用户名: 密码: 验证码:
烟草花叶病毒弱毒疫苗的研制及其分子生物学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草花叶病毒(Tobacco mosaic virus,TMV)是烟草花叶病毒属
    (Tobamovirus)的代表种,给许多种植物造成严重损失。福建农林大学植物病
    毒研究所对福建烟草病毒种群和田间发生频率的调查研究表明,TMV在福
    建几个主要烟区占有很高的比例,其中以TMV普通株系为优势株系。利用
    病毒的弱毒株的交互保护作用是防治病毒病较为理想的手段之一。为此本文
    对TMV弱毒株的获得方法、生物学特性、分子生物学方面进行了较系统的
    研究。
     从福建烟区分离、纯化、鉴定到TMV普通株系。通过高温处理、亚硝
    酸诱变及两者的复合处理对强毒株TMV-W进行诱变,筛选获得了两个弱毒
    株,记为TMV-017(高温处理)、TMV-152(复合处理)。应用正交设计法考察
    病毒接种浓度、接种间隔时间、接种部位以及普通烟生育期等因素对弱毒株
    交互保护作用的影响,结果表明烟苗生育期和接种间隔时间两个因素影响最
    大。弱毒株接种12d后才有较好的保护作用。浸根法可适用于弱毒株的大量
    接种。
     考察了弱毒株本身对烟草植株的影响。在普通烟上分别接种TMV-W、
    TMV-017、TMV-152,考察3者在接种叶上的病毒的增殖情况以及叶绿素a、
    叶绿素b、叶绿素、可溶性蛋白含量的变化。结果表明弱毒株的增殖速率、
    在烟草植株体内的稳定浓度低于强毒株。分别受强、弱毒株侵染的烟草叶片
    中的叶绿素a、叶绿素b、叶绿素含量均有所下降,但强毒株引起的下降幅
    度最大。可溶性蛋白含量变化幅度不太明显。
     观察了分别受TMV-W、TMV-017侵染的烟叶细胞病理的变化。健康烟
    叶的叶绿体具双层膜,基粒片层紧密整齐,内含大量淀粉粒。受TMV-017
    侵染的烟草细胞中,叶绿体数量较少,叶绿体具双层膜结构,基粒片层排列
    整齐,有的叶绿体膨大,内含少量小的淀粉粒。叶绿体周围经常出现4-6个
    线粒体。细胞质中出现结晶状内含体,经常存在于叶绿体周围。受TMV-W
    浸染的烟草细胞中,有的叶绿体破裂,基粒松散。细胞质中的线粒体增多,
    增大,有的形状不规则。细胞质中也出现晶体状内含体,分布在叶绿体周围。
     测定了TMV-W、TMV-017、TMV-152的基因组cDNA全序列(GenBank
    
