用户名: 密码: 验证码:
铁矿石均热烧结基础与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国钢铁工业的持续快速发展,钢铁生产的能源消耗总量持续上升。在整个钢铁生产系统中,烧结工序能耗约占15%。研究降低烧结工序能耗的基础理论与新技术对降低我国钢铁生产综合能耗,节约生产成本,提高企业竞争力具有重要意义。
     在烧结工序能耗中,固体燃料消耗占75%-80%。本文从降低烧结固体燃耗的目的出发,以宝钢股份公司含铁原料、燃料及烧结工艺为对象,通过气体运动和传热规律的研究,揭示了烧结料层的蓄热规律;开发了利用蓄热实现均热烧结的新技术—分层布料和气流辅助布料均热烧结技术,达到显著降低燃料消耗的目的,其中气流辅助布料均热烧结技术在宝钢实现了工业应用。
     对烧结蓄热现象进行的研究发现,烧结过程中料层蓄热量自上而下不断升高。若将料高为700mm的宝钢烧结料层平均分为七个单元,获得第二至第七单元料层的总蓄热率依次为40.37%、54.07%、61-39%、66.60%、70.30%、72.99%。
     由于烧结饼离开烧结机时自上而下各单元热状态不同,依据总蓄热量还无法确定料层合理的燃料分布,本研究首次提出了可利用的蓄热量概念。可利用蓄热量是从总蓄热量中扣除烧结饼所带走的物理热后的蓄热量,是利用蓄热实现均热节能烧结的依据。通过研究烧结饼各单元的热状态和物理热的计算,获得了第二至第七单元可利用蓄热率依次为38.18%、50.80%、56.84%、60.33%、60.92%、58.39%,从而为均热烧结新技术的开发提供了可靠依据。
     在理论研究的基础上,首先开发了分层布料均热烧结技术。采取分层布料技术,能够在不降低烧结矿产、质量指标的前提下显著降低固体燃耗。烧结试验表明,若将混合料分为三层,上层焦粉用量为4.9%,中层焦粉用量为4.3%,下层焦粉用量为3.4%,混合料平均焦粉用量为4.2%,所得烧结矿转鼓强度62.13%,成品率80.02%,利用系数1.85t/(m2·h),固体燃耗53.85kg/t-s。分层布料均热烧结比普通烧结可节约固体燃耗3.69kg/t-s。
     鉴于分层布料烧结技术的生产实施受现有厂房布局的限制,本论文进一步研究开发了气流辅助布料均热烧结技术。
     通过研究烧结混合料在气体流场中的运动规律,查明了不同颗粒在气体流场中运动轨迹的差异性,建立了气流辅助布料实现与原料粒度和燃料分布偏析的理论依据。结合现行烧结生产工艺,在实验室中设计和制造了烧结混和料气流辅助布料试验装置,利用该布料装置,查明了气体流速、喷嘴结构、喷吹位置和倾角等对混合料粒度和燃料分布的影响,获得了优化的偏析布料工艺参数,开发出实现粒度和燃料分布合理偏析的气流辅助布料均热烧结新技术。
     以宝钢原料为对象,采用气流辅助烧结技术在实验室进行的烧结试验可将混合料燃料配比降低约8.7%(由4.6%降低至4.2%)此外,烧结矿的成品率由73.26%提高到78.26%,利用系数由1.40t-(m2·h)-1提高到1.46t·(m2·h)-1。
     试验结果充分表明气流布料烧结技术能实现烧结料层蓄热的高效利用,不仅显著降低了固体燃料消耗,而且明显提高了烧结矿产量和质量。本研究为降低烧结工序能耗提供了新的方法和技术。气流布料均热烧结技术已在我国宝钢烧结厂实现工业应用,单台烧结机每年效益达602.85万元。
With the rapid development of Chinese steel industry, the total energy consumption of the steel industry continues to rise. In the system of whole steel production, energy consumption of sintering process accounts for15%of the total energy consumption of steel production. It has a great significance to study basic theory and new technology of reducing the energy consumption of sintering process for reducing the comprehensive energy consumption of steel production, saving the cost of production and improving the competitiveness of enterprises.
