用户名: 密码: 验证码:
建立用于环境及土壤微生物群落分析的基因芯片技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物的生态多样性在各种生态系统的功能和持续都起着综合的和独特的作用,如它对持续农业系统的作用为许多近期研究所证实。微生物在全球物质循环中起作重要作用,因而关系到地球在物质平衡、大气构成、地质形成等方面的变化,如微生物所进行的反硝化作用使土壤、海洋的氮预算失去平衡,所形成的中间产物NO和N:O的积累则是全球气候变暖和臭氧层的破坏的主要原因之一。另外,微生物在环境的生物治理中有作极为重要的作用。所以弄清楚微生物群落的组成、结构和功能;它们对毒素污染、气候变化、农业和工业活动等环境变化的反应和适应,对于持续和恢复理想的尘态功能是非常必要的。然而,仅有小于1%的微生物能人为培养,微生物群落的定性和对其在自然环境中的种群的检测是长期困扰着微生物学家和生态学家的一大难题。
     传统的微生物群落分析建立在细菌的培养上,这已经很不适应现在的研究要求。近10年发展的分子生物学方法使微生物群落研究有了显著的进展,如16S rRNA基因分析方法。但是这些方法仍有其局限,不能满足对微生物种群进行全面了解和监测的高信息输出、简单、快速、及时和经济等方面的要求。
     基因芯片是最近发展起来的基因组研究技术。现已表明它是在基因组规模上研究基因表达和调控的一种强有力的研究工具,同时它也是研究原核和真核生物基因多念性的极好方法。与传统的以膜为基础的杂交方法比较,以载玻片为支撑物的基因芯片技术具有高密度、快速检测、基于多荧光素标记的平行检测等多种优势,并还有相对低成本、自动化、低背景噪音等特点。可以预计,基因芯片将是研究微生物群落的一种潜在有力的方法,但是其关节技术和应用都没有得到认真研究,尤其没有就环境样品的复杂性对基因芯片技术进行过研究。
     近来发现在研究特定功能种群时功能基因可作为标记基因而代替16S rRNA基因,如研究氮循环细菌可采用硝化和反硝化作用有关的基因。另外,在膜上的染色体DNA杂交被证明具有高的分辨率。
     本研究中,我们在分离新的反硝化菌株、克隆亚硝酸还原酶基因的基础上构建和测试了功能基因芯片(FGA)和群落染色体芯片(CGA),建立了用这两种芯片进行的杂交检测的技术方法,并探索了它们在自然细菌群落的分析上的应用。其主要研究结果如下:1、反硝化细菌分离、亚硝酸还原酶基因克隆及太平洋北部海洋沉积物中的反硝化细菌的多样性分析
     通过在厌氧和反硝化条件下进行富集培养和随后的平板分离,结合rep—PCR指纹分析筛选和硝酸还原活性测定,从华盛顿大陆架6个样品站(两个地点)及Puget Sound海洋沉积物中共获得反硝化分离株30个。从其中12个分离株中分离和测序了含有铁作为辅基的nirs基因和从5个分离株中分离测序了nirk基因。经16S心rRNA基因测序和与基因数据库比较,确定30个分离株分别属于7个不同的细菌届或9个不同的细菌种。目前基因数据库中从纯培养获得的nirS和nirK基因主要是与Pseudomonax相联系的,我们从另外多个属获得了这些基因,从而丰富了这些可作为分子标记的基因的序列信息。
     用PCR放大的方法从puget Sound和华盛顿大陆架两个地点的海洋沉积物样品中克隆了nirS和nirK基因。nirS基因可从两个样品点所获的样品中放大,而nirK基因却仅从华盛顿大陆架样品中检测到。为研究nir基因在这些样品中的基本结构,两种基因的克隆被进行限制性内切片段长度多态性分析。稀有度分析揭示,在Puget Sound样品中nirS基因克隆具有特别高的多样性,而华盛顿大陆架样品中nirS和nirK基因克隆
    
     的多样性稍低。在"irK克隆中发现有一个优势群,在两处生境的沉积物样品中均没有
     发现nfrt的优势群,只发现少数克隆的丰度较高。经杂交实验证实除一个克隆外所有
     假定的228个njtti克隆确为njrt基因,其核苦酸同一性低至45.3%。系统发育分析将
     mIS克隆归群到m6基因分类树中的3个明显不同的亚族并与他们来源的两个生境相
     对应。这些序列与己知的灯 基因序列或从华盛顿大陆架样品中所获分离株(大多与
     Pseudomonas stutzeri有关)的mIS基因序列的关系甚小。nfth克隆彼此之间比较类
     似,其核音酸同一性达78.6%或更高;仅有微弱杂交信号的克隆与己知的nfln基因序列
     无关。所有nfrk克隆也被归群到一个明显不同的亚族,它不能和任何己知 "irk序列的
     菌株放到一起。这些发现表明即便在一个微小的样品中nj。序列的多样性也非常高,同
     时这些新的其中有些与己知序列很不同的灯 基因族是可培养的反硝化细菌中所没有
     的。
     2、功能基因芯片(Functional gene array,FGA)
     我们用来自于纯培养和海洋沉积物克隆的亚硝酸还原酶基因(m6和 njrk)、馁单
     加氧酶基因(amoa)及甲烷单加氧酶基因(moa)这些涉及到氮循环过程的基因构建了一种
     功能基因DNA芯片。在高紧迫度(65℃)下获得了该芯片对不同基因的特异杂交。在纯培
    吩 养染色体DNA中对灯 基因的检测灵敏度大约为lug,在土壤群落DNA中对这一基因的
     检测灵敏?
Microbial diversity plays an integral and unique role in variety of ecosystem, for example, this has been proven in agricultural ecosystem by many recent research. Microorganisms play a key role in global cycle of carbon, nitrogen, sulfur, and heavy metal and so on, thus it affects the material balance, the composition of the atmosphere and geochemistry procedure in the global scale. Understanding the structure and composition of microbial communities and their responses and adaptations to environmental perturbations such as toxic contaminants, climate change, and agricultural and industrial practices is critical in maintaining or restoring desirable ecosystem functions. However, because less than 1 % of microorganisms can be cultured, characterization and detection of microbial populations in natural environments present a great challenge to microbial ecologists. Current methods for analyzing microbial communities, especially their key functions, are too cumbersome. Rapid, simple, reliable, quantitative, and cost-effective tools that can be operated in real-time and in heterogeneous field-scale environments are needed.
    Microarrays (or microchips) are a recently developed genomic technology that has been shown to be a powerful tool for studying gene expression and regulation on a genomic scale and detecting genetic polymorphisms in both eukaryotes and prokaryotes. Compared to conventional membrane-based hybridization, glass slide-based microarrays offer the additional advantages of high sensitivity, rapid detection, lower cost, automation, and low background levels. Although microchip-based genomic technology is potentially an extremely powerful tool for characterizing microbial communities and their biological functions, the concept and performance of microarray hybridization have not been rigorously tested and validated with complex environmental samples.
    A recent discovery is that some functional genes, such as nitrite reductase gene can be used as marker genes to analyze special functional group of microorganisms in replacing 16S rRNA gene. In addition, quantitative Reverse Sample Genome Probing (RSGP), which permits the identification of bacteria based on genomic DNA hybridization, has been employed in many environments to monitor bacterial population in response to environmental change.
    In this study, new denitrifiers were isolated and new nir genes were cloned from marine sediments samples to enrich the sequence information of the functional gene in denitrifying bacteria. Based on this, two kinds of microarraies: functional gene microarray (FGA) and community genomic microarray (CGA), were constructed and
    