    
     福建农林大学博士学位论文 *
     接收号分别为:AF395127、AF395128、AF395129X 结果表明,强、弱毒株
     基因组均为 6395个核昔酸,具有 4个开放阅读框(ORF),分别编码 126kDa
     蛋白(69-3419nt,ill6ed和183kDa 通读蛋白(69-4919nt,1616eq、运动蛋白
     (4903-5709m,268盼)、外壳蛋白(5712-619Im,159eq。5’端非编码区爬)
     为68nt*,通读蛋白和运动蛋白基因有17个碱基重叠,运动蛋白和外
     壳蛋白基因间隔区为Znt(5710-57lint),3’端NR区为204nt(6192-6395nt)。
     TMV-W和TMV-UI相比,基因组同源率达到98%,TMV.W为普通株系。
     TMV,of 7、TMV.152基因组核苦酸发生变异的部位主要在126/183kDa蛋白
     ORF。和 TMV.W相比,TMV.of 7仅在 126kDa蛋白 ORF中有 18个碱基发
     生变异,m个引起氨基酸的变异;而TMVJ 在126门83kD蛋白OM中
     有 16个碱基发生变异,其中有 11个引起氨基酸的变异。TMV.of 7和 TMV.
     152有 11个共同变异的碱基,其中 8个引起氨基酸的变异。TMV-152在 MP
     Ony中有1个碱基引起氨基酸的变异。其它区域,三者完全相同。
     首次尝试将弱毒株的缺失复制酶基因转化烟草。构建了含TMV.W、
     TMV-of 7各2个126kDa 蛋白O肚的部分片段,EIEZ(873-2813nt)、
     RI EZ的928 3nt)的植物表达载体。经农杆菌 Ti质粒介导转化烟草。再生植
     株总DNA的Southern点杂交检测结果初步表明,一个片段均己整合到烟草
     基因组中。再生植株总RNA的RT-PCR Southern点杂交检测结果初步表明,
     4个片段均有转录。用含TMV-W EIEZ的重组克隆和载体pGEX上,构建
     了重组原核表达载体,诱导表达出融合蛋白O4kDal,制备了抗血清。免疫
     斑点杂交检测抗血清的适宜工作浓度为 1:100。转化植株能延迟、减轻攻
     击病毒oMV-W)的症状表现,含 TMV-W EI EZ片段的转化植株中有 1株抗
     性水平高。
Tobacco mosaic virus(TMV), a type member of Tobamovirus, has caused great losses to many plants yields. The previous studies on the population and occurrence frequency of tobacco virus disease in Fujian in our institute(Institute of Plant Virology, Fujian Agriculture and Forestry University) suggested that the ratio of TMV was high in a few main tobacco fields and TMV common strain was dominant strain. Using the cross-protection of attenuated strain to protect plant from infecting by virulent strain of the same virus was proved one of ideal means. On the basis of these results, we studied the methods of obtaining the mild strains of TMV as well as their biology and molecular biology features.
    
     TMV commom strain was isolated from Fujian tobacco region, then purified and identified. Two symptomless TMV mutants named TMV-O 17 and TMV- 152 respectively were obtained by treatment of heating, heating and nitrous acid combination. The effects on the effectiveness of TMV mild strain cross-protection, of the inoculation concentration of mild and virulent strains, inoculation interval time between mild and virulent strains, the inoculation position of the virulent strain and the age of tobacco, were observed by orthogonal designing. The inoculation interval time and the age of tobacco were the two most important factors. The cross-protection of mild strains were obvious when inoculation interval time between two strains over 12 days. The root soak was a method to mass inoculation of mild strains.
    
     We examined the effects of mild strains of TMV on the tobacco plants. The rate of virus multiplication, the conents of chlorophyll a, chlorophyll b, total chlorophyll and soluble protein were detected, in the inoculated leaves of the tobacco plants infected by virulent and two mild strains of TMV respectively. The rates of replication and the steady concentrations of the two mild strains were less than those of the virulent strain. The contents of chlorophyll a, chlorophyll b, total chlorophyll all decreased in the leaves infected by the virulent and two mild strains respectively, but those of the virulent strain declined the most. The
    
    
    
    contents of soluble protein all changed unconspicuously.
    
     With electron microscope techniques, the cytopathological changes of the tobacco leaves infected by TMV-W and TMV-O 17 were observed. The results showed that the chloroplasts of health plant had double-membrance, and the stroma lamellae arranged tight and regular, containing a few of large starch granules. The quantity of chloroplasts was decrease of the leaves infected by TMV-O1 7. The chloroplasts had shaped membrance structure. The stroma lamellae also arranged tight and regular. Some chloroplasts enlarged, containing few little starch granules. The quantity of mitochondrias was increased to 4-6 around the chloroplasts. TMV-O 17 induced ciystal structure in cytoplasts, which appeared around the chloroplasts. Some chloroplasts of the leaves infected by TMV-W were destroyed, the stroma lainellae were caused to be loosed. The quantity of mitochondrias was also increased and enlarged, some even irregular. The rhombic crystal structure were also observed in cytoplasts around the chloroplasts.
    
