用户名: 密码: 验证码:
低品位镍红土矿硫酸浸出及浸出渣综合利用理论及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速增长,近年来镍消费的增长率达到年均25%以上,并一跃成为世界第一大镍消费国,但镍资源的自给率不足30%,加快开发国际镍资源是解决我国镍资源不足问题的关键所在。同时,随着硫化镍资源的逐步枯竭,国际上已经将镍资源开发的重点转移到了占全球陆地镍资源约70%的镍红土矿。本论文针对东南亚某矿区镍红土矿床不同层位低品位镍红土矿矿物特性,选择采用新型湿法冶金工艺进行镍、钻、铁等有价金属综合提取的理论和工艺研究,为低品位镍红土矿的清洁高效处理提供了可靠的依据。
     首先通过对不同层位低品位镍红土矿进行化学分析、物相组成分析以及镍钴赋存状态的试验研究,确定了矿石的主要成分及其物相组成,并在此基础上选择相应的湿法冶金处理工艺。研究结果表明低品位褐铁矿层镍红土矿的主要矿物物相为针铁矿,镍主要是以晶格取代的形式存在于针铁矿中,钻主要是以氧化物的形态存在于氧化锰颗粒中。该类矿石适宜于选择采用加压硫酸浸出工艺进行处理;而低品位过渡层镍红土矿的主要矿物物相为蛇纹石和部分针铁矿,矿物中的镍主要以非结晶或弱结晶以及类质同像的形态存在于硅酸盐矿物中,钴则主要存在于氧化锰颗粒中。该类矿石适宜于采用常压硫酸浸出工艺进行处理;低品位腐植土层镍红土矿的主要矿物物相为利蛇纹石、镍绿泥石和蒙脱石。镍主要以吸附状态或类质同像形态存在于镁或铁的硅酸盐矿物中,易于在常压状态下被酸溶液浸出,但是由于镁的含量很高,浸出过程中的酸耗将会很大,该类矿石适宜于作为中和剂用于浸出液中游离酸的中和。
     对低品位过渡层镍红土矿常压硫酸浸出进行热力学计算分析,结果表明,常压条件下采用硫酸从过渡层镍红土矿中浸出镍是可行的。其浸出过程动力学实验研究表明,镍的浸出反应受固膜外扩散控制,而铁的浸出动力学符合液-固反应收缩未反应核模型,受内扩散控制。过渡层镍红土矿硫酸常压浸出试验研究表明,浸出温度、硫酸加入量、浸出时间、液固比以及矿石粒度对浸出效果有较大影响。在最佳浸出条件下,镍的浸出率可以达到86%以上,而铁的浸出率仅为28%左右,说明该浸出过程具有一定的选择性。采用腐植土中和-高温水解除铁新工艺对常压浸出液进行除杂研究,结果显示,常压浸出液中铁、铬、铝沉淀率分别为96.19%、93.32%和93.99%,镍的回收率达到96%以上,水解渣的主要成分为Fe2O3。
     针对褐铁矿层镍红土矿高温高压酸浸过程进行了热力学计算与分析,结果表明,针铁矿水热生成赤铁矿的ΔGT值随温度升高而降低,说明提高浸出温度有利于铁的浸出率的降低和镍、钴浸出率的提高。褐铁矿层镍红土矿硫酸加压浸出试验表明,硫酸加入量和浸出温度对浸出效果的影响最大,温度越高浸出效果越好。最佳条件下镍和钴的浸出率可达95%以上,而铁的浸出率小于2%,浸出过程的选择性较高。探索了加压浸出液腐植土中和工艺,实验结果表明,在一定条件下,腐植土矿石中镍的浸出率可达65%以上,游离酸的中和率达到90%以上。
     研究了石灰石中和除铁铝-C272离心萃取分离钴锰-低含量镍溶液直接旋流电积金属镍的新型浸出液处理工艺,结果表明该工艺具有流程简短、金属回收率高、能耗低、过程清洁等优点。通过石灰石中和除铁铝,得到的除杂后液中铁、铝、铬的含量均降低到0.02g/L以下,镍钴回收率均大于95%。中和后液采用新型萃取剂-C272通过高效离心萃取器进行镍钴萃取分离,得到的萃余液中Co2+、Mn2+的浓度均达到0.002g/L以下,而反萃液中Ni2+的浓度则小于0.05g/L,萃取分离效果良好。同时C272对钙的萃取率很低,从而避免了反萃过程中硫酸钙沉淀的产生。所采用的离心萃取器与传统的萃取设备相比,则具有通量大、级效率高、萃取速度快等优点。旋流选择电积技术是一种新型电解分离提取技术,能够直接从低浓度溶液中高效电解提取金属产品。低浓度镍萃余液旋流电积试验结果表明,得到的阴极镍产品质量符合国标GB/TNi9990的要求,其阴极电流效率达到93.8%,镍的直接回收率达到93.6%。说明旋流选择电积技术具有选择性高、能耗低的优点。
     探索了浸出渣还原磁化焙烧-磁选铁精矿综合回收工艺,研究结果表明,含铁较高的水解渣和加压浸出渣通过该工艺处理后,可以实现铁资源的综合利用,磁选铁精矿中铁的含量达到64%以上,硫的含量达到0.2%以下,其化学成分完全达到炼铁行业对铁精矿化学成分的要求,铁精矿产率达到79.5%,铁的回收率达到87.6%。
     通过本研究,确定了针对于低品位镍红土矿床不同层位的矿物分别采用硫酸常压浸出-高温水解除铁-石灰石中和除杂-C272高效离心萃取-旋流选择性电积镍,以及硫酸加压浸出-腐植土中和-石灰石中和深度除杂-C272高效离心萃取-旋流选择性电积镍的镍红土矿湿法冶金新工艺,该工艺对低品位镍红土矿具有较强的适应性,镍、钴的回收率较高,同时还可以综合回收铁。实验研究取得了大量的有价值的工艺参数和理论数据,对低品位镍红土矿的综合开发和利用具有指导意义。
As the rapid development of economy in China, the Chinese nickel consumption ranks first in the world with an average annual growth rate of 25% in recent years. However, its self-sufficiency rate is lower than 30%, and the key method to solve this problem is to develop the oversea nickel resources. At the same time, with the depletion of nickel sulfide resources, the exploration has been focused on nikcle laterite ones which account for 70% of the total nickel resources. In this study, novel hydrometallurgical processes have been chosen to recover nickel, cobalt and iron from nickel laterite based on the research on the mineralogical characterization of different layers of nickel laterite in southeast Asia area. This study provides reliable basis of clean and effective ways for low-grade nickel laterite processing.