    
    
    tested. And the application of these microarraies were explored using both surface soil and marine sediment samples. The key results obtained from this study are as bellow.
    1. Isolation of denitrifying isolates, cloning of nir genes and the diversity investigation of denitrifying bacteria in Pacific Northwest Marine Sediment communities
    30 denitrifiers were isolated from the marine sediment sample from Puget Sound and two sites of Washington margin by enriching in nutrient broth and plating on agar anaerobically under denitrifying conditions, screening using rep-PCR finger print analysis and nitrate depletion testing. 12 nirS gene and 5 nirK genes were amplified by PCR and sequenced from these isolates, some of which were new for the genebank. The phylogenetic analysis indicated that these isolates are very diverse that they are distributed to 7 genera or 9 species.
    nirK and nirS genes were cloned from the marine sediment samples from Puget Sound and two sites on the Washington continental margin by PCR approaches. nirS sequences could be amplified from samples of both sampling sites, whereas nirK sequences were detected only in samples from the Washington margin. To assess the underlying nir gene structure, PCR products of both genes were cloned and screened by restriction fragment length polymorphism (RFLP). Rarefraction analysis revealed a high level of diversity especially
引文
1. Colwell, R. R. Microbial Diversity in Time and Space. Proceedings of the International Symposium on the Microbial Diversity in Time and Space. In Tody, Japan. 1994. 1-159.
    2. Kennedy, A. C., V. L. Gewin. Soil microbial diversity: Present and future considerations. SOIL SCIENCE. 1997. 162: (9) 607-617.
    3. Schmidt, T. M., E. F. Delong, and N. R. Pace. Analysis of a marine picoplankton community using 16S rRNA gene cloning and sequencing. J. Bacteriol. 1991. 173:4371-4378.
    4. Lupwayi, N. Z., W. A. Rice, G. W. Clayton. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. SOIL BIOLOGY & BIOCHEMISTRY. 1998. 30: (13) 1733-1741.
    5. Pankhurst, C. E., K. OphelKeller, B. M. Doube, V. V. S. R. GuptaBiodiversity of soil microbial communities in agricultural systems. Biodiversity and Conservation.. 1996. 5: (2) 197-209.
    6. Kremer, R. J., A. C. Kennedy. Rhizobacteria as biocontrol agents of weeds.WEED TECHNOLOGY 1996. 10: (3) 601-609.
    7. Westover K. M., A. C. Kennedy, S. E. Kelley. Patterns of rhizosphere microbial community structure associated with co-occurring plant species. JOURNAL OF ECOLOGY 1997. 85: (6) 863-873.
    8. Ueda, T., Y. Suga, and T. Matsuguchi. Molecular phylogenetic analysis of a soil microbial community in a soybean field. Eur. J. Soil Sci. 1995. 46:415-421.
    9. Giller, K. E., M. H. Beare, P. Lavelle, A. M. N. Izac, M. J. Swift. Agricultural intensification, soil biodiversity and agroecosystem function. APPLIED SOIL ECOLOGY. 1997. 6: (1) 3-16. dvl4-3
    10. KENNEDY, A. C., K. L. SMITH. SOIL MICROBIAL DIVERSITY AND THE SUSTAINABILITY OF AGRICULTURAL SOILS. PLANT AND SOIL. 1995. 170: (1) 75-86.
    11. White, D., J. D. Crosbie, D. Atkinson, K. Killham. Effect of an Introduced Inoculum on Soil Microbial Diversity..EMS Microbiology Ecology. 1994. 14: (2) 169-178.
    12. Ward, B. B. Nitrification and Denitrification: Probing the Nitrogen Cycle in Aquatic Environments. Microbial Ecology. 1996. 32: 247-261.
    