     The sequences of genomic cDNA of TMV-W, TMV-O 17 and TMV- 152 were detected(GenBank accession numbers are AF395127, AF395128, AF395129 respectively). Sequence analysis showed that the whole genomes of the three strains were 6395nt with 4 open reading frames(ORF) encoding for l26kDa protein(69-3419nt, with 11 l6aa), l83kDa protein(69-4919nt, with 1616aa), movement protein(4903-5709nt, with 268aa) and coat protein (5712-6191nt, with lS9aa) respectively. They possessed S抰erminal non-coding regions (NR) 68nt in length( 1 -68nt). There were 1 7nt overlap region between 1 83kDa protein ORE and movement protein ORE. Intercistron regions (IR) between movement protein ORE and coat protein ORE is 2nt. 3扤R has 204nt(6192-6395nt). The nucleotide sequence homology between the genome of TMV-W and TMV-U1 was 98%. TMV-W was proved common str
引文
1.中国现场统计研究会农业优化组著.农业正交设计法.北京:冶金工业出版社,1994,p.1,p.4-17.
    2.比德维尔RGS著,刘富林译.植物生理学(下册).北京:高等教育出版社,1982,p.199.
    3.王关林,方宏筠主编.植物基因工程原理与技术.北京:科学出版社,1998,p.154,p.194,p.230.
    4.王继伟,雷新云,严衍录,张晔晖.感染烟草花叶病毒(TMV)的烟叶在显症前的荧光光谱变化.植物保护学报,1995,22(2):269-274.
    5.王继伟,李怀方,严衍录,程英豪.TMV侵染后烟叶叶绿体的荧光光谱与生理学特性.植物保护学报,1995,22(4):315-318.
    6.付鸣佳,高乔婉,范怀忠.烟草花叶病毒株系鉴定研究进展.华南农业大学学报,1997,18(4):113-117.
    7.史志立,李德超.田间烟草感染花叶病后对产量和质量影响的调查研究初报.中国烟草,1988,(4):24-27.
    8.田波,张秀华,梁锡娴,曹小芝,盛方镜,陆关成,候世吕,陆家云.植物病毒弱株系及其应用Ⅱ.烟草花叶病毒番茄株弱株系N11对番茄的保护作用.植物病理学报,1980,10(2):109-112.
    9.田波,裴美云编.植物病毒研究方法(上册).北京:科学出版社,1987,p.43,p.190.
    10.任兵,王春香,潘乃穟,陈章良.烟草花叶病毒54kD基因的cDNA克隆及序列分析.植物学报,1992,34(11):829-834.
    11.全国番茄抗病育种协作组,郑贵彬,徐鹤林,熊助功.我国为害番茄的病毒种群与烟草花叶病毒(TMV)株系分化的初步鉴定.病毒学杂志,1988,(1):64-69.
    12.刘建,刘惠静,杨莉莉.一种侵染桃树的烟草花叶病毒(TMV)的分离鉴定.植物病理学报,2000,30(3):257-260.
    13.刘联仁编著.烟草病虫害防治.北京:科学出版社,1998,p.32.
    14.孙启达,张友谊,赵文明,项瑜,彭学贤.马铃薯 Y 病毒复制基因的转基因烟草对PVY的抗性.西北农业学报,1996,5(2):56-60.
    15.安德荣,吴际云,郑文华编著.植物病毒分类和鉴定的原理及方法.西安:陕西科学技术出版社,1995,p.105.
    16.朱玉贤,李毅编著.现代分子生物学.北京:高等教育出版社,1997,p.378.
    