     The corresponding hydrometallurgical processes were chosen based on the analysis of chemical composition, mineral phase and modes of occurrence of nickel and cobalt of different layers of nickel laterite. The results show that the main mineral in nickel laterite with high iron content is goethite while nickel exists in the form of lattice substituted in goethite and cobalt exists in the oxide form associated with manganese oxides. This kind of ore is usually treated by pressure sulfuric acid leaching process. The main minerals in transition layer are serpentine and goethite while nickel exists in the form of non-crystallization or weak crystallization or isomorphism in silicate, and cobalt exists in the manganese oxides. This kind of ore is usually treated by atmosphere sulfuric acid leaching process. The main minerals in saprolitic are serpentine, chlorite and montmorillonite. In these minerals, nickel exists in the form of adsorption or isomorphism in magnesium or iron silicate, which is easily dissolved in acid solution at atmospheric condition. However, this kind of ore is of high magnesium content and usually used as neutralizer for acid leach instead of being processed with acid.
     The thermodynamic study on atmosphere leaching of transition layer of nickel laterite was conducted and the results show that this method is feasible. The dynamic results in leaching process show that nickel extraction rate is controlled by diffusion through water film and iron dissolution rate is controlled by intraparticle diffusion which follows the liquid/solid shrinking core model. The experimental results show that the leaching temperature, sulfuric acid addition, leaching time, S/L ratio and mineral particles have significant effects on leaching efficiency. Under optimum conditions, the nickel extraction is more than 86% and the iron dissolution is only about 28%, which indicates the process is selective with nickel against iron. The leaching solution was neutralized by saprolitic followed by high-temperature hydrolysis of iron. The removal of iron, chromium and aluminum from leaching solution are 96.19%, 93.32% and 93.99%, respectively. The hydrolysis residue is mainly Fe2O3.
     The thermodynamic study on pressure leaching of limonite was conducted and the results show that theΔGT value of goethite to hematite decreases with the increase of temperature, which indicates that the increase of temperature is helpful to reduce the iron dissolution and improve the nickel and cobalt extraction. The leaching experimental results show that the sulfuric acid addition and leaching temperature are the most effective factors. The higher the temperature, the better extraction results could be obtained. Both the extractions of nickel and cobalt are more than 95% and the iron dissolution is less than 2% under optimum conditions. The neutralization of pressure leaching solution by saprolitic was investigated and the results show that the nickel extraction from saprolitic is more than 65% and more than 90% acid is neutralized in this process.
     A novel treatment process was studied including iron and aluminum removal by limestone neutralization, nickel separation from cobalt and manganese by C272 centrifugation extraction and recovery of nickel from low nickel concentration solution by direct cyclone electrowinning. The results show that this method has the advantages of short route, high metal recovery, low energy consumption and clean production. The iron, aluminum and chromium concentration in purified solution are all lower than 0.02g/L after limestone neutralization, and the recovery of both nickel and cobalt are more than 95%. Then, the cobalt and manganese were separated from nickel by C272 centrifugation extraction. Both cobalt and manganese concentration in raffinate are lower than 0.002g/L, and the nickel concentration in stripping solution is lower than 0.05g/L. Meanwhile, the calcium extraction by C272 is quite low which avoids the calcium carbonate precipitation in stripping process. Compared to traditional extraction device, the centrifugation extractor shows the advantages including big flux, high stage efficiency and quick extraction speed. Selective cyclone electrowinning is a novel separation technology, which can be used for direct electrowinning of metals from low concentration solution. The experimental results of cyclone electrowinning of nickel show that the cathode nickel meets the requirement of national standard GB/TNi9990. The current efficiency is 93.8%, and the direct recovery of nickel is 93.6%. It indicates the cyclone electrowinning method shows advantages of high selectivity and low energy consumption.
     The iron in leaching residue was recovered as concentrate by reduction-roasting magnetic separation method. The results show that the iron resources from hydrolysis and pressure leaching processes are comprehensively utilized by this method. The iron content in concentrate is above 64%, and the sulfur content is lower than 0.2%, which totally meet the chemical component requirements of iron concentrate to iron-making industry. The weight percentage of iron concentrate is 79.5% and the iron recovery is 87.6%.
     In this study, based on the mineral differences of different layers of nickel laterite, two novel hydrometallurgical processes were investigated: atmosphere sulfuric acid leaching-iron removal by hydrolysis-neutralization by limestone-nickel separation by C272 centrifugation extraction-nickel recovery by direct cyclone electrowinning, and pressure sulfuric acid leaching-acid neutralization by saprolitic-neutralization by limestone-nickel separation by C272 centrifugation extraction-nickel recovery by direct cyclone electrowinning. These processes are quite feasible to treat the low-grade nickel laterite with high recovery of nickel and cobalt, and comprehensive utilization of iron. This study obtained large amounts of valuable process parameters and theoretic data, which are of great significance for comprehensive explosion and utilization of low-grade nickel laterite.
引文
[1]陈浩琉、吴水波、傅德彬、钟宝兴、傅泰治.镍矿床[M].北京:地质出版社,1993,5:1-11.
    [2]李潜译.镍冶金学[M].北京:中国工业出版社,1962,3:9-10
    [3]《国外有色冶金工厂》编写组.国外有色冶金工厂[M].北京:冶金工业出版社,1977,8:1-6
    [4]罗永吉.墨江硅酸镍矿湿法工艺试验研究[D].昆明理工大学硕士论文,2008,2:1-2
    [5]黄雅斌.世界镍矿产概况[J].国外地质技术经济,1990,6(1)
    [6]肖军辉.某硅酸镍矿离析工艺试验研究[D].昆明理工大学硕士论文,2007,10:1-3
    [7]博里谢维奇.镍[M].北京:地质出版社,1955,10:5-6
    [8]邱竹贤.有色金属冶金学[M].北京:冶金工业出版社,1988,5:153
    [9]张友平,周渝生,李肇毅.红土矿资源特点和火法冶金工艺分析[J].铁合金,2007,(6):18-21
    [10]刘岩,翟玉春,王虹.镍生产工艺研究进展[J].材料导报,2006,20(3):79-81
    [11]戴卫·杰克森.镍在不锈钢中的有效应用[J].不锈钢:市场与信息,2005,(20):12-18
    [12]Gleeson, S.A., Butt, C.R.M., Elias, M. Nickel laterites[M]:a review. SEG Newsletter2003,54:9-16.
    [13]Swamy, Y.V., Kar, B.B., Mohanty, J.K.. PHysico-chemical characterization and sulpHatization roasting of low-grade nickeliferous laterites[J]. Hydrometallurgy, 2003,69:89-98.
    [14]矿产资源综合利用手册编委会.矿产资源综合利用手册[M].北京:科学技术出版社,1999:94-95.
    [15]肖安雄.美国金属杂志对世界有色金属冶炼厂的调查第四部:硫化镍[J].中国有色冶金,2008,12(6):1-19
    [16]何焕华,蔡乔方.中国镍钻冶金[M].北京:冶金工业出版社,2000,10:541-549
    [17]王瑞江,聂凤军等.红土镍矿床找矿勘查及开发利用新进展[J].地质论坛,2008,54(2):215-224
    [18]江源,侯梦溪.全球镍资源供需研究[J].有色矿冶,2008,24(2):55-57
    [19]朱景和.世界镍红土矿资源开发与利用技术分析[J].世界有色金属,2007,10:7-9
    [20]李志茂,朱彤,吴家正.镍资源的利用及镍铁产业的发展[J].中国有色冶金,2009,1:29-32
    [21]何焕华.氧化镍矿处理工艺述评[J].中国有色冶金,2004(6):12-15.
