research Institute ocean general circulation model 2. Transient tracer experiments [J]. Journal of Geophysical Research, 1998, 103(C13): 30905-30921.
    [232] Yang H.J., Liu Q.Y., Liu Z.Y., Wang D.X., Liu X.B. A general circulation model study of the dynamics of the upper ocean circulation of the South China Sea [J]. Journal of Geophysical Research, 2002, 107(C7): 10.1029/2001JC0010084.
    [233] You Y.Z., Suginohara N., Fukasawa M., et al. Transport of North Pacific Intermediate Water across Japanese WOCE sections [J]. Journal of Geophysical Research, 2003, 108(C6): 3196, doi: 10. 1029/2002JC001662.
    [234] Zhao J.P., Shi J.X., Gao G.P., Jiao Y.T., Zhang H.X. Water mass of the northward throughflow in the Bering Strait in the summer of 2003 [J]. Acta Oceanologica Sinica, 2006,25(2): 25-32.
    [235]陈立奇,赵进平,卞林根,陈波,陈敏,高爱国,高众勇,影响北极地区迅速变化的一些关键过程研究 [J].极地研究, 2003, 15(4):283-303.
    [236]陈立奇.北极海洋环境与海气相互作用研究[C].海洋出版社,北京,2003.
    [237]陈敏,黄奕普,金明明,邱雨生.加拿大海盆上、下跃层水形成机制的同位素示踪 [J].中国科学(D),2003,33(2):127-138.
    [238]程旭华,齐义泉,王卫强.南海中尺度涡的季节和年际变化特征分析 [J].热带海洋学报, 2005, 24(4):51-58.
    [239]杜岩,王东晓,陈举,等 南海南部混合层底盐度异常水体的结构特征 [J]. 热带海洋学报, 2004, 23(6):53-58.
    [240]杜岩,王东晓,施平.大洋环流的通风温跃层研究进展 [J]. 地球科学进展,2000,15(3):266-269.
    [241]董兆乾,阿诺尔德·戈顿,曼夫里德·门史. 南极布兰斯菲尔德海峡的海盆深层水和底层水[A]. 见:陈立奇 主编. 南极地区对全球变化的响应与反馈作用研究[C]. 北京,海洋出版社,26-35.
    [242]方文东 郭忠信,黄羽庭. 南海南部海区的环流观测研究 [J]. 科学通报,1997,42(21):2264-2271.
    [243]方文东,黄企洲,邱章,等.春夏季季风转换期南海南部的异常表层水 [J]. 热带海洋学报, 2001, 20(1):77-81.
    [244]高郭平,董兆乾,侍茂崇.1999 年夏季中国首次北极考察区水团特征 [J]. 极地研究, 2003, 15(1):11-19.
    [245]高郭平,董兆乾,赵进平,侍茂崇. 1999 年夏季白令海陆坡区海流动力分析 [J]. 极地研究, 2003, 15(2):91-100.
    [246]高郭平,侍茂崇,赵进平,董兆乾,等 1999 年白令海夏季水文特征分析 [J]. 海洋学报,2002, 24(1):8-16.
    [247]洪华生,李文权,古堂秀等. 氟里昂对台湾海峡南部的水文动力过程的指示作用 [A]. 见:洪华生、丘书院、阮五崎等著. 闽南-台湾浅滩渔场上升流区生态系研究 [C]. 北京:科学出版社,1991, 316-321
    [248]黄企洲. 南沙群岛海区的海流[A].南海南沙群岛海区物理海洋学研究论文集Ⅰ[C].1994, 北京:海洋出版社,10~27.
    [249]金明明,Wu Jingfeng,陈建芳,赵进平,高郭平,张海生. 加拿大海盆的营养盐极大 [J].极地研究, 2004, 16(30):240-250.
    [250]金明明,林以安,卢勇,高郭平,陈波.1999 年 7 月白令海海盆营养盐和溶解氧的垂直特征 [J].极地研究, 2001, 13(4):264-272.
    [251]李立 南海中尺度海洋现象研究概述 [J].2002, 21(2):265-272.
    [252]刘增宏,李磊,许建平,侍茂崇.1998 年夏季南海水团分析 [J]. 东海海洋,2001, 19(3):1-8.
    [253]史久新,赵进平 北冰洋盐跃层研究进展 [J].地球科学进展,2003,18(3):351-357.
    [254]史久新,赵进平,矫玉田,曲平. 太平洋入流及其与北冰洋异常变化的联系 [J] 极地研究,2004,16(3):253-260.
    [255]孙娜,李文权 加拿大海盆氟氯烃的分布及其示踪研究 [J].极地研究, 2006,18(1):21-29.
    [256]汤毓祥,矫玉田,邹娥梅.白令海和楚科奇海水文特征和水团结构的初步分析 [J]. 极地研究, 2001, 13(1):57-68.
    [257]王东晓,陈举,陈荣裕,等 2000 年 8 月南海中部与南部海洋温、盐与环流特征 [J].海洋与湖沼, 2004 35(2):97-108.
    [258]王东晓,杜岩,施平. 冬季南海温跃层通风的证据 [J].科学通报, 2001,46(9):758-762.
    [259]王凡,赵永平,冯志纲,等 1998 年春夏南海温盐结构及其变化特征 [J]. 海洋学报, 2001,23(5):1-12.
    [260]魏爱雪 EPA-8260 方法测定水中 VOC 的质量保证 [J].环境科学进展,1996,4(3):70-80.
    [261]吴日升, 李立.南海上升流研究概述 [J]. 台湾海峡, 2003, 22(2):269-276.
    [262]吴巍,Tomczak M,方欣华,吴德星 南海南部海区的障碍层 [J]. 科学通报, 2001,46(7):590-594.
    [263]邢娜,陈敏,黄奕普,蔡平河,邱雨生.北冰洋、白令海 226 Ra 的分布及其水文学意义 [J].中国科学(D),2002,32(5):430-440.
    [264]叶新荣,张海生,潘建明. 海水中氯氟烃的气相色谱法测定 [J].海洋环境科学,2004,23(2):69-71.
    [265]张庆荣, 杜岩,王东晓.南海暖水形态特征 [J].热带海洋学报,2001,20(1):69-75.
    [266]张莘民 吹扫-捕集法在挥发性有机污染物分析中的应用 [J]. 环境污染治理技术与设备,2002, 3(11):32-35.
    [267]赵进平, 朱大勇,史久新.楚科奇海海冰周年变化特征及其主要关联因素 [J].海洋科学进展, 2003,21(2):123-131.
    [268]赵进平,高郭平,矫玉田.1999 年楚科奇海台及其周边海域中层与深层水增暖 [J]. 中国科学(D),2004,34(2):188-194.
    [269]赵进平,史久新. 北极环极边界流研究及其主要科学问题 [J].极地研究,2004,16(3):159-167.
    [270]赵亮,徐永福.开边界海盆尺度环流模式模拟北太平洋 CFCs 分布 [J].地球物理学报,2005, 48(4)798-806.
    [271]张占海. 中国第二次北极科学考察报告 [R]. 海洋出版社,北京:2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700