    
    13. Kuenen, J. G. L. A. Robertson. Ecology of nitrification and denitrifixation . In: J. A. Cole, S. J. Ferguson (eds). The nitrogen and sulfur cycles. (Society for General Microbiology, Symposium 42) Cambridge University Press, Cambridge, pp 1988. 161-218.
    14. Ganeshram, R. S., T. F. Pedersen, S. E. Calvert, and J. W. Murray. Large hanges in oceanic nutrient inventories from glacial to interglacial periods. Nature 1995. 376: 755-758.
    15. Altabet M. A. and W. B. Curry. Testing models of past ocean chemistry using foraminiferal 15N/14N. Global Biogeochem. Cycles. 1989. 3,107-119.
    16. Middleburg J. J., K. Soetaert, P. M. J. Herman, and C. H. R. Heip. Denitrification in marine sediments: A model study. Global Biogeochem Cycles. 1996. 10,661-671.
    17. Ryagaard, S., N. Risgaard-Petersen, N. P. Sloth, K. Jensen, and L. P. Nielsen. Oxygen regulation of nitrification and denitrification in sediments. Limnol. Oceanogr. 1994. 39: 1643-1652.
    18. Jorgensen, B. B. Seasonal oxygen depletion in the bottom waters of a Danish fjord and its effect on the benthic community. Oikos 1980. 34: 68-76.
    19. Kemp, W. M., P. Sampoo, J. Garber, J. Tuttle, and W. R. Boy ton. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: Roles of benthic and planctonic respiration and physical exchange processes. Mar. Ecol. Prog. Ser. 1992. 85: 137-152.
    20. Tiedje, J. M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. pp. 1988. 179-244. In Zehnder, A. J. B. (ed) Biology of anaerobic microorganisms. John Wiley & Sons, New York.
    21. Koike, I., and A. Hattori. Denitrification and ammonia formation in anaerobic coastal sediments. Appl. Environ. Microbiol. 1978. 35: 278-282.
    22. Sorensen, J. Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment. Appl. Environ. Microbiol. 1978. 35: 301-305.
    23. Enoksson, V., and M. O. Samuelsson. Nitrification and dissimilatory ammonium production and their effects on nitrogen flux over the sediment-water interface in bioturbated coastal sediments. Mar. Ecol. Progr. Ser. 1987. 36: 181-189.
    24. Jahnke, R. A., S. R. Emerson, and J. W. Murray. A model of oxygen reduction, denitrification and organic matter reimneralization in marine sediments. Limnol. Oceanogr. 1982. 27: 610-623.
    25. Soetaert, K., P. M. J. Herman, and J. J. Middelburg. Dynamic response of deep-sea sediments to seasonal variations: A model. Limonol. Oceanogr. 1996. 1651-1668.
    
    
    26. Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman and V. Mayard. Early oxidation of organic matter in pelagic sediments of the equatorial Atlantic, suboxic diagenesis. Geochim. Cosmoch. Acta 1979. 43: 1075-1090.
    27. Bender M. L. The 18O2 of dissolved O2 in seawater: A unique tracer of circulation and respiration in the deep sea. J. Geophys. Res. 1990. 95,22,243-22,252.
    28. Murray, J. W., and K. M. Kuivilla. Organic matter diagenesis in the northeast Pacific, transition from aerobic red clay to suboxic hemipelagic sediments. Deep-Sea Res. 1990. 37: 59-80.
    29. Rabouille, C. and J. F. Gaillard. The validity of steady-state flux calculations in early diagenesis: A computer simulation of deep silica diagenesis. Deep-Sea Res. 1990. 37: 625-646.
    30. Brandes J. A. and A. H. Devol. Simultaneous oxygen and nitrate respiration in coastal sediments: evidence for discrete diagenesis. J. Mar. Res. 1995. 52, 771-797.
    31. Zumft, W. G. The denitrifying proka notes, p. 1992. 554-582. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer (ed.), The prokaryotes. Springer-Verlag, New York, N.Y.
    32. Tiedje, J. M. Denitrifiers. pp. 1994. 245-268. In Weaver, R. W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A. and Wollum, A. (eds) Methods of soil analysis, Part 2: Microbiological and biochemical properties. Soil Science of America, Inc., Madison, WI.
    33. Coyne, M. S., Arunakumari, A., Averill, B. A. and Tiedje, J. M. Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria. Appl. Environ. Microbiol. 1989. 55: 2924-2931.
    34. Ye, R. W., M. R. Fries, S. G. Bezborodnikov, B. A. Averill, and J. M. Tiedje. Characterization of the structural gene encoding a copper-containing nitrite reductase and homology of this gene to DNA of other denitrifiers. Appl. Environ. Microbiol. 1993. 59:250-254.
    35. Smith, G. B., and J. M. Tiedje. Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl. Environ. Microbiol. 1992. 58:376-384.
    36. Bracker, G. and K. P. Witzel. 1997. Applification of nir-fragment from pure cultures of denitrifying bacteria. VAAM meeting, Harburg, March, 1997, Abstract pu 181 and personnel communication.
    
    
    37. Fries, M. R., J.-Z. Zhou, J. C. Chee-Sanford, and J. M. Tiedje. Isolation, characterization and distribution of denitrifying toluene degraders from a variety of habitats. Appl. Environ. Microbiol. 1994. 60:2802-2810.
    38. Devol A. H. and J. P. Christensen. Benthic fluxes and nitrogen cycling in sediments of the continental margin of the eastern North Pacific. J. Mar. Res. 1993. 51, 345-372.
    39. Voytek, M. A. and B. B. Ward. Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl. Environ. Microbiol. 1995. 61: 1444-1450.
    40. Hovanec, T. A., and E. F. DeLong. Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria. Appl. Environ. Microbiol. 1996. 62:2888-2896.
    41. Mobarry, B., M. Wagner, V. Urbain, B. E. Rittmann, and D. A. Stahl. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 1996. 62:2156-2162.
    42. Hiorns, W. D., R. C. Hastings, I. M. Head, G. R. Hall, A. J. McCarthy, J. R. Saunders, and R. W. Pickup. Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment. Microbiology 1995. 141: 2793-2800.
    43. Bruns, M. A. 1996. Nucleic acid anlaysis of autotrophic ammonia-oxidizing bacteria in soils. Ph.D dissertation, Michigan State University, East Lasing, MI.
    44. McCaig, A. E., T. M. Embley, and J. I. Prosser. Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol Lett 1994. 120: 363-367.
    45. Sinigalliano, C. D., D. N. Kuhn, and R. Jones. Amplification of the amoA gene from diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater. Appl. Environ. Microbiol. 1995. 61: 2702-2706.
    46. Kowalchuk, G. A., J. R. Stephen, W. de Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp. Analysis of ammonia-oxidizing bacteria of the P subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 1997. 63:1489-1497.
    47. Phillips, C. J., D. Harris, S. L. Seston, K. L. Gross, and E. A. Paul. 1997. Effect of agronomic treatments on the community structure and function of ammonia-oxidizing bacteria. In Abstracts of 97th General Meeting of the American Society for Microbiology, Miami, FL.
    