    [22]R. A Bergman. Nichel production from low-iron lateriteores:process descriptions[J]. CIM Bulletin,2003, (1072):127~138.
    [23]A. E. M. WamegC. M. Dfaz, ADDalvi, RJ. Mackey,A V. Tarasov. JOM World Nonferrous Smelter Survey. PartⅢ:Nickel:Latefite[J]. JOM,2006(4): 11~20.
    [24]翟秀静,符岩,衣淑立.镍红土矿的开发与研究进展[J].世界有色金属,2008,8:36-38
    [25]肖振民.世界红土型镍矿开发和高压酸浸技术应用[J].中国矿业,2002,11(1):56-59
    [26]莫友怡.世界镍业与中国镍业简况[J].有色矿山,2001,30(1):62-63
    [27]桂华.我国有色金属工业产业结构现状分析[J].有色金属工业,1999,(8):11-13
    [28]陶炳坤.我国镍资源形势及及其开发对策[J].中国地质经济,1991,10:13-16
    [29]陈甲斌.镍资源供需态势与应对措施[J].国土资源,2006,36:52-53
    [30]彭容秋.镍冶金[M].长沙:中南大学出版社,2005:25-39
    [31]王恭敏.镍资源发展透视[J].有色金属工业,2005,2:9-11
    [32]曹异生.国内外镍工业现状及前景展望[J].世界有色金属,2005,10:67-71
    [33]张守卫,谢曙斌,徐爱东.镍的资源、生产及消费状况[J].世界有色金属2003,11:9-14
    [34]江源,侯梦溪.全球镍资源供需研究[J].有色矿冶,2008,24(2):55-57
    [35]周京英,孙延绵,付水兴.中国主要有色金属矿产的供需形势[J].地质通报,2009,28(2-3):171-176
    [36]李小明,唐琳,刘仕良.红土镍矿处理工艺探讨[C].第16届全国铁合金学术研讨会论文集:70-74
    [37]李建华,程威,肖志海.红土镍矿处理工艺综述[J].湿法冶金,2004,23(4):191-194
    [38]赵昌明,翟玉春.从红土镍矿中回收镍的工艺研究进展[J].材料导报:综述篇,2009,23(6):73-76
    [39]Antola O, Holappa L, Paschen E Nickel Ore Reduction by Hydrogen and Carbon Monoxide Containing Gases[J]. Miner. Process. Extr. Metall. Rev.,1995, (15):169~179
    [40]兰兴华.熔炼镍铁的直流电弧炉法[J].世界有色金属,2003,(1):15-16
    [41]唐琳,刘仕良,杨波,马良良.电弧炉生产镍铬铁的生产实践[J].铁合金,2007,196(5):1-6
    [42]I. J. Kotzse. Pilot Plant production of ferronickel from nickel oxide ore sand dusts in a DC arc furnace [J]. Minerals Engineering,2002,15:1017-1022
    [43]张莓.我国火法冶炼红土镍矿进展[J].国土资源情报:资源开发,2008,29-32
    [44]刘晓明、史嵩寿、鹿宁.开发利用红土镍矿资源满足中国日益增长的镍需求[J].不锈通览,2007:2-7
    [45]Lagend ijk H., Schoukens A. F. S., Smith P., et al. The production of ferronickel from nickel-containing laterite[P]. South African Patent, EP1 9940306256, 2004,05,19
    [46]Nayak J C. Production of Ferro-nickel from Sukinda laterites in Rotary Kiln-electric Furnace[J]. Trans. Indian Inst. Metall.,1985,38(3):241~247
    [47]袁熙志、李仲恺、刘杰.红土镍矿干燥、焙烧工艺条件的选择[J].铁合金,2008,201(4):8-13
    [48]肖安雄.美国金属杂志对世界有色金属冶炼厂的调查第三部:镍红土矿[J].中国有色冶金,2008,4:1-12
    [49]王虹,邓海波,路秀峰.重要有色金属资源—红土镍矿的现状与开发[J].甘肃冶金,2009,31(1):20-24
    [50]张守卫,谢曙斌.镍的资源、生产及消费状况[J],世界有色金属,2003(11):9-15.
    [51]周晓文,张建春,罗仙平.从红土镍矿中提取镍的技术研究现状及展望[J].四川有色金属,2008,(1):18-22
    [52]Buehanan D. Nickel [A] In: A Counnidity Review[C].London: Institute of Mining and Metallurgy,1982:801-817.
    [53]Tetsuya Watanabe, Sadao Ono, Haruo Arai, etal. Direct reduction Of garnierite ore for Production of ferro-nickel with a rotary kiln at Nippon Yakin Kogyo Co., Ltd., oheyama Works [J]. International Journal of Mineral Proeessing,1987, 19(4):173-187.
    [54]Y. S. Touloukin, R.W. Powell, C. Y. Ho, et al. Handbook of iron and Steel[M]. Tokyo:ISIJ, Maruzen.1981,22-24.
    [55]张友余.红土矿还原焙烧流程的选择[J].有色冶炼,1990,2:25-29
    [56]曹异生.国际镍矿业进展及发展前景预测[J].世界有色金属,2007,8:34-39.
    [57]朱景和.世界镍红土矿资源开发与利用技术分析[J].中国金属通报,2007, 35:22-25.
    [58]肖振民.世界红土型镍矿开发和高压酸浸技术应用[J].中国矿业,2002,11(1):56-59.
    [59]李启厚,王娟,刘志宏.世界红土镍矿资源开发及其湿法冶金技术的进展[J].环境保护与利用,2009,6:42-46.
    [60]Chander,Sharma V N. Reduetion roasting/ammonia leaching of niekeliferous laterites[J]. Hydrometallurgy,1981,7(4):315.
    [61]兰兴华.国外重大镍项目投资情况[J].中国金属通报,2007,2:24-25.
    [62]陈家铺,杨守志,柯家骏.湿法冶金的研究与发展[M].北京:冶金工业出版社,1998:18-34.
    [63]L.Matthew, J. G. Robert. Dehydroxylation and dissolution of nickeliferous goethite in New Caledonian laterite Ni ore[J]. Applied Clay Science,2007, 35:162-172.
    [64]B.l.Whittington, J.A.Johnson, L.P.Quan, etal.Pressureaeid leaching of arid-region nickel laterite ore:Part Ⅱ Effect of ore type [J]. Hydrometallurgy, 2003,70:47-62.
    [65]G.Senanayake, G.K.Das. A comparative study of leaching kinetics of limonitic laterite and synthetic iron oxides in sulfuric acid containing sulfur dioxide[J].Hydrometallurgy,2004,72:59-7.