    
    17.许仁林,易琼华.接种烟草花叶病毒后不同抗性番茄品系叶片可溶性蛋白组成的变化.植物病理学报,1989,19(2):79-85.
    18.齐秋锁.利用弱病毒防治植物病毒病害的研究现状.河北农业大学学报,1989,12(2):137-142.
    19.余天一编译.遗传工程植物的病毒抗性.生物工程进展,1992,12(6):24-27.
    20.余晓红,朱玉贤,应华澄,陈章良.烟草花叶病毒运动蛋白基因的cDNA 克隆、序列测定及植物转化.生物工程学报,1996,12(2):211-214.
    21.张秀华,田波,逯宏捷,李云峰.用弱毒系防治番茄花叶病的效果.中国农业科学,1981,(6):78-80.
    22.张秀华,李国玄,梁锡娴,田波.植物病毒弱毒系及其应用Ⅰ.烟花叶病毒番茄株弱毒系的诱变和性质的研究.植物病理学报,1980,10(1):49-54.
    23.张春嵋.水稻草状矮化病毒基因组 RNA4-6 的分子生物学.福建农业大学博士论文,1999,p.49,p.82.
    24.张满良.烟草蚀纹病毒弱株系的选育及免疫效果研究.西北农业大学学报,1998,26(2):53-56.
    25.李华平,胡晋生,范怀生.植物病毒株系间交互保护和遗传工程交互保护.生物工程进展,1995,15(6):28-32.
    26.李如亮主编.生物化学实验.武汉:武汉大学出版社,1998,p.5-8.
    27.李英,胡运乾,陈文岗,王钧.烟草花叶病毒外壳蛋白的基因导入和转化烟株的再生.云南植物研究,1989,11(3):247-253.
    28.杨恭,刘相国,邱并生.烟草花叶病毒(普通株中国分离物)及其弱毒疫苗—N14(番茄株)基因组侵染性cDNA核苷酸全序列测定与分析.生物工程学报,2000a,16(4):437-442.
    29.杨恭,刘相国,邱并生.烟草花叶病毒及番茄花叶病毒弱毒疫苗 N14 基因组重组体的构建与侵染性分析.科学通报,2000b,45(7):735-739.
    30.肖火根,范怀忠.交互保护作用及其在植物病毒病防治上的应用.中国病毒学,1994a,9(1):1-6.
    31.肖火根,范怀忠.番木瓜环斑病毒株系间交互保护作用研究.病毒学报,1994b,10(2):164-170.
    32.邱并生,田波,丘艳,张秀华.植物病毒卫星 RNA 及其在病毒病生物防治上的应用Ⅰ.用加入卫星 RNA 的方法组建成黄瓜花叶病毒的疫苗.微生物学报,1985,25(1):87-88
    
    
    33.陈炯,陈剑平.植物抗病毒基因工程研究进展.浙江农业学报,1999,11(2):101-108.
    34.周雪平,张龙存,陈集双,濮祖芹.侵染蚕豆的烟草花叶病毒研究.中国病毒学,1995,10(1):81-85.
    35.周雪平,濮祖芹,方中达.含卫星 RNA 的黄瓜花叶病毒弱株系的分离鉴定及其在病毒病防治上的应用.中国病毒学,1994,9:319-326.
    36.周雪平,濮祖芹.应用斑点法检测植物病毒的研究.病毒学杂志,1990,(3)317-320.
    37.武汉大学 复旦大学生物系微生物学教研室编.微生物学(第二版).北京:高等教育出版社,1987,p.293-297.
    38.波钦诺克XH著.植物生物化学分析方法.北京:科学出版社,1981,p.91-92.
    39.郑贵彬,符云华.TMV弱毒DN60-3等的诱变及其对番茄病毒病的保护效果.陕西农业科学,1986,(6):5-7.
    40.俞德超.抗植物病毒病基因工程的研究进展及评估.植物生理学通讯,1993,29(2):141-147.
    41.徐平东.中国黄瓜花叶病毒的亚组及其性质研究.福建农业大学博士学位论文,1997,p.42.
    42.莽克强.植物基因工程进展.生物工程进展,1993,13(5):3-8.
    43.敦麟瑞,王满保.应用烟草花叶病毒疫苗N14和卫星核糖核酸生防制剂S52防治番茄病毒病的试验研究.病毒学杂志,1988,(1):77-81.
    44.高正良,钱玉梅,王正刚.烟草花叶病的损失测定.植物保护学报,1994,21(3):261-264.
    45.崔伯法,王洪祥,翁法令.交互保护在植物病毒病害防治中作用的概述.中国生物防治,1998,14(2):75-77.
    46.曹义植,宋古午主编.植物生理学.兰州:兰州大学出版社,1998,p.100-120.
    47.梁训生,张成良,张作芳编.植物病毒血清学技术.北京:农业出版社,1985,p.122-126.
    48.梁训生,谢联辉主编.植物病毒学.北京:农业出版社,1994,p.52.
    49.萨姆布鲁克J,弗里奇 EF,曼尼阿蒂斯T著,金冬雁,李盂枫等译,候云德等校.分子克隆实验指南(第二版).北京:科学出版社,1998,p.275-276.
    50.傅荣昭,孙勇如,贾士荣主编.植物遗传转化技术手册.北京:中国科学技术出版社,1994,p.88.
    51.奥斯伯 F,布伦特 R,金斯顿 RE,穆尔 DD,塞德曼 JG,史密斯 JA,斯特拉尔K著,颜子颖,王海林译.精编分子生物学实验指南.北京:科学出版社,1998,p.17,p.628.
    