     The consumption of solid fuel accounts for75%-80%of the energy consumption of sintering process. Taking the iron raw materials and fuel from Baosteel and sintering process as research objects in this thesis, the law of the accumulation of heat in sinter layer is revealed through the study of gas kinetics and heat transfer. The new technologies of segregation feeding and airflow feeding which realize the heat-homogenizing sintering by the heat of accumulation are developed, reducing fuel consumption significantly. Particularly, the technology of heat-homogenizing sintering of airflow feeding has been applied into industrial production in Baosteel.
     From the study of the accumulation of heat, it can be found that the amount of accumulated heat increases from top to bottom in the material layer during sintering. If the sinter layer with height of700mm is averagely divided into seven units, the total ratios of accumulation of heat from the second to seventh layer are40.37%.54.07%.61.39%.66.60%.70.30%,72.99%successively.
     Due to the different heat states of each unit from top to bottom when the sinter cakes leave the sinter machine, it is hard to ascertain the reasonable distribution of fuel for the material layers according to the total accumulation of heat, so the concept of available accumulation of heat is first put forward in this study. The available accumulation of heat is the surplus amount of accumulated heat after deducting the physical heat taken away by the sinter cake, and it is the basis of heat-homogenizing sintering by accumulating heat. Through the study of heat state of every unit and calculation of physic heat, the available accumulations of heat from the second to the seventh unit are38.18%、50.80%.56.84%.60.33%.60.92%.58.39%successively, and therefore the reliable basis is provided for the development of new heat-homogenizing sintering.
     On the basis of theory study, the heat-homogenizing sintering technology of distribution feeding is developed firstly. Taking the advantage of distribution feeding, the solid fuel consumption can be reduced significantly on the premise of guaranteeing the output and quality of agglomerate. The results of sintering experiment show that if the mixed material is divided into three layers and the dosage of coke breeze of the upper layer is4.9%, middle layer is4.3%, lower layer is3.3%and the average amount is4.2%, the quality indicators of agglomerate will be as follows:the drum strength of agglomerate62.13%, the yield80.02%, the utilization coefficient1.85t/(m2-h), and solid fuel consumption53.85kg/t-s. The solid fuel consumption of heat-homogenizing sintering is3.69kg/t-s less than the ordinary sintering.
     Taking into the consideration that the production application of distribution feeding is limited by the plant layout, the heat-homogenizing sintering technology of airflow feeding is further researched and developed in this thesis.
     Through the study of motion character of sinter mixture in the gas flow field, the diversities of motion trails among different particles are found out and the basic theory on segregation of particle size and fuel is established. Combining with the present sintering process, the test device of airflow feeding is designed and manufactured in the laboratory. The influence of airflow speed, nozzle structure, injection position and angel on the distribution of fuel and particle size of mixture is found out by making use of this feeding device and the optimized parameters of segregation feeding process are obtained. The new heat-homogenizing sintering technology of airflow feeding to realize the segregation of particle size and fuel distribution is developed.
     Taking the raw material from Baosteel as research object, the fuel proportion of mixture can be reduced by8.7%(from4.6%to4.2%) in the laboratorial sintering experiment by adopting the sintering technology of airflow feeding. In addition, the yield of agglomerate is improved from73.26%to78.26%and the utilization coefficient is raised from1.40t·(m2·h)-1to1.46t·(m2·h)-1.
     The results of experiments show that efficient utilization of the accumulated heat of sinter layers can be realized by the sintering technology of airflow feeding, so not only the consumption of solid fuel is significantly reduced, but also the output and quality of sinter product are both raised obviously. The new method and technology are provided in this thesis. The heat-homogenizing sintering technology of airflow feeding has been applied into industry in sintering plant of Baosteel, and the benefit of602.85million yuan can be achieved by single sintering machine every year.
引文
[1]付菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南工业大学出版社,1996:1-2.
    [2]Cappel F, Wendeborn H铁矿粉烧结[M].北京:冶金工业出版社,1979:1-2.