    [66]Duyvesteyn, W.P.C., Lastra, M.R., Liu, H.. Method for recovering nickel from high magnesium-containing Ni-Fe-Mg lateritic ore[J]. US Patent,1996,5: 571,308.
    [67]Georgiou D, Papangelakis V G. Sulfuric acid pressure leaching of a limonitic laterite:chemistry and kinetics[J]. Hydrometallurgy,1998,49:23-46.
    [68]Rublsov D H, Papangelakis V G. Sulfuric acid pressure leaching of laterites-a comprehensive model of a continuous autoclave[J]. Hydrometallurgy,2000,58: 89-101.
    [69]Johnson J A, Mcdonald R G, Muir D M, Tranne J P. Pressure acid leaching of arid-region nickel laterite ore. Part Ⅳ: Effect of acid loading and additives with nontronite ores[J]. Hydrometallurgy,2005,78:264-270.
    [70]Halikia, I.,1991. Parameters influencing kinetics of nickel extraction from a Greek laterite during leaching with sulpHuric acid at atmospHeric pressure [J]. Transactions of the Institute of Mining and Metallurgy 100, C154-C164. Section C.
    [71]Whittington, B.I., Muir, D.. Pressure acid leaching of nickel laterites:a review[J]. Mineral Processing and Extractive Metallurgy Review,2000(21):527-600.
    [72]Stevens, L.G., Goeller, L.A., Miller, M.,1975. Hydrometallurgical recovery of nickel values from laterites[J]. US Patent,1975,3:903,241.
    [73]尹飞,阮书锋,江培海,王成彦,陈永强.低品位红土镍矿还原焙砂氨浸试验研究[J].矿冶,2007,16(3):29-32.
    [74]Power L F, Geiger G H. The application of the reduction roast-ammoniacal ammonium carbonate leach to nickel laterites [J]. Minerals Science,1997,9(1): 32-501.
    [75]E Buyiikakinci.Y A Topka Extraction of nickel from lateritic ores at atmospHeric pressure with agitation leaching[J]. Hydrometallurgy,2009,97:33-38.
    [76]S. Agatzini—Leonardou, I. G. Zafirates. Beneficiation of a Greek serpentinie nickeliferous ore part H. SulpHuric acid heap and agitation leaching[J]. Hydrometallurgy,2004,74:267-275.
    [77]W. Curlook. Direct atmospHericleaching of saprohtic nickellaterite ores with sulpHurie acid[P]. EP Patent:337677 B1,2006.
    [78]刘瑶,丛自范,王德全.对低品位镍红土矿常压浸出的初步探讨[J].有色矿冶,2007,23(5):28-30.
    [79]刘瑶,丛自范.腐植土层镍红土矿常压硫酸浸出[J].有色矿冶,2008,24(2):34-36.
    [80]彭志伟.红土镍矿有机酸浸提取镍钻的研究[D].中南大学硕士论文,2008,7.
    [81]P.G.Tzeferis, S. Agatzini-Leonardou. Leaching of nickel and iron from Greek non-sulpHide nickeliferous ores by organ acids[J]. Hydrometallurgy,1994(36): 345-360.
    [82]车小奎,邱沙,罗仙平.常压酸浸法从硅镍矿中提取镍的研究[J].稀有金属,2009,33(4):582-585.
    [83]罗仙平,龚恩民.酸浸法从含镍蛇纹石中提取镍的研究[J].有色金属(冶炼部分),2006,(4):28-30,42.
    [84]R.G. McDonald, B.I. Whittington. AtmospHeric acid leaching of nickel laterites review Part I. SulpHuric acid technologies [J]. Hydrometallurgy,2008, 91:35-55.
    [85]Canterford, J.H. Leaching of some Australian nickeliferous laterites with sulpHuric acid at atmospHeric pressure[J]. Proceedings of the Australasian Institute ofMining and Metallurgy,1978,265:19-26.
    [86]Chander, S.. AtmospHeric pressure leaching of nickeliferous laterites in acidic media[J]. Transactions of the Indian Institute of Metals,1982,35:366-371.
    [87]Arroyo, J.C., Neudorf, D.A. AtmospHeric leach process for the recovery of nickel and cobalt from limonite and saprolite ores[P]. US Patent,6,261,527 B 1(2001).
    [88]Arroyo, J.C., Neudorf, D.A. AtmospHeric leach process for the recovery of nickel and cobalt from limonite and saprolite ores[P]. US Patent 2002/0041840 Al; a continuation of US Patent,6,261,527 (2002)
    [89]Arroyo, J.C., Neudorf, D.A. AtmospHeric leach process for the recovery of nickel and cobalt from limonite and saprolite ores[P]. US Patent 6,680,035 B2; a continuation of US Patent 6,261,527 (2004)
    [90]Arroyo, J.C., Gillaspie, J.D., Neudorf, D.A., Weenink, E.M.Method for leaching nickeliferous laterite ores[P]. US Patent 6,379,636 B2(2002).
    [91]石磊.切斯巴尔资源公司处理镍红土矿工艺流程选择[J].世界有色金属,2003,12:53-55.
    [92]符芳铭,胡启阳,李新海,王志兴,李金辉,李灵均.稀盐酸溶液还原浸出红土镍矿的研究[J].矿冶工程,2009,29(4):74-76,84.
    [93]符芳铭,胡启阳,李金辉,李灵均.低品位红土镍矿盐酸浸出实验研究[J].湖南有色金属,2008,24(6):9-12.
    [94]Y. V. Swamy, B. B. Kar, J. K. Mohanty. PHysico-chemical characterization and sulpHatization roasting of low grade nickeliferous Isterites[J]. Hydrometallurgy,2003,69:89-98.
    [95]龙艳.红土镍矿湿法处理现状及研究[J].湖南有色金属, 2009,25(6):24-27.
    [96]S. Agatzini-Leonardou, D. Dimaki. Heap leaching of poor nickel laterites by sulpHuric add at ambient temperatures [J]. Hydrometallurgy.1994,193-208.
    [97]S. Agatzini-Leonardou, I. G. Zafirates. Beneficiation of a Greek serpentinie nickeliferous ore part Ⅱ.SulpHuric acid heap and agitation leaching[J] Hydrometallurgy,2004,74:267-275.
    [98]W. Curlook. Direct atmospHeric leaching of saprohtic nickel laterite ores with sulpHuric acid[P]. EP Patent:1337 677 B1,2006.
    [99]GUO Xue-yi, LI Dong, PARK K H. Leaching behavior of metals from a limonitic nickel laterite using a sulfation-roasting-leaching process[J]. Hydrometallurgy,2009,99:144-150.
    [100]Griffin A, Nofal P. Johnson G, et al. Laterites-squeeze or Ease[C]\\ALTA 2002 Nickel/Cobalt 8. Melbourne:ALTA Metallurgical Services,2002:18.
    [101]蒋继波,王吉坤.红土镍矿湿法冶金工艺研究进展[J].湿法冶金,2009,28(1):3-11.