    
    48. Amann, R. I., W. Ludwig, and K.-H. Schleifer. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995. 59:143-169.
    49. Atlas, R. M. Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol. Rev. 71981. : 285-292.
    50. Holben, W. E., J. K. Jansson, B. K. Chelm, and J. M. Tiedje. DNA probe method for the detection of specific microorganisms in the soil bacteria community. Appl. Environ. Microbiol. 1988. 54:703-711.
    51. Raskin, L., L. K. Poulsen, D. R. Noguera, B. E. Rittmannn, and D. A. Stahl. Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 1994a. 60:1241-1248.
    52. Raskin, L., J. M. Stromley, B. E. Rittmann, and D. A. Stahl. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 1994b. 60:1232-1240.
    53. Stahl, D. A., B. Flesher, H. R. Mansfield, and L. Montgomery. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 1988. 54:1079-1084.
    54. DeLong, E. F., G. S. Wickham, and N. R. Pace. Phylogenetic strains: ribosomal RNA based probes for the identification of single cells. Science 1989. 243:1360-1363.
    55. Massol-Deya, A., R. Weller, L. Rios-Hernandez, J.-Z. Zhou, R.F. Hickey, and J.M. Tiedje. Succession and convergence of biofilm communities in fixed-film reactors treating aromatic hydrocarbons in groundwater. Appl. Environ. Microbiol. 1997. 63:270-276.
    56. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993. 59: 695-700.
    57. Felske, A., A. Wolterink, R. van Lis, W. M. de Vos, and A. D. L. Akkermans. Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol. Ecol. 1999. 30:137-145.
    58. Barns, S. M., S. L. Takala, and C. R. Kuske. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl. Environ. Microbiol. 1999. 65:1731-1737.
    
    
    59. Bintrim, S. B., T. J. Donohue, J. Handelsman, G. P. Roberts, and R. M. Goodman. Molecular phylogeny of Archaea from soil. Proc. Natl. Acad. Sci. USA 1997. 94:277-282.
    60. Borneman, J., P. W. Skroch, K. M. O'Sullivan, J. A. Palus, N. G. Rumjanek, J. L. Jansen, J. Nienhuis, and E. W. Triplett. Molecular microbial diversity of an agricultural soil in Wisconsin. Appl. Environ. Microbiol. 1996. 62:1935-1943.
    61. Borneman, J., and E. W. Triplett. Molecular microbial diversity in soils from Eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl. Environ. Microbiol. 1997, 63:2647-2653.
    62. DeLong, E. F. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 1992. 89:5685-5689.
    63. DeLong, E. F. Archaeal means and extremes. Science 1998. 280:542-543.
    64. DeLong, E. F., K. Y. Wu, B. B. Prezelin, and R. V. Jovine. High abundance of Archaea in Antarctic marine picoplankton. Nature 1994. 371:695-697.
    65. Dojka, M. A., P. Hugenholtz, S. K. Haack, and N. R. Pace. Microbial diversity in a hydrocarbon-and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 1998. 64:3869-3877.
    66. Felske, A., A. Wolterink, R. van Lis, and A. D. L. Akkermans. Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl. Environ. Microbiol. 1998. 64:871-879.
    67. Fuhrman, J. A., K. McCallum, and A. A. Davis. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans. Appl. Environ. Microbiol. 1993. 59:1294-1302.
    68. Hugenholtz, P., B. M. Goebel, and N. R. Pace. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 1998. 180:4765-4774.
    69. Liesack, W., and E. Stackebrandt. Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol. 1992. 174:5072-5078.
    70. Ludwig, W., S. H. Bauer, M. Bauer, I. Held, G. Kirchhof, R. Schulze, I. Huber, S. Spring, A. Hartmann, and K.-H. Schleifer. Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol. Lett. 1997. 153:181-190.
    71. Nusslein, K., and J. M. Tiedje. Characterization of the dominant and rare members of a young Hawaiian soil bacterial community with small-subunit ribosomal DNA
    
    amplified from DNA fractionated on the basis of its guanine and cytosine composition. Appl. Environ. Microbiol. 1998. 64:1283-1289.
    72. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 21997. 76:734-740.
    73. Stackebrandt, E., W. Liesack, and B. M. Goebel. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J. 1993. 7:232-236.
    74. Ueda, T., Y. Suga, N. Yahiro, and T. Matsuguchi. Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J. Bacteriol. 1995. 177:1414-1417.
    75. Wise, M. G., J. Vaun McArthur, and L. J. Shimkets. Bacterial diversity of a Carolina bay as determined by 16S rRNA gene analysis: confirmation of novel taxa. Appl. Environ. Microbiol. 1997. 63:1505-1514.
    76. Zhou, J., M. E. Davey, J. B. Figueras, E. Rivkina, D. Gilichinsky, and J. M. Tiedje. Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology. 1997. 143:3913-3919.
    77. Zhou, J.-Z, M. E. Davey, J. B. Figueras, E. Rivkina, D. Glichinsky, and J. M. Tiedje. Phylogenetic diversity of the bacterial community from a tundra soil sample. Microbiol. 1997a. 143:3913-3919.
    78. Lin, C., and D. A. Stahl. Taxon-specific probes for the cellulolytic genus Fibrobacter reveal abundant and novel equine-associated populations. Appl. Environ. Microbiol. 1995. 61:1348-1351.
    79. Odenyo, A. A., R. I. Mackie, D. A. Stahl, and B. A. White. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Appl. Environ. Microbiol. 1994. 60:3688-3696.
    80. Raskin, L., W. C. Capman, M. D. Kane, B. E. Rittmann, and D. A. Stahl. Critical evaluation of membrane supports for use in quantitative hybridizations. Appl. Environ. Microbiol. 1996. 62: 300-303.
    81. Siebert, P. D., and J. W. Larrick. Competitive PCR. Nature 1992. 359: 557-558.
    82. Gilliland, G., S. Perrin, K. Blanchard, and H. F. Bunn. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA 1990. 87:2725-2729.
    