    
    52.彭运生,刘恩.关于提取叶绿素方法的比较研究.北京农业大学学报,1992,18(3):247-250.
    53.彭学贤,项瑜.马铃薯 Y 病毒复制酶基因的克隆和序列分析.生物多样性,1994,2(1):35-37.
    54.覃秉益,张秀华,田波.植物病毒弱株系及其应用Ⅲ.烟花叶病毒番茄株弱毒疫苗N_(14)的安全性测定.微生物学报,1987,27(1):23-29.
    55.谢联辉,林奇英,谢莉妍.福建烟草病毒种群及其发生频率的研究.中国烟草学报,1994,2(1):25-32.
    56.裘维蕃主编.植物病毒学.北京:科学出版社,1985,p.90,p.251,p.258.
    57.谭增亮,高主泰,张秀华,田波.浸根法对番茄接种弱毒株(N_(14))获得的效果.植物病理学,1982,12(2):59-61.
    58.薛朝阳,周雪平,陈青,戚益军,李德葆.烟草花叶病毒蚕豆株系基因组全序列分析及结构特征.中国科学(C辑),1999,29(6):654-662.
    59.後藤忠则,飯塚典男,小餅昭二.系统弱毒作出利用.日植病报,1984,50:221-228.
    60.龟谷,满朗.弱毒病防除.农业園芸,1994,69(1):137-142.
    61.藤晋一,飯田 孝则,中前 均.弱毒系统選拔强毒系统对干涉效果.日植病报,2000,66:35-39.
    62. Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science,1986, 232:738-743.
    63. Anderer FA, Uhlig H, Weber E, Schramm G. Primary structure of the protein of tobacco mosaic virus. Nature,1960,186:922-925.
    64. Atabekov JG,Taliansky ME. Expression of a plant virus-coded transport function by different viral genomes.Adv Virus Res,1990,38:201-248.
    65. Atkins D,Hull R, Wells B, Roberts K, Moore P, Beachy RN.The tobacco mosaic virus 30K movement protein in transgenic tobacco plants is localized to plasmodesmata.J Gen Virol, 1991,72:209-211.
    66. Audy P, Palukaitis P, Slack S, Zaitlin M. Replicase-mediated resistance to patato virus Y
    