    [102]Garingarao RM. Palad M A. Cyclic Acid Leaching of Nickel Bearing Oxide and Silicate Ores With Subsequent Iron Removal From Leach Liquor. US Patent,3。 880,981[P],1975.
    [103]Chou E C J. Barlow C B. Huggins D K. Roast-neutralization-leach Technique for the Treatment of Laterite Ore. US Patent 4097575 [P],1978.
    [104]Huggins D A. Method for Nickel and Cobalt.Recovery From Laterite Ores by Combination of AtmospHeric and Moderate Pressure Leaching[P].2006,US Patent 0024224 A1.
    [105]Lynch, J.E., Baillie, M.G., Steemson, M., Buhrer, D.A.. Recent Advances in the Weda Bay Nickel/Cobalt Laterite Project[C], ALTA 2005 Nickel/Cobalt 10, ALTA Metallurgical Services, Melbourne,2005,19 pp.
    [106]Lee HY, Kim S G, Kee J. Electrochemical Leaching Nickel from Low-grade Laterites[J]. Hydrometallurgy,2005,77(3-4):263-268.
    [107]Deepatana A. Tang J A, Valix M. Comparative Study of Chelating Ion Exchange Resins for Metal Recovery From Bioleaching of Nickel Laterite Ores[J]. Minerals Engineering.2006,19(12):1280-1289.
    [108]杨显万,邱定蓍.湿法冶金[M].北京:冶金工业出版社,1998:348—350.
    [109]Situate G S. Ndlovu S. Bacterial Leaching of Nickel Laterites Using ChemolithotropHic Microorganisms:Identifying Influential Factors Using Statistical Design of Experiments[J]. Int J Miner Process,2008,88(1):31-36.
    [110]I.M.Castro, J.L.R.Fietto, R.X.Vieira, etal.Bioleaehing of zinc and niekcl from silicates using Aspergillus niger cultures[J].Hydrometallurgy,2000,57(1):39-49.
    [111]K.M.Swamy, L.B.Sukla, K.L.Narayana, etal. Use of ultrasound In microbial leaching of nickel from laterites [J].Ultrasonics Sonoehemistry,1995,2(1):5-9.
    [112]翟秀静,符岩,李斌川,衣淑立,李应荣.红土矿的微波浸出研究[J].有色矿冶,2008,24(5):21-24.
    [113]Peng Jinhui,Lih Chunpeng. Kinetics of leaching spHalerite with pyrolusite simultaneously by microwave irradiation [J]. Trans. Nonferrous Met. Soc. China,1997,7(3):152.
    [114]C. A. Pickles. Microwave heating behaviour of nickeliferous limonitic laterite ores[J].Minerals Engineer.2004,(17):775~784.
    [115]肖军辉.某硅酸镍矿离析工艺试验研究[D].昆明理工大学硕士论文,2007:57-60.
    [116]王成彦.元江贫氧化镍矿的氯化离析[J].矿冶,1997,6(3):55—59.
    [117]张春生,刘刚.硫化锌加压浸出工艺在湿法冶金中的设计应用[J].有色金属设计,2009,36(4):49-57.
    [118]刘大星.国内外湿法炼铜技术的发展与前景[C]. 《2004年中国国际铜业论坛》论文集,63-72.
    [119]王海北,蒋开喜,张邦胜,王玉芳,林江顺,王春.新疆某复杂硫化铜矿低温低压浸出工艺研究[J].有色金属,2004,56(3):52-56.
    [120]李小康,许秀莲.低品位铜锌混合矿加压浸出研究[J].南方冶金学院学报,2004,25(4):5-9.
    [121]Vteman H, James G, Mould J, et al. Two-stage pressure leaching process for zinc and iron bearing mineral sulpHides[P]. United states, US Patent. US4004991.1977-01-25.
    [122]F.哈伯锡.加压湿法冶金[C].国外金属矿选矿,2006,11:10-15.
    [123]王吉坤,周廷熙,吴锦梅.高铁闪锌矿精矿加压酸浸新工艺研究[J].有色金属(冶炼部分),2004,1:5-8.
    [124]Chalkley M E.Masters I M.Doyle B N. Recovery of metals from sulpHidic material[P]. United states, US Patent. US5380354.1995-01-10.
    [125]Forward F A.Veltman H. Direct leaching zinc-sulfide concentrates by Sherritt Gordon[J]. Journal of Metals,1959,11(11):836-840.
    [126]Weir DR, King JA, Robinson PC. Mineral and Metallurgical processing[M], 1986,3(4):76-88.
    [127]徐传华.加压浸出在处理难浸金矿中的应用[[J].北京矿冶研究总院学报,1993,2(1):61-65.
    [128]Frostiak J. Hurgrud B. Start-up and operation of Placer Dome's Campbell Mine gold pressure oxidation plant[J]. Mining Engineering,1992,44(8):991-993.
    [129]Demopoulos D.P Papangelakis V.G. Recent advances in refractory gold processing[A]//Proceedings of the annual meeting of CIM[C]. Quebec, CIM, 1989.
    [130]黄昆.加压氰化法提取铂族金属新工艺研究[D].昆明理工大学博士论文,2004:18-22.
    [131]Hofirek Z., Kerfoot D.G. Pressure leaching of copper-nickel matte[J]. Hydrometallurgy,1992,29(1-3):357-381.
    [132]刘时杰.铂族金属提取冶金技术发展与展望[A]//有色金属科技进步与展望-纪念《有色金属》创刊50周年专辑[C].北京:冶金工业出版社,1999.
    [133]Carvalho T.M., Haines A.K. and Da Silva E.J. et al. Start-up of the Sherritt Pressure Oxidation Process at Sao Bentof[A]//Precious Metals 1989[C]. Canada: IPMI.1989.319.
    [134]陈景,黄昆,陈奕然.低品位铂把硫化矿浮选精矿提取铂族金属及综合回收铜镍钻等有价金属新工艺[P].中国.中国专利:CS 02122502.8.2002.
    [135]黄振华.国内外高镍锍精炼技术的进步与展望[A]//有色金属科技进步与展望-纪念《有色金属》创刊50周年专辑[C].北京:冶金工业出版社,1999.
    [136]刘时杰译编.南非的铂[M].冶金工业出版社,1989.
    [137]Pieth H.B. Pressure leaching of ores containing precious metals[J]. Ertmecall, 1983,36:261-265.
    [138]J.C. Yannopoulos. The extractive metallurgy of gold[M]. NY, United States: Van Nostrand Reinhold.1991.
    [139]Muir D., Colin W.A., and Sandton Z.A. et.al. Leaching refractory gold ores [P]. US Patent,No.4559209,1985.
    [140]蒋开喜,王海北.加压湿法冶金-可持续发展的资源加工利用技术[J].科技之窗,2004,12:73-75.
    [141]郭恩喜,张强,季建稳.拜尔法生产氧化铝工艺节能降耗的探讨[J].有色冶金节能,2009,1:23-26.