    [3]Lawrence H. Geometry of Microstructure[M]. Proc.Symp. On Microstructure of ceramics Materials,1964:12-22.
    [4]Dawson P R. Recent Developments in Iron Ore Sintering New Development for Sintering [J]. Ironmaking and Steelmaking.1993(2):135-136.
    [5]李艳茹.鞍钢烧结和高炉合理炉料结构的实验研究[D].辽宁:鞍山科技大学,2005.
    [6]Bristow N J, Waters A G. Role of SFCA in promoting high-temperature reduction properties of iron ore sinters[J].Trans. Inst. Min. Metal,1991,100:1-10.
    [7]BerMaH E Φ.烧结一百年[J].烧结球团,1989,24(1):42-44.
    [8]侯恩俭.东烧高品质烧结矿生产工艺分析[D].辽宁:辽宁科技大学,2007:8-9.
    [9]唐先觉.国内外烧结技术现状及发展趋势[C]//2010年度全国烧结球团技术交流年会论文集.
    [10]姜曦,裴元东,韩洪亮.铁矿粉烧结技术进展[J].科技导报,2011,29(15):70-74.
    [11]柏林霖.钢铁工业铁矿原料含硫组分基本状况剖析[J].冶金经济与管理,2010,(1):25-28.
    [12]裴元东,赵志星,马泽文,等.国外铁矿粉烧结理论与技术的进展[J].烧结球团,2010,35(3):1-5.
    [13]Wang S, Gao W, Kong L. Formation Mechanism of Silicoferrite of Calcium and Aluminum in Sintering Process [J]. Ironmaking and Steelmaking. 1998,25(4):296-301.
    [14]胡宾生,熊飞武.蛇纹石种类和粒度对烧结过程的影响[J].烧结球团,2010,35(5):23-26.
    [15]Satskii V A, Tarasov V P, LNabona V. Results of Operating the Bell Charging Apparatus with Delivery of Part of the Coke into the Axial Zone of the Top[J]. Coke and Ironmaking congress,2001,31(11):1-5.
    [16]李善彬.低品质矿烧结工艺开发与应用[J].天津冶金,2011,(3):9-12.
    [17]Kowaldki W, Kersting K, Werner P. The Influence of Sinter Composition on Sintering Rate and Physical Quality of Sinter[C].Ironmaking Conference Proceedings,1997:415-425.
    [18]胡俊鸽,周文涛,赵小燕.日本降低生产成本的烧结技术进展[J].冶金丛刊,2010,(5):46-50.
    [19]Kasai E. Influence of properties of fluxing materials on the flow of melt formed in the sintering process [J]. ISIJ International,2000,40(9):857-862.
    [20]贾宏亮,刘春暖,贺新卜,等.邯郸地区自熔性精矿粉配加多种进口矿烧结研究[J].烧结球团,2010,35(5):20-22.
    [21]Straka G. Experiment and Study on Effects of Different Basicity and Contents of MgO and SiO2 in Sinter [J]. ISIJ Inter,1998,38(7):457-462.
    [22]周取定,孔令坛.铁矿石造块理论及工艺[M].北京:冶金工业出版社,1989.
    [23]Vurunov I F. Ecological Problems of Ironmaking[C]. Proceeding of the Fourth European Coke and Ironmaking Congress,2001,31(11):6-10.
    [24]Bristow N J, Loo C E. Sintering Properties of iron ore mixes containing titanium [J]. ISIJ International,1997,32(7):819.
    [25]唐先觉,何国强.论我国30年来铁矿烧结的技术进步[J].烧结球团,2009,34(6):1-4.
    [26]Dawson P R. Recent Developments in Iron Ore Sintering [J]. Ironmaking And Steelmaking,1993,20(2):135-143.
    [27]唐贤容,王笃阳,张清岑.烧结理论与工艺[M].长沙:中南工业大学出版社,1992.
    [28]Parish R V. The Metallic Elements[M].London and New York:Longman,1997.
    [29]郜学.“十五”我国烧结发展和技术进步[J].冶金信息导刊.2007,3:10-13.
