用户名: 密码: 验证码:
顶燃式热风炉燃烧器的数值模拟及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃烧器是热风炉的供热装置,其性能的优劣直接影响着热风炉的使用寿命和送风温度。顶燃式热风炉陶瓷燃烧器有着火焰长度短、理论燃烧温度高、燃烧稳定性强及煤气燃烧完全的特点,在炼铁装置中得到了广泛的应用。但由于顶燃式热风炉内气体流动以及气体燃烧过程是一个涉及湍流、燃烧、对流、辐射等多方面的复杂过程,目前对它内部的流场和燃烧器的燃烧特性还没有完全了解,因而缺乏系统的研究和成熟的设计经验。基于以上情况,本论文结合数值模拟和试验研究两种方法,研究了顶燃式热风炉陶瓷燃烧器的基本工作特性。
     论文首先建立与原形相似比为1:6的三维热风炉模型,使用商用软件FLUENT,选择适合模拟顶燃式热风炉内气体流动的控制方程与k -ε湍流模型,采用SIMPLE算法,在给定速度入口的边界条件下,分析了热风炉内气体的流场、燃烧室出口和燃烧器喷口出口处的气流均匀性。通过在煤气环道中增设导流砖,有效地防止了蓄热室中偏流的产生。
     其次分析了目前湍流燃烧的模拟方法,选用适合顶燃式陶瓷燃烧器的湍流扩散燃烧理论,选用P1辐射模型,在给定空气和煤气入口流量的条件下,对陶瓷燃烧器的燃烧过程进行模拟,确定了燃烧过程中气体的速度分布、温度分布、各组分的浓度分布等。验证并调整了一些模型参数,使得计算机模拟结果能够较真实的反映实际过程。
     然后在相似理论指导下,制造与原形相似比为1:6的试验模型,进行模型冷态试验。重点测试了空气环道、煤气环道和模型的阻尼特性,燃烧器喷口气流的均匀性。并通过对煤气环道结构进行改进,改善了燃烧器喷口气流的均匀性。
     最后,论文对课题进行了总结,并对顶燃式热风炉陶瓷燃烧器的后续研究工作提出了建议。
The burner is the heating plant of the hot-blast stove, whose performance influences the service life and the air temperature of the hot-blast stove. The ceramic burner of top-firing hot-blast stove has many characters such as the short combustion flame, high theory combustion temperature, better combustion stability and the completeness of gas combustion, so it’s widely used in the iron-making equipment. But the gas flow and gas combustion in the hot-blast stove are a complex process including turbulent flow, combustion, convection, radiation. Nowadays, the reasons for the lack of the systemic study and mature design experience are the flow field of the hot-blast stove and the basic combustion characteristic of the ceramic burner have not been understood. Based on this, the basic working characters of ceramic burner are investigated by the experiment and numerical simulation.
     In this paper, a three-dimensional model of hot-blast stove which the geometric similarity ratio is one sixth to the prototype is presented. Based on the governing equation and k -εturbulence model which suits to the gas flow in the top-firing hot-blast stove, the three-dimensional model is solved by FLUENT commercial software with SIMPLE algorithm. The flow fields of hot-blast stove are obtained. The numerical results also show the homogeneous characters of the combustion chamber outlet and the nozzle outlet, and the drift current is under control in the regenerator when flow control bricks are used in the gas loop.
     In addition, the current simulation methods of combustion are analyzed. Based on the diffusion combustion theory and P1 radiation model which suit to the gas combustion in the ceramic burner, the combustion process is simulated. The velocity distribution, temperature distribution and component distribution of the gas are obtained. By adjusting some parameters of the model, the numerical results can reflect the reality combustion process rightly.
     Further more, based on the similarity theory, an experimental model is built, and the cold state model experiment is carried out. The damping characters of the air loop, gas loop and model, and homogeneous character of the nozzle outlet are tested. By the improvement of the gas loop structure, the homogeneous rate of the model is highly increased.
     At last, the paper summarizes the subject, and some ideas are given for the coming investigation of the ceramic burner in the top-firing hot blast stove.