    [142]赵清杰.硅矿物及有机物在拜耳法生产氧化铝过程中的行为[D].中南大学博士学位论文,2008,5:7-10.
    [143]关自斌,高仁喜,田原.铀矿石加压浸出技术的进展[J].铀矿冶,1999,18(3):1-10.
    [144]陈绍强.法国洛代夫厂的工艺流程及技术经济指标[J].铀矿选冶通讯,1989(3):3-7.
    [145]核工业北京化冶院情报组.铀矿石的破磨、浸出及固液分离[J].铀矿选冶通讯,1991增刊:10-19.
    [146]柯家骏.湿法冶金中加压浸出过程的进展[J].湿法冶金,1996,58(2):1-6,13.
    [147]Komnitsas K. Pressure Hydrometallurgy[J]. Mineral Engineering.2001,14(8): 106.
    [148]黄昆,陈景.含铂族金属铜镍硫化矿加压湿法冶金的应用及研究进展 [C].中国有色金属学会第五届学术年会论文集,2003,8:13-16.
    [149]Western Australia: Mining Corporation Limited.Western Mining Co.Limited, Kwinana Nickel Refinery Description of Operations[R].1996.
    [150]Carvalho T.M., Haines A.K. and Da Silva E.J. et al. Start-up of the Sherritt Pressure Oxidation Process at Sao Bento[A]//Precious Metals 1989[C]. Canada: IPMI,1989.319.
    [151]康南京.我国镍钴冶炼应用热压浸出技术的进展[J].有色冶炼,1995,2:1-7.
    [152]Xia DK, Pickles CA. Caustic roasting and leaching of electric arc furnace dust[J]. Canadian Metallurgical Quarterly,1999,38(3):175-186.
    [153]Singh DB. Use of hematite for chromium (VI) removal[J]. Journal of Environmental Science Health Part A,1993,28(8):1813-1826.
    [154]Solymar, Karoly. Characteristics and separability of red mud[J]. Minerals, (USA),1991,18(3):209-223.
    [155]Fenwei Su. DepHoapHorization of Magnetite Fines[D]. Lules University of Technology,1998.
    [156]罗立群.难选物料磁化焙烧技术的研究与进展[J].中国矿业,2007,16(3):55-58.
    [157]孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006,357(3):11-13.
    [158]郑志良.浅谈选别褐铁矿[J].江西冶金,1998,18(6):36-38.
    [159]东北工学院选矿教研室主编.磁电选矿[M].冶金工业出版社,1981,3:133-137.
    [160]朱家骥.中国铁矿选矿技术[M].北京:冶金工业出版社,1994:13-31.
    [161]刘晓明,陈强,汪建.低品位铁矿资源利用技术的发展与实践[J].矿业工程,2009,7(1):25-28.
    [162]周建军,朱庆山,王化军,倪文.某鲕状赤褐铁矿流化床磁化焙烧一磁选工艺[J].过程工程学报,2009,9(2):307-312.
    [163]Feilmayr C, Thurhofer A, Winrer F, et al. Reduction Behavior of Hematite to Magnetite under Fluidized Bed Conditions[J]. ISU Int.,2004,44(7):1125-1 133.
    [164]王秋林,陈雯,余永富,严小虎.綦江铁矿焙烧-磁选-阴离子反浮选试验研究[J].矿冶工程,2006,26(6):32-34,38.
    [165]董风芝,姚德,孙永峰.硫酸渣用磁化焙烧工艺分选铁精矿的研究与应用[J].金属矿山,2008,383(5):146-148.
    [166]姜荣,郭效东.从红土镍矿酸浸渣中回收铁矿物的试验研究[J].甘肃冶金,2008,30(4):15-18.
    [167]孙永峰,董风芝,刘炯天,王淑红.拜耳法赤泥选铁工艺研究[J].金属矿山,2009,399(9):176-178.
    [168]刘军.冶金固体废弃物资源化处理与综合利用[J].中国环保产业,2009,8:35-40.
    [169]Yanbin Xu, Yanting Xie, Lan Yan, Rudong Yang. A new method for recovering valuable metals from low-grade nickeliferous oxide ores[J]. Hydrometallurgy,2005,80:280-285.
    [170]R.G.McDonald, B.I.Whittington. AtmospHeric acid leaching of nickel laterites review Part Ⅰ.SulpHric acid technologies[J]. Hydrometallurgy,2008, 91:35-55.
    [171]Liu, H. An improved process for heap leaching of nickeliferous oxidic ores[P]. World Patent 2006/119559 Al.
    [172]Liu, H., Krebs, D.G.I.. Process for the enhanced acid leaching of laterite ores[P]. World Patent 2006/084335 A1.
    [173]Liu, H., Duarte, A., Meihack, W. Consecutive or simultaneous leaching of nickel and cobalt containing ores[P]. World Patent 2006/053376 Al.
    [174]Neudorf, D., Huggins, D.A. Method for nickel and cobalt recovery from laterite ores by combination of atmospHeric and moderate pressure leaching[P]. US Patent 2006/0024224 A1.
    [175]R. A. Bergman. Nichel production from low-iron laterite ores:process deseriptions[J]. CIM Bulletin,2003,96(1072):127-138.
    [176]Moskalyk R R. Alfantszi A M Niekel laterite proeessing and eleetrowinning practicer[J]. Miner Eng,2002,15(20):593
    [177]张永禄, 王成彦, 徐志峰.低品位碱预处理红土镍矿加压浸出过程[J].过程工程学报2010,10(2):263-269.
    [178]Johnson J A, Cahmore BC, Hoekridge RJ. Optimisation of Nickel Extraction from Laterite Ores by High Pressure Acid Leaching with Addition of Sodium SulpHate[J]. Miller. Eng.2005,18(14):1297-1303.
    [179]ZHAI Xiujing, FU Yan, ZHANG Xu, et al. Intensication of sulpHation and pressure acid leaching of nickel laterite by microwave radiation[J]. Hydrometallurgy,2009,99:189-193.
    [180]李树棠.X射线衍射实验方法[M].北京:冶金工业出版社,1993:120-134.
    [181]Y.V.Swamy, B.B.Kar, J.K.Mohanty. PHysico-chemical characterization and sulpHatization roasting of low-grade nickeliferous laterites[J]. Hydrometallurgy,2003,69:89-98.
    [182]Trolard, F., Bourrie, G., Jeanroy, E., Herbillon, A.J., Martin, H.Trace metals in natural iron oxides from laterites. A study using selective kinetic extraction[J]. Geochimica et Cosmochimica Acta,1995,59:1285-1297.
    [183]Pozas, R., Rojas, T.C., Ocana, M., Serna, C.J. The nature of Co in synthetic Co-substituted goethites[J]. Clays and Clay Minerals.2004,52:760-766.
    [184]方兆珩.湿法冶金技术丛书--浸出[M].北京:冶金工业出版社,2007:289-290.