    [30]孔令坛.我国炼铁原料技术的进步和展望[J].炼铁,2002,21(10):20-23.
    [31]华英芳.LME基本金属涨幅有限[J].有色金属报,2006,10(10).
    [32]Hsieh L H, Whiteman J A. Effect of raw material composition on the mineral phases in the lime-fluxed iron ore sinter [J]. ISIJ International,1993,133(4): 62-73.
    [33]孙彦妍.对当前我国烧结行业发展的几点思考[J].烧结球团,2010,35(1):7-9.
    [34]叶匡吾.面对新的炼铁技术—也谈“炼铁技术”[J].中国冶金,2005,15(2):14-17.
    [35]Loo C E, Wan K T, Howes V R. Mechanical properties of natural and synthetic mineral phases in sinters having varying reduction degradation indices [J]. Ironmaking and Steelmaking,1998,25(6):279-285.
    [36]袁宇峰.我国钢铁工业自动化得现状和发展[J].钢铁研究,2004,138(3):49-51
    [37]殷瑞钰.中国炼钢技术[J].现代冶金,2004,(3):4-5.
    [38]张寿荣.构建可持续发展的高炉炼铁技术是21世纪我国钢铁界得重要任务[J].钢铁,2004,39(9):7-13.
    [39]徐瑞图,吴胜利.中国铁矿石烧结研究[J].周取定教授论文集.北京:冶金工业出版社,1997.
    [40]王青,许艳梅.钢铁行业烧结烟气脱硫现状及发展[J].冶金设备,2010,(1):51-53.
    [41]宋伟民.钢铁联合企业控制二氧化硫污染的探讨[J].钢铁,1997,34(7):66-69.
    [42]郝继锋,汪莉,宋存义.钢铁厂烧结烟气脱硫技术的探讨[J].太原理工大学学报,2005,36(4):491-494.
    [43]杨飚.清洁生产与宝钢的SO2削减方略[J].宝钢技术,1997,(6):28-32.
    [44]杨怀东.烧结烟气脱硫技术探讨[J].工业安全与环保,2006,32(3):12-13.
    [45]冶金工业部长沙黑色冶金矿山设计研究院.烧结设计手册[M].北京:冶金工业出版社,1990:217-274.
    [46]李乐丰.氨法烟气脱硫工艺及应用时要注意的问题[J].山东电力技术,1999,(6):45-49.
    [47]Information Centre for Environmental Licensing. Dutch Notes on BAT for the Production of Primary Iron and Steel [R]. Berlin:the Ministry of Housing, Spatial Planning and the Environment, Directorate for Air and Energy, Department of Industry,1997.
    [48]张同文.钢铁联合企业二氧化硫减排与控制[J].工业安全与环保,2004,30(7):37-38.
    [49]党玉华,王海风,齐渊洪.烧结过程SO2脱除的研究[J].钢铁,2010,45(5):88-92.
    [50]刘立忠,张承中,黄学敏,等.三种钙基脱硫剂在CFBA烧结烟气脱硫中的对比试验研究[J].环境污染与防治,2004,26(6):418-420.
    [51]鄂琳琳,程相利,苍大强,等.烧结原料加热过程中S02排放特性的实验研究[J].烧结球团,2009,34(6)
    [52]赵玮.烧结烟气净化系统的原理分析及改进[J].包钢科技,2002,28(3):66-68.
    [53]龙红明,李家新,王平,等.尿素对减少铁矿烧结过程二嗯英排放的作用机理[J].过程工程学报,2010,10(5):944-949.
    [54]张承中,党筱凤,严秉勤.循环流化床烧结烟气脱硫热态模拟试验研究[J].西安建筑科技大学学报,1997,29(3):349-354.
    [55]沈晓林.宝钢环境保护[J].中国冶金,2005,15(6):39-42.
    [56]Hofstadler K, Murauer F, Steiner D. et al. WETFINE—烧结厂和球团厂的废气净化新技术[J].钢铁,2002,37(1):70-72.