引文
[1]张家乐.国外高温热风炉的现状与发展趋势.炼铁,1974.2:8-16
    [2]李心广.内燃式热风炉改为高效顶燃式的探讨.炼铁,1983.1:10-12
    [3]张家乐.大型高温热风炉的设计使用及发展趋势.钢铁译从,1978.1:25-33
    [4] Blast furnace technology. Science and practice.1963.5
    [5]热风炉燃烧方法的新发展.钢铁译丛,1972.1
    [6]陈炳霖,张伯鹏.高温顶燃式热风炉试验及推广.钢铁,14(4):1-10
    [7] Ceramic burners for hot blast stoves. Iron and steel engineer.1974,3:41-44
    [8]王志仁,张家乐,张万仲.高温内燃式热风炉燃烧室的研究.炼铁,1983,3:10-16
    [9] H.Hofmann.卢森堡1962年炼铁论文集.1962,161-162
    [10] The design and construction of hot blast stove with high blast temperature. Iron making Proceedings.1973.165-176
    [11] The new development about the combustion method of hot blast stove. Furance & Steel Plant.1970.3:171-178
    [12]张家乐.雷德卡厂热风炉燃烧的改进.国外钢铁,1989,2:1-13
    [13]张家乐,张志良,刘孝湘.陶瓷燃烧器预混和模型试验.鞍钢技术,1979,5:1-13
    [14]邱玉田,王在木.套筒式陶瓷燃烧器在本钢一铁厂的应用及试验.鞍钢技术,1971增刊
    [15]项钟庸,郭庆第.蓄热式热风炉.第一版.北京:冶金工业出版社,1988.1-6
    [16]贺有多,张胤,李士琦等.对热风炉用陶瓷燃烧器的评价.包头钢铁学院学报.18(2):83-86
    [17]贺有多.新型栅格式陶瓷燃烧器[P].中国专利:ZL97250073-1,1997
    [18]张胤等.新型栅格式陶瓷燃烧器燃烧过程数学模型研究.包头钢铁学院学报.20(2):100-103
    [19]袁熙志,罗巍.顶燃式热风炉燃烧器的设计探讨.四川冶金.1990,3:25-28
    [20]岳增文.顶燃式热风炉用陶瓷燃烧器.耐火材料,1989,2:42-43
    [21]袁熙志.顶燃式热风炉细流交叉混合燃烧器的设计.炼铁,1990,6:29-32
    [22]刘德华,林家生.第二代顶燃式热风炉的研制与实践.钢铁,1998,33(8):6-8
    [23]成兰柏,张家乐.ACL顶燃式热风炉工业性试验.钢铁,1988,23(10):5-10
    [24]饶荣水,王立,戴方钦等.热风炉用高效能陶瓷燃烧器的开发.工业加热,2002,1:27-30
    [25]赵治国.热风炉用栅格式燃烧器燃烧场的试验研究与数值模拟.鞍山科技大学硕士论文,2004
    [26]牛珏.套筒式燃烧器燃烧室内冷态流场的数值模拟及试验研究.鞍山科技大学硕士论文,2003
    [27]郦秀萍、张仁贵.顶燃式热风炉烟气分布的研究.钢铁,2002,37(4):57-59
    [28]张胤.高炉热风陶瓷燃烧器燃烧过程模拟及新型陶瓷燃烧器的开发研究.北京科技大学博士论文,2001
    [29]刘德华,林家生等.第二代顶燃式热风炉的研制与实践.1998,33(8):6-9
    [30]张胤,贺友多等.套筒式陶瓷燃烧器内燃烧过程数学模型.金属学报,2000,36(6):667-672
    [31]张胤,贺有多等.阻流板对陶瓷燃烧器燃烧过程的影响.钢铁研究学报.2001,13(4):6-10
    [32]张胤,贺有多,李士琦等.预热对陶瓷燃烧器燃烧过程的影响.燃烧科学与技术.2001,7(1):267-270
    [33]雍玉梅,李国忠等.套筒式燃烧器燃烧室内气体燃烧场的仿真.冶金能源,2002,21(3):49-51
    [34]荀柏秋,曲哲等.三维紊流燃烧室流场的数值计算.能与动力工程,2001,16(1)80-82
    [35]张炳哲,张欣欣等.卡卢金热风炉气体燃烧与流动数值模拟.工业炉,2005,27(6):1-3
    [36]胡日君,程素森.考贝式热风炉拱顶空间烟气分布的数值模拟.北京科技大学学报,2006,28(4):338-342
    [37]陈义胜,贺有多等.热风炉冷风分布的计算机模拟研究Ⅰ.包头钢铁学院学报,1999,18(1):16-20
    [38]刘顺隆,郑群.计算流体力学.第一版.哈尔滨:哈尔滨工程大学出版社,1998.1-2
    [39]陈矛章.粘性流体动力学基础.第一版.高等教育出版社,1993
    [40] FLUENT Inc. FLUENT 6.0 Documentation.FLUENT Inc.2001
    [41]陶文铨.数值传热学.第一版.西安交通大学出版社,1988
    [42] B.E. Launder and D.B. Spalding. Lectures in Mathematical Models of Turbulence. Academic Press,London,England,1972