    
    83. Ferre, F., P. Pezzoli, and E. Buxton. Quantitation of RNA transcripts using RT-PCR. p. 1996. 175-190. In P. A. Krieg, A Laboratory guide to RNA: Isolation, analysis and synthesis. Wiley-Liss, Inc., New York.
    84. Piatak, M. Jr., J. Jr. Wages, K.-C. Luk, and J. D. Lifson. Quantification of RNA by competitive RT PCR: theoretical considerations and practical advice, p. 1996. 191-222. In P. A. Krieg, A Laboratory guide to RNA: Isolation, analysis and synthesis. Wiley-Liss, Inc., New York.
    85. Lee, S.-Y., J. Bellinger, D. Bezdicek, and A. Ogram. Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Appl. Environ. Microbiol. 1996. 62: 3787-3793.
    86. Leser, T. D., M. Boye, and N. B. Hendriksen. Survival and activity of Pseudomonas sp. strain B13 (FR1) in a marine microcosm determined by quantitative PCR and an rRNA-targeting probe and its effect on the indigenous bacterioplankton. Appl. Environ. Microbiol. 1995. 61: 1201-1207.
    87. Criddle, C., J. Tiedje. J.-Z. Zhou, et al. 1997. The Schoolcraft field bioaugmentation experiment: evaluation of in-situ bioaugmentation to remediate an aquifer contaminated with carbon tetrachloride. Technical report No. 4. for the state of Michigan Department of Environmental Quality.
    88. Qiu, X.-Y., L.-Y. Wu, H. Huang, P. E. McDonel, A. V. Palumbo, J. M. Tiedje, and J.-Z. Zhou. 2000. An improved 16S rRNA-based cloning approach for reducing PCR-generated artifacts. Abstract submitted to The 100th General Meeting of the American Society for Microbiology, Los Angeles, CA.
    89. Tang. K., N. I. Taranenko, S. L. Allman, L. Y. Chang, and C. H. Chen. Detection of 500-nucleotide DNA by laser desorption mass spectrometry. Rapid communications in mass spectrometry 1994. 8:727-730.
    90. DeRisi, J. L., V. R. Iyer, and P. O. Brown. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997. 278:680-686.
    91. Marshall, A., and J. Hodgson. DNA chips: an array of possibilities. Nature Biotech. 1998. 16:27-31.
    92. Schena, M., D. Shalon, R. W. Davis, and P. O. Brown. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995. 270:467-470.
    93. Chee, M., R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Winkler, D. J. Lockhart, M. S. Morris, and S. P. A. Fodor. Accessing genetic information with high-density DNA arrays. Science 1996. 274:610-614.
    
    
    94. Lipshutz, R. J., S. P. A. Fodor, T. R. Gingeras, and D. J. Lockhart. High density synthetic oligonucleotide arrays. Nature Genet. 1999. 21:20-24.
    95. Pease, A. C, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. R. A. Fodor. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 1994. 91:5022-5026.
    96. Southern, E. M., S. C. Case-Green, J. K. Elder, M. Johnson, K. U. Mir, L. Wang, and J. C. Williams. Arrays of complementary oligonucleotides for analyzing the hybridisation behaviour of nucleic acids. Nucleic Acids Res. 1994. 22:1368-1373.
    97. Beattie, W. G., L. Meng, S. L. Turner, R. S. Varma, D. D Dao, and K. L. Beattie. Hybridization of DNA targets to glass-tethered oligonucleotide probes. Mol. Biotech. 1995a. 4:213-225.
    98. Beattie, K. L. Analytical microsystems: emerging technologies for environmental biomonitoring. In: Biotechnology in the Sustainable Environment. (Ed.) Sayler et al. Plenum Press. New York. 1997. p249-260.
    99. Doktycz, M.J., and K. L. Beattie. Genosensors and model hybridization studies. In Automation technologies for genome characterization, edited by Tony J. Beugelsdijk. John Wiley & Sons, Inc. 1997. pp205-225.
    100. Wallraff, G., J. Labadie, P. Brock, R. Dipietro, T. Nguyen, T. Huynh, et al. DNA sequencing on a chip. Chemtech February, 1997. pp. 22-32.
    101. Fotin, A. V., A. L. Drobyshev, D. Y. Proudnikov, A. N. Perov, and A. D. Mirzabekov. Parallel thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips. Nucleic Acid Res. 1998. 26:1515-1521.
    102. Guschin, D. Y., B. K. Mobarry, D. Proudnikov, D. A. Stahl, B. E. Rittmann, and A. D. Mirzabekov. Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl. Environ. Microbiol. 1997. 63:2397-2402.
    103. Guschin, D., G. Yershov, A. Zaslavsky, A. Gemmell, V. Schick, D. Proudnikov, P. Arenkov, and A. Mirzabekov. Manual manufacturing of oligonucleotide, DNA, and protein microchips. Anal. Biochem. 1997b. 250:203-211.
    104. Rehman, F. N., M. Audeh, E. S. Abrams, P. W. Hammond, M. Keeney, and T. C. Boles. Immobilization of acrylamide-modified oligonucleotides by co-polymerization. Nucleic Acids Res. 1999. 27:649-655.
    105. Beattie, K. L., M. D. Eggers, J. M. Shumaker, M. E. Hogan, R. S. Varma, J. B. Lamture, M. A. Hollis, D. J. Ehrlich, D. Rathman. Genosensor technology. Clin. Chem. 1992. 39:719-722.
    