    [185]Canterford, J.H. The sulpHation of oxidized nickel ores[J]. In:Evans, D.J.I., Shoemaker, R.S., Veltman, H. (Eds.), International Laterite Symposium, Society of Mining Engineers. AmericanInstitute of Mining, Metallurgical, and Petroleum Engineers Inc.(SME-AIME), New York, NY,1979:636-677.
    [186]Chander, S. AtmospHeric pressure leaching of nickeliferous laterites in acidic media[J]. Transactions of the Indian Institute of Metals,1982,35:366-371.
    [187]Canterford, J.H. Acid leaching of chromite-bearing nickeliferous laterite from Rockhampton[J], Queensland. Proceedings of the Australasian Institute of Mining and Metallurgy,1986,291:51-56.
    [188]Das, G.K., Anand, S., Das, R.P., Muir, D.M., Senanayake, G., Singh, P., Hefter, G.,1997. Acid leaching of nickel laterites in the presence of sulpHur dioxide at atmospHeric pressure[J]. In:Cooper, W.C., Mihaylov, I. (Eds.), Hydrometallurgy and Refining of Nickel and Cobalt, vol.1. Canadian Institute of Mining and Metallurgy, Montreal, QC,1997:471-488.
    [189]李洪桂.湿法冶金[M].长沙:中南大学出版社.1998:21-25.
    [190]傅崇说.冶金溶液热力学原理与计算[M].北京:冶金工业出版社,1989.
    [191]杨显万.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社,1983:249—560.
    [192]林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册[M].北京:科学出版社,1985:16—100.
    [193]Lim-Nunez, R., Gilkes, R. Acid dissolution of synthetic metalcontaining goethites and hematites[C]. In: Schultz, L.G., van OlpHen, H., Mumpton, F.A. (Eds.),Proceedings of the International ClayConference, Denver,1985. The Clay Minerals Society, Bloomington, IN,1987:197-204.
    [194]Aaltonen, A., Karpale, K., Malmstrom, R. Method for recovering nickel and eventually cobalt by extraction from nickel-containing laterite ore[P]. World Patent,2003,03/004709 Al.
    [195]Kim, D.-J., Chung, H.-S.,2002. Effect of grinding on the structure and chemical extraction of metals from serpentine[J]. Particle Science and Technology, 2002(20):159-168.
    [196]Canterford, J.H. Mineralogical aspects of the extractive metallurgy of nickeliferous laterites[C]. Proceedings of the Australasian Institute of Mining and Metallurgy Conference. Australasian Institute of Mining and Metallurgy, Melbourne,1978b:361-370.
    [197]阳征会.黄钠铁矾渣提取镍铁工艺及软磁高频镍锌铁氧体的制备研究[D].中南大学博士学位论文.2007,5.
    [198]马荣骏.湿法冶金原理[M].北京:冶金工业出版社,2007:417-338.
    [199]翟秀静.还原与沉淀[M].北京::冶金工业出版社,2008:353-371.
    [200]Demirkiran, N. Kunkul Dissolution kinetics of ulexite in perchloric acid solutions[J]. International Journal of Mineral Processing.2007,83(1)76-80.
    [201]Okur, H, Tekin, T, et al. Effect of ultrasound on the dissolution of colemanite in H2SO4[J].Hydrometallurgy,2002,67(1)79-86.
    [202]Jeffrey M I. Kinetic Aspects of Gold and Silver Leaching in Ammonia-Thiosulfate Solutions[J]. Hydrometallurgy,2001,60(1):7-16.
    [203]Surana,V.S., Warren, I.H. The leaching of goethite[J]. Transactions of the Institute of Mining and Metallurgy, vol.1969(78):C133-C139. Section C.
    [204]Tindall G P,Muir D M. Effect of EH on the Rate and Mechanism of Transformation of Goethite into Hematite in a High Temperature Acid Leach[J]. Hydrometallurgy,1998(47):377-381.
    [205]J.H.Kyle and D.Furfaro. The Cawse nickel/cobalt laterite project metallurgical process development[J]. Hydrometallurgy and Refining of Nickel and Cobalt:379-389.
    [206]Panda,S.C.,Dey,D.N.,Rao,P.K.and Jena,P.K.,Extraction of nickel and cobalt from lateritic nickel ores of Orissa by pressure leaching with sulpHuric acid[J]. Indian Inst.Metals,1975,28(6):483-487.
    [207]Wicker, G.R., Jha, M.C.,1986. Developments in the AMAX-COFREMMI acid leach process for nickel laterites[C]. Nickel Metallurgy Symposium, Proceedings of the 25th Annual Conference on Metallurgy, vol.1,566-577.
    [208]Whittington B I, et al. Pressure Acid Leaching of Arid-region Nickel Lateric Ore. Part II.Eeffct of Ore Type. Hydrometallurgy,2003,70:47-62.
    [209]Cornell, R.M., Posner, A.M., Quirk, J.P. Kinetics and mechanisms of the acid dissolution of goethite (α-FeOOH)[J]. Journal of Inorganic and Nuclear Chemistry 1976(38):563-567.
    [210]Cornell, R.M., Posner, A.M., Quirk, J.P.,. The completedissolution of goethite[J]. Journal of Applied Chemistry and Biotechnology,1975(25):701-706.
    [211]欧平,徐刚,倪利红,韩高荣α.Fe2O3的水热法合成及其相形成机理[J].稀有金属材料与工程,2008(37):453-455.
    [212]Chandan Upadhyay, Devabrata Mishra, Verma H C, et al. Effect of Preparation Conditions on Formation of NanopHase Ni-Zn Through Hydrothermal Technique[J] Journal of Magnetism and Materials,2003,260:188-194.
    [213]施尔畏,夏长泰,王步国.水热法的应用与发展[J].无机材料学报.199611(2):193-206.
    [214]李洪桂.冶金原理[M].北京:科学出版社,2007:180-181.
    [215]何焕华,蔡乔方.中国镍钻冶金[M].北京:冶金工业出版社,2000:313-314.
    [216]E.Krause, A. Singhal, B.C.Blakey, V.G.Papangelakis, D.Georgiou. Sulfuric acid leaching of nickeliferous laterites[M]. Hydrometallurgy and Refining of Nickel and Cobalt:441-458..
    [217]V.G.Papangelakis, D.Georgiou and D.H.Rubisov. Control of Iron During the SulpHuric Acid Pressure Leaching of Limonitic Laterites[C], Iron Control and Disposal, J.E.Dutrizac and G.B.Harris,eds.,263-274,2nd Int. Symp.on Iron Contr.in Hydromet.,Ottawa,Canda, Oct.20-23,1996,CIM.
    [218]S.I.Sobol. PHysico-Chemical Studies of the Composition and Conditions of Formation of the Crust in the Reactors of the Laterite Leaching Plant in the Moa deposite[J]. Revista Technologica,1969,7(1):3-.
    [219]Zundel, W.P., Lane, J.W., Taylor, M.W. Ore conditioning process for the efficient recovery of nickel from relatively high magnesium containing oxidic nickel ores[P]. US Patent 1974:3,804,613.