    in transgenic tobacco plants. Mol Plant-Microbe Interact, 1994, 7: 15-22.
    67. Banerjee N, Wang JY, Zaitlin M. A single nucleotide change in the coat protein gene of tobacco mosaic virus is involved in the induction of severe chlorosis. Virology, 1995, 207(1) : 234-239.
    68. Bao Y, Carter SA, Nelson RS. The 126-and 183-kilodalton proteins of tobacco mosaic virus, and not their common nucleotide sequence, control mosaic symptom formation in tobacco. J Virol, 1996, 70(9) : 6378-6383.
    69. Bawden FC, Pirie NW, Bernal JD, Fankuchen I. Liquid crystal-line substances from virus-infected plants. Nature, 1936, 138: 1051-1055.
    70. Bean SJ, Gooding PS, Mullineaux PM, Davies DR. A simple system for pea transformation. Plant Cell Reports, 1997, 16: 513-519.
    71. Beijerinck MW. Uber ein contagium vivum fluidum als Ursache der Flecken-krankheit der Tabaksblatter. Verh K Akad Wet Amsterdam, 1898, 65: 3-21.
    72. Bendahmane M, Fitchen JH, Zhang G, Beachy RN. Studies of coat protein-mediated resistance to tobacco mosaic tobamovirus: Correlation between assembly of mutant coat proteins and resistance. J Virol, 1997, 71: 7942-7950.
    73. Braun CJ, Hemenway CL. Expression of amino-terminal portions or full-length viral replicase genes in transgenic plants confers resistance to potato virus X infection. Plant Cell, 1992,4:735-744.
    74. Buck K.W. Replication of tobacco mosaic virus RNA. Philos Trans R Soc Lond B Biol Sci, 1999, 354(1383) : 613-27.
    75. Butler PJG, Bloomer AC, Finch JT. Direct visualization of The structure of the '20s' aggregate of coat protein of tobacco mosaic virus. "disc"is the major structure at pH 7. 0 and the protohelix at lower pH. J Mol Biol, 1992, 224: 381-391.
    76. Butler PJG. The current picture of the structure and assembly of tobacco mosaic virus. J Gen Virol, 1984,65:253-279.
    77. Canto T, Palukaitis P. Replicase-mediated resistance to cucumber mosaic virus does not inhibit localization and/or trafficking of the viral movement protein. Mol Plant-Microbe Interact, 1999, 12:743-747.
    78. Carr JP, Gal-On A, Palukaitis P, Zaitlin M. Replicase mediated resistance to cucumber mosaic virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and long-distance movement. Virology, 1994, 199: 439-447.
    
    
    79. Carr JP, Marsh LE, Lomonossoff GP, Sekiya ME, Zaitlin M. Resistance to tobacco mosaic virus induced by the 54-kDa gene sequence requires expression of the 54-kDa protein. Mol Plant-Microbe Interact, 1992, 5: 397-404.
    80. Caspar OLD. The structural stability of tobacco mosaic virus. Trans N Y Acad Sci, 1960, 22:519-521.
    81. Chen J, Watanabe Y, Sako N, Ohshima K, Okada Y. Complete nucleotide sequence and synthesis of infectious in vitro transcripts from a full-length cDNA clone of a rakkyo strain of tobacco mosaic virus. Arch Virol, 1996, 141 (5) : 885-900.
    82. Citovsky V, Knorr D, Schuster G, Zambryski P. The P30 movement protein of tobacco mosaic virus is a single-stranded nucleic acid binding protein. Cell, 1990, 60: 637-647.
    83. Citovsky V, McLean BG, Zupan JR, and Zambryski P. Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Genes Dev, 1993, 7: 904-910.
    84. Citovsky V. Tobacco mosaic virus: a pioneer of cell-to-cell movement. Philos Trans R Soc Lond B Biol Sci, 1999, 354(1383) : 637-43.
    85. Creager AN, Scholthof KB, Citovsky V, Scholthof HB. Tobacco mosaic virus: pioneering research for a century. Plant cell, 1999, 11(3) : 301-308.
    86. Csillery G, Tobias I, Rusko J. A new pepper strain of tomato mosaic virus. Acta Phytopathol Acad Sci Hungaricae, 1983, 18: 195-200.
    87. Culver JN, Dawson WO, Plonk K, Stubbs G. Site-directed mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus. Virology, 1995,206(1) :724-730.
    88. Culver JN, Dawson WO. Tobacco mosaic virus coat protein:an elicitor of the hypersensitive reaction but not required for the development of mosaic symptoms in Nicotiana sylvestris. Virology, 1989, 173: 755-758.
    89. Culver JN, Lindbeck AGC, Dawson WO. Virus-host Interaction: Induction of Chlorotic and Necrotic Responses in Plants by Tobamoviruses. Annu Rev Phytopathol, 1991, 29: 193-217.
    90. Cuozzo MO, Connell RM, Kaniewski W. Viral protection in transgenci tobacco plants expressing the cucumber mosaic virus coat protein and its antisense RNA. Biotechnology, 1989, 6: 549.
    91. Das P, Hari V. Intracellular distribution of the 126K/183K and capsid proteins in cells
    