    
    106. Beattie, K., W. Seattle, L. Meng, S. Turner, C. Bishop. Advances in genosensor research. Clin. Chem. 1995b. 41:700-706.
    107. Eggers, M. D., M. E. Hogan, R. K. Reich, J. B. Lamture, K. L. Beattie, M. A. Hollis, D. J. Ehrlich, B. B. Kosicki, J. M. Shumaker, R. S. Varma, B. E. Burke, A. Murphy, D. Rathman. 1992. Genosensors: Microfabricated devices for automated DNA sequence analysis. In Advances in DNA sequencing technology, R. Keller, ed. SPIE Proceedings, Los Angeles, 1891-2004.
    108. Eggers, M., M. Hogan, R. K. Reich, et al. A microchip for quantitative detection of molecular utilizing luminescent and radioisotope reporter groups. Biotechniq. 1994. 17:516-525.
    109. Khrapko, K. R., Y. P. Lysov, A. A. Khorlyn, V. V. Shick, V.L. Florentiev, and A. D. Mirzabekov. An oligonucleotide hybridization approach to DNA sequencing. FEBS Lett. 1989. 256:118-122.
    110. Khrapko, K. R., Y. P. Lysov, A. A. Khorlyn, I. B. Ivanov, G. M. Yershov, S. K. Vasilenko, V.L. Florentiev, and A. D. Mirzabekov. A method for DNA sequencing by hybridization with oligonucleotide matrix. DNA Seq. 1991. 1:375-388.
    111. Lamture, J. B., K. L. Beattie, B. E. Burke, M. D. Eggers, D. J. Ehrlich, R. Fowler, M. A. Hollis, B. B. Kosicki, R. K. Reich, S. R. Smith, R. S. Varma, M. E. Hogan. Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Res. 1994. 22:2121-2125.
    112. Rogers, Y.-H., P. Jiang-Baucom, Z.-J. Huang, V. Bogdanov, S. Anderson, and M. T. Boyce-Jacino. Immobilization of oligonucleotides onto a glass support via disulflde bonds: A method for preparation of DNA microarrays. Anal. Biochem. 1999. 266:23-30.
    113. DeRisi, J., L. Penland, P. O. Brown, M. L. Bittner, P. S. Meltzer, M. Ray, Y. Chen, Y. A. Su, and J. M. Trent. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 1996. 14:457-460.
    114. Drmanac, S., N. A. Stavropulos, I. Labat, J. Vonau, B. Hauser, M. B. Soares, and R. Drmanac. Gene-representing cDNA clusters defined by hybridization of 57,419 clones from infant brain libraries with short oligonucleotide probes. Genomics 1996. 37:29-40.
    115. Heller, H. M., M. Schena, A. Chai, D. Shalon, T. Bedilion, J. Gilmore, et al. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc. Natl. Acad. Sci. USA. 1997. 94:2150-2155.
    
    
    116. Lashkari, D. A., J. L. DeRisi, J. H. McCusker, A. F. Namath, C. Genetile, S. Y. Hwang, P. O. Brown, and R. W. Davis. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl. Acad. Sci. USA 1997. 94:13057-13062.
    117. Lockhart, D. J., H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee, M. Mittmann, C. Wang, M. Kobayashi, H. Horton, and E. L. Brown. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotech. 1996. 14:1675-1680.
    118. Schena, M., D. Shalon, R. Heller, A. Chai, P. O. Brown, and R. W. Davis. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 1996. 93:10614-10619.
    119. Shalon, D., S. J. Smith, and P. O. Brown. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 1996. 6:639-645.
    120. Wodicka, L., H. Dong, M. Mittmann, M.-H. Ho, and D. J. Lockhart. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotech. 1997. 15:1359-1367.
    121. Zhang, L., W. Zhou, V. E. Velculescu, S. E. Kern, R. H. Hruban, S. R. Hamilton, B. Vogelstein, and K. W. Kinzler. Gene expression profiles in normal and cancer cells. Science 1997. 276:1268-1272.
    122. de Saizieu, A., U. Certa, J. Warrington, C. Gray, W. Keck, and J. Mous. Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays. Nat. Biotech. 1998. 16:45-48.
    123. Milosavljevic, A., S. Savkovic, R. Crkvenjakov, D. Salbego, H. Serrato, H. Kreuzer, A. Gemmell, S. Batus, D. Grujic, S. Carnahan, T. Paunesku, and J. Tepavcevic. DNA sequence recognition by hybridization to short oligomers: experimental verification of the method on the E. coll genome. Genomics 1996. 37:77-86.
    124. Richmond, C. S., J. D. Glasner, R. Mau, H. Jin, and F. R. Blattner. Genome-wide expression profiling in Escherichia coll K-12. Nucl. Acids Res. 1999. 27:3821-3835.
    125. Ramsay, G. DNA chips: state-of-the art. Nat. Biotech. 1998. 16:40-44.
    126. Hoheisel, J. D. Oligomer-chip technology. Tibtech. 1997. 15:465-469.
    127. Drobyshev, A., N. Mologina, V. Shik, D. Pobedimskaya, G. Yershov, and A. Mirzabekov. Sequence analysis by hybridization with oligonucleotide microchip: identification of β-thalassemia mutations. Gene 1997. 188:45-52.
    