    [220]Queneau, P.B., Chou, E.C..High temperature neutralization of laterite leach slurry[P]. US Patent,1976:3,991,159.
    [221]Queneau, P.B., Chou, E.C. Sulfuric acid leaching of nickeliferous Laterites[P]. US Patent,1977:4,044,096.
    [222]Koike, S., Murai, K., Yakushizi, H., Izumimoto, S., Wakamatsu, R., Nishimura, E., Hayami, S.. Process for recovering metal from oxide ores[P]. European Patent,1993:0547744 A1.
    [223]Baillie, M.G., Cock, G.C.,1998.Weda Bay Laterite Project, Indonesia, ALTA 1998 Nickel/Cobalt Pressure Leaching and Hydrometallurgy Forum. ALTA Metallurgical Services, Melbourne.38 pp.
    [224]Curlook, W.,2004. Direct atmospHeric leaching of saprolitic nickel laterite ores with sulpHuric acid[C]. In:Imrie, W.P., et al. (Eds.),International Laterite Nickel Symposium—2004. The Minerals,Metals and Materials Society, Warrendale, PA, pp.385-398.
    [225]Loveday B K. The Use of Oxygen in High Pressure Acid Leaching of Nickel Laterites[J]. Miner. Eng.,2008,21(7):533-538.
    [226]Adams, M., van der Meulen, D., Czerny, C., Adamini, P., Turner, J.,Jayasekera, S., Amaranti, J., Mosher, J., Miller, M., White, D.,Miller, G.,2004. Piloting of the beneficiation and EPAL circuits for Ravensthorpe Nickel Operations[C]. In:Imrie, W.P., et al. (Eds.), International Laterite Nickel Symposium—2004. The Minerals, Metals and Materials Society, Warrendale, PA, pp.347-367.
    [227]周全雄.氧化镍矿开发工艺技术现状及发展方向[J].云南冶金.2005,34(6):33-36.
    [228]刘大星.从镍红土矿中回收镍、钻技术的进展[J].有色金属(冶炼部分).2002,3:6-10.
    [229]W.C.Cooper,I.Mihaylow. Proceedings of the Nickel-Cobalt 97 International Symposium, VOl.l,Cannadian Institute of Mining, Metallurgy and Petroleum,379-389.
    [230]金川有色金属公司技术中心.世界镍钴生产厂家及公司概况[M].1999:133.
    [231]李卫民摘译.珊瑚湾镍项目的投产[J].中国有色冶金.2010,2(1):1-8.
    [232]Mahesh C J, Gusmvo A M, Gordon R W. An Improved Process for Precipitating Nickel Sulfide From Acide Laterite Leach Liquom[J]. J Metals, 1981,16(11):48-53.
    [233]赵延昌,车荫昌.镍钴主要相图[M].沈阳:东北大学.1999,7:15-22.
    [234]Retcey G M. In:Handbook of Solvent Extraction[M].ed.Lo T C,Baird M H I,Hanson C.New Yoek:John Wiley & Sons,1983:673-688.
    [235]Zhun Tun. Solvent Extraction[J]. Research and Development Japan, 2001,vol.8:85-94.
    [236]朱屯.萃取与离子交换[M].北京:冶金工业出版社.2005:10-14.
    [237]Cytec Technical Brochure of Cyanex 272 Extractant[M]. Cytec Industries Inc.,1995.
    [238]柯家骏,朱屯等.湿法冶金手册[M].北京:冶金工业出版社.2005:100-103.
    [239]李进善,朱屯,陈家镛.无机化学[M],1987,3(5):7.
    [240]Miachon P La. Technique Moderne[M].1971,(20):102.
    [241]Duchenko O.V. Vereshchaka V.M.. PHase formation and reaction kinetics in Co-Zn diffusion couples Journal of Alloys and Compound[J].1999(2881): 64-169.
    [242]丁培墉等.物理化学[M].北京:冶金工业出版社,1979,7:94-96.
    [243]Shijie W. Novel electrowinning technologies the treatment and recovery of metals from liquid effluents[J]. Aqueous Processing,2008,60(10):41-45.
    [244]Michael S M. Will lead-based anodes ever be replaced in aqueous electrowinning[J]. Aqueous Processing,2008,60(10):46-49.
    [245]Treasure P A. Electrolytic zinc recovery in the EMEW cell[C]//Proceedings of the TMS Fall Extraction and Processing Conference,2000:185-191.
    [246]Escobar V, Treasure T, Dixon R E. High current density EMEW copper electrowinning[C]//Proceedings of the TMS Fall Extraction and Processing Conference,2003:1369-1380.
    [247]Fenton D, Ross M. Operating experience recovering acid and copper at the PHelps Dodge El Paso rod mill using EMEW technology. http://www.electrometals.com.au/recoveracidcopper.pdf.
    [248]Treasure P A. Silver Electrowinning in the EMEW Cell. http://www.electrometals.com.au/papers/Silver%20Electrowinning%20in%20E MEW%20Cell.pdf.
    [249]Barr N. Metal recovery apparatus[P]. US patent,5529672 (1996).
    [250]Ian E, Tony T. The EMEW cell-an alternative to merrill crowe. http://www.electrometals.com.au/papers/tech-paper-alternative-to-merrill-crow e.pdf.
    [251]有色金属冶金编辑委员会.中国冶金百科全书[M].北京:冶金工业出版社.1999:584.
    [252]高天星,李仕雄,刘爱心.镍电解阴极过程中添加剂的作用及其在线监控[J].中国有色金属学报.2006,16(10):1806-1811.
    [253]孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006,357(3):11-13.
    [254]白丽梅,刘丽娜等.张家口地区鲕状赤铁矿还原焙烧一弱磁选试验研究[J].中国矿业,2009,18(3):83-87.
    [255]张汉泉,任亚峰,管俊芳.难选赤褐铁矿焙烧-磁选试验研究[J].中国矿业,2006,(5):44—48.
    [256]ChristopH Feilmayr, Albin Thurnhofer, Franz Winter, Heinrich Mati and Johannes Schenk. Reduction behavior of hematite to magnetiteunder fluidized bed conditions[J]. ISIJ International,2004,44(7):1125-1133.
    [257]Youssef.M.A, Morsi.M.B. Reduction roast and magnetic separation of oxidized iron ores for the production of blast furnacefeed [J]. Canadian Metallurgical Quarterly,1998,37(5):419-428.
    [258]Π.E.奥斯塔平科.铁矿石选矿[M].北京:冶金工业出版社,1981:10-30.
    [259]付元坤,王雪松,杨龙,刘博.回转窑磁化焙烧黄铁矿烧渣的研究[J].安徽工业大学学报,2003,20(4):137-141.
    [260]朱家骥,朱骏士.中国铁矿选矿技术[M].北京:冶金工业出版社,1994:330.
    [261]郭学益,石文堂,李栋,田庆华.采用旋流电积技术从电镀污泥中回收铜和镍[J].中国有色金属学报,2010,20(12):2425-2430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700