    [57]杨飚.宝钢FGD工艺抉择之我见[J].宝钢技术,1999,(1):54-59.
    [58]Romelot P,王振球.铁矿石烧结烟气中和的试验研究[J].武钢技术,1998,36(4):3-6.
    [59]钢铁行业并购调整冶金装备面临三大机遇[EB/OL].[2011/6/3].http://www.newsccn.com/2010-10-13/18029.html.
    [60]郑玉春.2004世界钢铁工业统计[Z].北京: 《世界金属导报》社,2004.
    [61]张寿荣.21世纪的钢铁工业及对我国钢铁工业的挑战[J].天津理工学院学报,2000,16(3):14-24.
    [62]中华人民共和国国家统计局.国际统计年鉴,2004[Z].北京:中国统计出版社,2004.
    [63]杨婷.世界钢铁工业格局的演变[J].冶金信息导刊,2007,5.
    [64]韩庆虹,金永龙,张军红.人工神经网络在烧结固体燃耗预测中的应用[J].冶金能源,2005,24(3):9.
    [65]邓德君.烧结工序节能降耗的措施分析[J].矿业工程,2011,9(6):43-45.
    [66]Das A.李益慎.比莱钢厂采用蒸汽预热提高烧结机生产率[J].武钢技术,1990,(4):1-4.
    [67]朱德庆,吴浩方.梅山烧结矿冷却废气热风烧结工艺的研究[J].烧结球团,1997,22(5):13-16.
    [68]安田本雄,廖国瑞.川崎千叶厂4号烧结系统的最低能耗烧结生产[J].武钢技术,1989,(10):16-20.
    [69]Trisc A. Coke Combustion Efficiency in Sintering [J]. Meralurgija (Zagreb),2001,40,(3):143-146.
    [70]贺先新,翁得明.烧结固体燃料分加的研究[J].武钢技术,2002,40(4):5-8.
    [71]Ikuta K, Suzuki Y, Kitamura S. Effects of low pH on the reproductive behavior of salmonid fishes[J]. Fish physiology and biochemistry,2003,(28):407-410.
    [72]何奥平,朱德庆,潘建,等.浅谈烧结温室气体的减量化排放及节能[J].烧结球团,2004,29(3):26-29.
    [73]Walna B, Siepak J, Dizymala S. Soil degradation in Wielkopolski National Park(Poland) as an Effect of Acid Rain Simulation[J]. Water, Air and Soil Pollution,2001,(130):1727-1732.
    [74]金永龙,张军红,徐南平,等.烧结工艺综合节能与环保的现状与意义[J].冶金能源,2002,21(4):12-16.
    [75]Environmental Protection Agency(UBA).Comments on the Draft Dutch Notes on Best Available Techniques for Pollution Prevention and Control in the Production of Primary Iron and Steel[R].Berlin:Environmental Protection Agency of Germany,1997.
    [76]汤静芳,黄新发.烧结厂大气污染控制技术的应用及发展[J].武钢技术,2002,40(5):50-53.
    [77]Brussels. Environmental Resources Management. Technical Note on Best Available Techniques to Reduce Emissions of Pollutants into the Air from Sinter Plants, Pelletisation and Blast Furnaces[R]. European commission,1995.
    [78]Anderson D R, Raymond F. Sources of Dioxins in the United Kingdom:the Steel Industry and other Sources [J].Chemosphere,2002,(46):371-381.
    [79]Environmental Protection Agency(UBA).Comments on the Draft Dutch Notes on Best Available Techniques for Pollution Prevention and Control in the Production of Primary Iron and Steel[R].Berlin:Environmental Protection Agency of Germany,1997.
    [80]周继程,郦秀萍,上官方钦等.我国烧结工序能耗消耗现状及节能技术和措施[J].冶金能源,2010,29(2):23-26.
    [81]张玉柱,胡长庆.炼铁节能与工艺计算[M].北京:冶金工业出版社,2002.
    [82]王宏斌,张咏梅.降低烧结工序能耗的措施[J].钢铁,1999,34(1):1-4.