    
    128. Saizieu, A. de., U. Certa, J. Warrington, C. Gray, W. Keck, and J. Mous. Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays. Nature Biotechnol. 1998. 16:45-48.
    129. Wilson, M., et al. Exploring drug-induced alteration in gene expression in Mycobacterium, tuberculosis by microarray hybridization. Unpublished.1999.
    130. Seitzinger, S. P. Denitrification in aquatic sediments, 1990. p. 301-322. In N. P. Revsbech, and J. Serensen (ed.), Denitrification in soil and sediment. Plenum Press, New York, N.Y.
    131. Codispoti, L. A. Is the ocean losing nitrate? Nature 1995. 376:724.
    132. Zhou, J.-Z., M. A. Bruns, and J. M. Tiedje. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 1996. 62:316-322.
    133. Devol, A. H. Direct measurements of nitrogen gas fluxes from continental sediments. Nature 1991. 349:319-321.
    134. Conrad, R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev.1996. 60:609-640
    135. Gray, J. P., and R. P. Herwig. Phylogenetic analysis of the bacterial communities in marine sediments. Appl. Environ. Microbiol. 1996. 62:4049-4059.
    136. Pichard, S. L., L. Campbell, and J. H. Paul. Diversity of the ribulose bisphosphate carboxylase/oxygenase form I gene (rbcL) in natural phytoplankton communities. Appl. Environ. Microbiol. 1997. 63:3600-3606.
    137. Rademaker, J. L. W., and F. J. de Bruijn. Characterization and classification of microbes by REP-PCR genomic fingerprinting and computer-assisted pattern analysis, 1997. p. 151-171. In G. Caetano-Anolles, and P. M.
    138. Rotthauwe, J.-H., K.-P. Witzel, and W. Liesack. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997. 63:4704-4712.
    139. Braker, G., A. Fesefeldt, and K.-P. Witzel. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 1998. 64:3769-3775.
    140. Hallin, S., and P.-E. Lindgren. PCR detection of genes encoding nitrite reductases in denitrifying bacteria. Appl. Environ. Microbiol. 1999. 65:1652-1657.
    141. Scala, D. J., and L. J. Kerkhof. Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol. Lett. 1998. 162:61-68.
    
    
    142. Scala, D. J., and L. J. Kerkhof. Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments. Appl. Environ. Microbiol. 1999. 65:1681-1687
    143. Mellies, J., J. Jose, and T. F. Meyer. The Neisseria gonorrhoeae gene aniA encodes an inducible nitrite reductase. Mol. Gen. Genet. 1997. 256:525-532.
    144. Greshoff (ed.), DNA markers: protocols, applications and overviews. J. Wiley & Sons, Inc., New York, N.Y.
    145. Zhou, J. Z., A. V. Palumbo, and J. M. Tiedje. Sensitive detection of a novel class of toluene-degrading denitrifiers, Azoarcus tolulyticus using SSU rRNA primers and probes. Appl. Environ. Microbiol. 1997b. 63:2384-2390.
    146. Genetics Computer Group. GCG program manual. Genetics Computer Group, Madison, Wis. 1994.
    147. Ausubel, F. M., R. Brent, E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.).Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y. 1991.
    148. Van Elsas, J. D., and K. Smalla. Extraction of microbial community DNA from soils, p. 1-11. In A. D. L. Akkermans, J. D. van Elsas, and F. J. de Bruijn (ed.), Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, The Netherlands. 1995.
    149. Zhou, J.-Z., M. E. Davey, J. B. Figueras, E. Rivkina, D. Glichinsky, and J. M. Tiedje. Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiol. 1997. 143:3913-3919.
    150. Satoh, T., Y. Hoshino, and H. Kitamura. Rhodopseudomonas sphaeroides forma sp. denitrificans, a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides. Arch. Microbiol. 1976. 108:265-269.
    151. Southern, E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 1975. 98:503-517.
    152. Felsenstein, J. Phytogenies from molecular sequences: inference and reliability. Annu. Rev. Genet. 1988. 22:521-565.
    153. Moyer, C. L., J. M. Tiedje, F. C. Dobbs, and D. M. Karl. Diversity of deep-sea hydrothermal vent Archaea from Loihi Seamount, Hawaii. Deep-Sea Res. 1998. 45:303-317.
    154. Berks, B. C., J. W. B. Moir, and D. J. Richardson. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta 1995. 1232:97-173.
    
    
    155. Silvestrini, M. C., S. Falcinelli, I. Ciabatti, F. Cutruzzola, and M. Brunori. Pseudomonas aeruginosa nitrite reductase (or cytochrome oxidase): an overview. Biochimie 1994. 76:641-654.
    156. Suzuki, M. T., and S. J. Giovannoni. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 1996. 62:624-630.
    157. Hedges, J. I., F. S. Hu, A. H. Devol, H. E. Hartnett, E. Tsamakis, and R. G. Keil. Sedimentary organic matter preservation: a test for selective degradation under oxic conditions. Am. J. Sci., in press. Lyman, J., and R. H. Fleming. Composition of sea water. J. Mar. Res. 1940. 3:134-167.
    158. Carpenter, R., M. L. Peterson, and J. T. Bennett. 210Pb-derived sediment accumulation and mixing rates for the Washington continental slope. Mar. Chem. 1982. 48:135-164.
    159. Curtis, P. S., D. R. Zak, K. S. Pregitzer, and J. A. Teeri. Above-and belowground response of Populus grandidentata to elevated atmospheric CO2 and soil N availability. Plant Soil 1994. 165:45-51.
    160. Gibson, D. T., and G. S. Sayler. Scientific foundations of bioremediation: current status and future needs. American Academy of Microbiology, Washington, D. C. 1992.
    161. National Research Council (NRC). In situ bioremediation: when does it work? National Academy Press, Washington, D. C. 1993.
    162. Brocklehurst, K. R., and A. P. Morby. Metal-ion tolerance in Escherichia coli: analysis of transcriptional profiles by gene-array technology. Microbiol. 2000. 146:2277-2282.
    163. Ferea, T. L., D. Botstein, P. O. Brown, and R. F. Rosenzweig. Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc. Natl. Acad. Sci. USA 1999. 96:9721-9726.
    164. Futcher, B. Microarrays and cell cycle transcription in yeast. Curr. Opin. Cell. Biol. 2000. 12:710-715.
    165. Gasch, A. P., P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D. Botstein, and P. O. Brown. Genomic expression programs in the response of yeast cells to environmental changes. Mol.Biol.Cell.2000. 11:4241-4257.
    166. Khodursky, A. B., B. J. Peter, N. R. Cozzarelli, D. Botstein, P. O. Brown, and C. Yanofsky. DNA microarray analysis of gene expression in response to physiological
    