    [43]陶文铨.计算传热学的近代进展.第一版.北京:科学出版社,2000
    [44] Patankar S V..Numerical Heat Transfer and Fluid Flow.New York: Hemisphere Publishing Corporation, Taylor &Francis Group, 1980
    [45] S.V.Patankar.Numerical Heat Transfer and Fluid Flow.Hemisphere,Washington,1980
    [46] Dawes W N. The Simulation of Three-Dimensional Viscous Flow in Turbo-machinery Geometries Using a Solution Adaptive Unstructured Mesh Methodology. Journal of Turbo-machinery, 1992,114(4): 528-537
    [47] Tsung F L, Loellbach J H. Development of an Unsteady Unstructured Navier Stockes Solver for Stator-Rotor Interaction. AIAA-96-2668
    [48] Athavale M M, Tiang Y, Przekwas A J. Application of an Unstructured Grid Solution Methodology to Turbomachinery Flows. AIAA-95-00174
    [49]刘学强,伍贻兆.三维复杂外形非结构网格的生成及应用.南京航空航天大学学报,2000,32(5):534-538
    [50]韩振学,方韧,刘志坚.非结构化多重网格流场数值计算.航空动力学报,1998,13(2):149-152
    [51] Libby P A, Williams F A. Fundamental aspects and review. In:Libby P A, Williams F A, ed. Turbulent Reacting Flows. Academic Press,1993. 1-62
    [52] Givi P. Model free simulations of turbulent reactive flows. Progress in Energy and Combustion Science, 1989, 15: 1-107
    [53] Jaberi F A, James S. A dynamic similarity model for large eddy simulation of turbulent combustion. Physics of Fluids, 1998,10(7): 1175-1177
    [54] Colucci P J, Jaberi F A, Givi P. Filtered density function for large eddy simulation of turbulent reacting flows. Physics ofFluids, 1998, 10(2): 499-515
    [55]张会强,陈兴隆,周力行等.湍流燃烧数值模拟研究的综述.力学进展,1999,29(4):567-575
    [56] Pope S B, Cheng W K. The stochastic flamelet model of turbulent premixed combustion. In: 22nd Symposium (Int) on Combustion, 1988.781-789
    [57] Chen J Y, Kollmann W. Chemical models for PDF modeling of hydrogen-air non-premixed turbulent flames. Combustion and Flame, 1990, 79: 75-99
    [58] Pop S B. New developments in PDF modeling of non-reactive and reactive turbulent flows. In: Proceedings of the Second International Symposium on Turbulent, Heat and Mass Transfer, Delft, The Netherlands, June, 1997. 35-45
    [59] Magnussen B F, Hjertager B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. In:16th Symposium (International) on Combustion, 1976.719-729
    [60]莫乃榕.工程流体力学.第一版.武汉:华中科技大学出版社,2001
    [61]颜大椿.实验流体力学.第一版.北京:高等教育出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700