    [83]张瑞年.浅谈烧结节能降耗的技术途径和措施[J].烧结球团,2003,28(3):18-20.
    [84]陈先智.宝钢烧结生产技术的发展[J].烧结球团,1998,23(3):8-11.
    [85]贺先新.浅析武钢厚料层烧结的发展[J].烧结球团,2004,29(3):1-5.
    [86]宋开永.浅谈厚料层烧结及其措施[J].首钢科技,1998,21(1):34-37.
    [87]边美柱,何晓义,候贵生.固体燃料在烧结料中的燃烧分析及降耗措施[J].包钢科技,2002,28(3):19-22.
    [88]金德刚,臧国军,王香兰.安钢烧结厂的节能技术[J].河南冶金,1998,29(4):59-60.
    [89]陈仕红.厚料层烧结与能耗的关系[J].四川冶金,1999,2:40-41.
    [90]符伟国.降低烧结矿固体燃料消耗技术攻关[J].包钢科技,1996,3:76-77.
    [91]张军红,徐南平,谢安国.烧结过程降低固体燃耗途径的探讨[J].冶金能源,2002,21(1):25-27.
    [92]宋国良,傅志华,张全.烧结机增产节能的途径[J].钢铁研究学报,2000,12(6):61-64.
    [93]Formoso A,宾晓燕.烧结用焦粉水分及挥发分测量方法的改进[J].烧结球团,1995,20(4):32-37.
    [94]刘雪生.铁矿烧结料层厚薄与经济效果的分析[J].有色金属设计,1999,26(3):15-19.
    [95]江源,黄柱成,姜涛.烧结节能研究[J].中国科技论文在线http://www.paper.edu.cn/index.php/default/releasepaper/content/200508-3,200 5:1-7
    [96]Dea P O'D, Waters A G. Modeling strand segregation and the benefits to sintering operations [A].Ironmaking conference proceedings[C].1993,459-470.
    [97]Beer H, Kersting K, Werner P, Improvements in strand feeding and its effect of sintering performance [A]. Ironmaking conference proceedings[C].1995,523-533.
    [98]汪智德.实现均匀烧结的途径[J].烧结球团,1996,21(5):1-8.
    [99]Lee K J. The operation results with the modified charging equipment and ignition furnace at KWANGYANG NO.2 sinter plant[C].Iron making conference proceedings,1996:377-381.
    [100]Das A, Deshmukh V.R. Improvements in sintering technology at Bhilai steel plant[C]. Iron making conference proceedings,1998:1345-1352.
    [101]村田博之.利用粒度偏析的烧结布料法[J].国外钢铁,1988,11:11-17.
    [102]R.P.道森,周节旺.铁矿石烧结技术的最新发展(三)[J].国外钢铁,1994,(8):1-5.
    [103]Shibuta K, Kuwano K, Ito R, etal. Recent sintering technology resulting in high productivity at Kakogawa's sintering plant[C]. Ironmaking conference proceedings,1990:623-628.
    [104]Fujimoto M, Inazumi T, Sato K, etal. Development of a new type of feeding method for homogenization of sintering reaction[C]. Ironmaking conference proceedings,1990:589-601.
    [105]Bhadat R P, Gupta S K, Ray H S, et al. Heat transfer consideration for improvement in the sintering indices[C]. Ironmaking conference proceedings. 1989:481-490.
    [106]Chung W I, Pi Y J, Kim J R. Sintering technology development to lower the production cost in ironmaking process at Kwangyang works[C]. Ironmaking conference proceedings.1995:557-562.
    [107]Druet J P. Solid fuel distribution through the height of a sinter mix bed knowing the grain size analysis of the fuel[C]. Fifth international iron and steel congress.1986,(45):365-369.
    [108]郝志忠,吴胜利,段祥光,等.降低包钢烧结工序能耗的实践[J].烧结球团,2010,35(4).
    [109]李寿宝,潘宝巨,任志国.降低烧结固体燃耗理论分析及工艺技术[J].钢铁,1997,32(2):61-64.