    and genetic changes that affect tryptophan metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 2000. 97:12170-12175.
    167. Lyons, T. J., A. P. Gasch, L. A. Gaither, D. Botstein, P. O. Brown, and D. J. Eide. Genome-wide characterization of the Zaplp zinc-responsive regulon in yeast. Proc. Natl. Acad. Sci. USA 2000. 97:7957-7962.
    168. Peterson, S., R. T. Cline, H. Tettelin, V. Sharov, and D. A. Morrison. Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J. Bacteriol. 2000. 182:6192-6202.
    169. Selinger D. W., K. J. Cheung, R. Mei, E. M. Johansson, C. S. Richmond, F. R. Blattner, D. J. Lockhart, and G. M. Church. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat. Biotech. 2000. 18:1262-1268.
    170. Sudarsanam, P., V. R. Iyer, P. O. Brown, and F. Winston. Whole-genome expression analysis of snflswi mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2000. 97:3364-3369.
    171. Wei Y., J. M. Lee, C. Richmond, F. R. Blattner, J. A. Rafalski, and R. A. LaRossa. High-density microarray-mediated gene expression profiling of Escherichia coli. J. Bacteriol. 2001. 183:545-556.
    172. White, K. P., S. A. Rifkin, P. Hurban, and D. S. Hogness. Microarray analysis of Drosophila development during metamorphosis. Science 1999. 286:2179-2184.
    173. Ye, R. W., W. Tao, L. Bedzyk, T. Young, M. Chen, and L. Li. Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J. Bacteriol. 2000. 182:4458-4465.
    174. Hacia, J. G. Resequencing and mutational analysis using oligonucleotide microarrays. Nat. Genet. 1999. 21:42-47.
    175. Wang, D. G., J. B. Fan, C. J. Siao, A. Berno, P. Young, R. Sapolsky, G. Ghandour, N. Perkins, E. Winchester, J. Spencer, L. Kruglyak, L. Stein, L. Hsie, T. Topaloglou, E. Hubbell, E. Robinson, M. Mittmann, M. S. Morris, N. Shen, D. Kilburn, J. Rioux, C. Nusbaum, S. Rozen, T. J. Hudson, R. Lipshutz, M. Chee, and E. S. Lander. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998. 280:1077-1082.
    176. Nold, S. C., J. Zhou, A. H. Devol, and J. M. Tiedje. Marine sediment nitrifying communities of the Pacific Northwest contain β-proteobacteria. Appl. Environ. Microbiol. 2000. 66:4532-4535.
    
    
    177. Holmes, A. J., A. Costello, M. E. Lidstrom, and J. C. Murrell. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 1995. 132:203-208.
    178. Zhou, J.-Z., M. R. Fries, J. C. Chee-Sanford, and J. M. Tiedje. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth on toluene: Description of Azoarcus tolulyticus sp. nov. Int. J. Syst. Bacterol. 1995. 45:500-506
    179. D'Aquila, R. T., L. J. Bechtel, J. A. Videler, J. J. Eron, P. Gorczyca, and J. C. Kaplan. Maximizing sensitivity and specificity of PCR by preamplification heating. Nucl. Acids Res. 1991. 19:3749.
    180. Voordouw, G., J. K. Voordouw, R. R. Karkhoff-Schweizer, P. M. Fedorak, and D. W. S. Westlake. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Appl. Environ. Microbiol. 1991. 57:3070-3078.
    181. Voordouw, G., J. K. Voordouw, T. R. Jack, J. Foght, P. M. Fedorak, and D. W. S. Westlake. Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome probing. Appl. Environ. Microbiol. 1992. 58:3542-3552.
    182. Voordouw, G., Y. Shen, C. S. Harrington, A. J. Telang, T. R. Jack, and D. W. S. Westlake. Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters. Appl. Environ. Microbiol. 1993. 59:4101-4114.
    183. Shen, Y., L. G. Stehmeier, and G. Voordouw. Identification of hydrocarbon-degrading bacteria in soil by reverse sample genome probing. Appl. Environ. Microbiol. 61998. 4:637-645.
    184. Bagwell, C. E., and C. R. Lovell. Persistence of selected Spartina alterniflora rhizoplane diazotrophs exposed to natural and manipulated environmental variability. Appl. Environ. Microbiol. 2000. 66:4625-4633.
    185. Rossello, R., E. Garcia-Valdes, J. Lalucat, and J. Ursing. Genotypic and phenotypic diversity of Pseudomonas stutzeri. System. Appl. Microbiol. 1991. 14:150-157.
    186. Song, B., M. M. Haggblom, J. Z. Zhou, J. M. Tiedje, and N. J. Palleroni. Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp nov and Azoarcus toluclasticus sp nov. Int. J. Syst. Bacteriol. 1999. 49:1129-1140.
    
    
    187. Venkateswaran, K., D. P. Moser, M. E. Dollhopf, D. P. Lies, D. A. Saffarini, B. J. MacGregor, D. B. Ringelberg, D. C. White, M. Nishijima, H. Sano, J. Burghardt, E. Stackebrandt, and K. H. Nealson. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Bacteriol. 1999. 49:705-724.
    188. Braker, G., J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl. Environ. Microbiol. 2000. 66:2096-2104.
    189. Gross, C., M. Kelleher, V. R. Iyer, P. O. Brown, and D. R. Winge. Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J. Biol. Chem. 2000. 275:32310-32316.
    190. Codispoti L. A. Phosphorus vs Nitrogen limitation of new and export production. In Production of the oceans: Present and past. (ed. W. H. Berger, V. S. Smetacek, and G. Wefer.), 1989. pp. 377-394. Wiley and Sons.
    191. Schena, M., R. A. Heller, T. P. Theriault, K. Konrad, E. Lachenmeier, and R. W. Davis. Microarrays: biotechnology's discovery platform for functional genomics. TIBTECH 1998. 16:301-306.
    192. Ryagaard, S., N. Risgaard-Petersen, N. P. Sloth. Nitrification, denitrification, and nitrate ammonification in sediments of two coastal lagoons in Southern France. Hydrobiologia 1996. 329: 133-141.
    193. Smith, D. R., et al. Complete genome sequence of Methanobacterium thermoautotrophicum DH: functional analysis and comparative genomics. J. Bacteriol.. 1997. 179:7135-7155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700