    [110]祝宝军.烧结节能添加剂的开发及机理研究:[硕士学位论文].长沙:中南工业大学,1998:53-54.
    [111]张俊,郭兴敏,张金福,等.烧结原料对燃料燃烧的影响研究[J].钢铁,2010,45(11):12-15.
    [112]傅志华,宋国良,张全.新型节能添加剂在烧结中的应用研究[J].燃料化学学报,2000,28(6):573-576.
    [113]诸荣孙,鲁逢霖,徐天龙.添加催化助燃剂降低烧结焦耗的工业试验[J].烧结球团,2004,29(1):15-27.
    [114]蒋民宁,范文生,王国华.催化剂在唐钢炼铁厂南区二烧结车间的应用[J].第九届全国高炉炼铁学术年会论文集,2008.
    [115]冯娟.烧结节能降耗技术[J].全国热源与热工2008学术年会,2008:434-436.
    [116]毛艳丽,陈妍,曲余玲.烧结工序节能降耗的技术措施[J]ENERGY FOR METALLURGICAL INDUSTRY,2010,29(5):9-11.
    [117]Fleischander A, Aichinger C, Zwittag E环保型烧结生产新技术——Eposint and MEROS[J]. CHIAN METALLURGY,2008,18(11).
    [118]JIANG Tao, FAN Zhen-yu, ZHANG Yuan-bo Zhang*, et al. A Simulation Study on Flue Gas Circulation Sintering (FGCS) for Iron Ores. And International Symposium on High-Temperature Metallurgical Processing. TMS (The Minerals, Metals & Materials Society),2011,33-40.
    [119]李光辉,姜涛,范振宇,等.烟气循环烧结新技术的研究[R].2010年全国炼铁生产技术会议暨炼铁学术年会.北京:2010.1184-1187.
    [120]沈小峰.梅刚富氧烧结技术的研究与应用[J].中小企业管理与科技,2009,(30):238.
    [121]沙永志,曹军,王凤岐等.我国炼铁节能与环保[J].钢铁,2000,32(7):62-65.
    [122]王中林.降低烧结工序能耗的研讨[J].节能与环保,2004,(11):42-44.
    [123]周志安,坦克枪,肖业俭,等.汽轮机替代电机拖动烧结主抽风机的探讨[J],烧结球团,2010,35(5),2010.
    [124]Asia Pacific Partnership for Clean Development and Climate. The State-of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook [R].2007:27-37.
    [125]Vanderhyden B, Borlee I, BROUHON J-M. Impact of waste gas recycling on sintering performances and emissions[C].IRONMAKING CONFERENCE PROCEEDINGS,1996:389-397.
    [126]闫为群,栾颖.烧结余热回收利用途径探讨[J].河南冶金,2007(3):23-27.
    [127]卢红军,戚云峰.烧结余热的基本特点及对烧结余热发电的影响[J].烧结球团,2008(1):35-38.
    [128]杨兴聪,李建军,郭奠球.国外烧结余热回收利用现状[J].烧结球团,1996(6).
    [129]谢泽民.宝钢1,3号烧结机设置余热回收装置[J].钢铁,2003(11):62-65.
    [130]唐先觉.我国第一座现代化烧结余热回收装置建成[J].烧结球团,1992(2):10-12.
    [131]陆金南,郭宏新.热管技术在烧结余热回收中的应用[J].烧结球团,1994(3):25-28.
    [132]王兆鹏,胡晓明.烧结余热回收发电现状及发展趋势[J].烧结球团,2008(1):31-34.
    [133]汪保平,吴朝刚,顾云松.马钢300m2烧结机带冷烟气余热发电工程[J].烧结球团,2007(5):8-12.
    [134]张瑞堂,傅国水,李真明,等.济钢320m2烧结机余热发电投产实践[J].烧结球团,2007(5):47-51.
    [135]冶金工业部长沙黑色冶金矿山设计研究院.烧结设计手册[M].北京:冶金工业出版社,1990:479.
    [136]#12
    [137][西德]K.梅耶尔.铁矿球团法[M].北京:冶金工业出版社,1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700