    infected by some tobamoviruses. J Gen Virol, 1992, 73: 3039-3043.
    92. Dawson WO, Bubrick P, Grantham GL. Modification of the Tobacco mosaic virus coat protein gene affecting replication, movement, and symptomatology. Phytopathology, 1988,78:783-789.
    93. de Zoeten GA. Fulton RW. Understanding generates possibilities. Phytopathology, 1975, 65:221-222.
    94. de Zoeten GA, Gaard G. The presence of viral antigen in the apoplast of systemically virus-infected plants. Virus Res, 1984, 1: 713-725.
    95. Dennis JL, Willian OD. Functions of the 126-and 183-kDa proteins of Tobacco mosaic virus. Virology, 2000, 271: 90-98.
    96. Deom CM, Oliver MJ, Beachy RN. The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science, 1987, 237: 389-394.
    97. Dodds JA, Lee SQ, Tiffany M. Cross protection between strains of cucumber mosaic virus: Effect of host and type of inoculum on accumulation of virions and double-stranded RNA of the challenge strain. Virology, 1985, 144: 301-309.
    98. Donson J, Dearney CM, Turpen TH, Khan 1A, Kurath G, Turpen AM, Jones GE, Dawson WO, Lewandowski DJ. Broad resistance to tobamoviruses is mediated by a modified tobacco mosaic virus replicase transgene. Mol Plant-Microbe Interact, 1993, 6(5) : 635-642.
    99. Dunigan DD, Dietzgen RG, Schoelz JE, Zaitlin M. Tobacco mosaic virus particles contain ubiquitinated coat protein subunits. Virology, 1988, 165: 310-312.
    100. Dunigan DD, Zaitlin M. Capping of tobacco mosaic virus RNA. Analysis of viral-encoded gyanylytransferase-like activity. J Biol Chem, 1990, 265: 7779-7786.
    101. Erickson FL, Holzberg S, Calderon-Urrea A, Handley V, Axtell M, Corr C, Baker B. The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. J Plant, 1999, 18(1) : 67-75.
    102. Esau K. Viruses in plant hosts: form, distribution, and pathologic effects. Madison: Univ Wisconsin Press. 1968, p. 130-131.
    103. Fitchen JH, Beachy RN. Genetically engineered protection against viruses in transgenic plants. Ann Rev Microbiol, 1993, 47: 739-763.
    104. Fraenkel-Conrat H. The role of the nucleic acid in the reconstitution of active tobacco mosaic virus. J Am Chem Soc, 1956, 78: 882-883.
    
    
    105. Fraenkel-Conrat H, Williams RC. Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc Natl Acad Sci USA, 1955, 41: 690-698.
    106. Fulton RW. The protective effects of systemic virus infection. In: Active defense mechanisms in plants, ed. Wood RKS, NATO Advanced Study Institute Series, 1982, p.231-245.
    107. Fulton RW. Practices and Precautions in the use of cross protection for plant virus disease control. Annu Rev Phytopathol, 1986, 24: 67-81.
    108. Gafny R, Lapidot M, Berna A, Holt CA, Deom CM, Beachy RN. Effects of terminal deletion mutations on function of the movement protein of tobacco mosaic virus. Virology, 1992, 187:499-507.
    109. Gallie DR, Sleat DE, Watts JW , Turner PC, Wilson TMA. The 5' leader sequence of tobacco mosaic virus RNA enhance the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res, 1987, 8: 3257-3273.
    110. Gerard GF. Reverse transcriptase. in: Enzymes of nucleic acid synthesis and modification: DNA enzymes, ed. Jacob ST, Boca Raton, Florida, CRC Rress, 1983, vol.1, p.1.
    111. Gerber M, Sarkar S. The coat protein of tobacco mosaic virus does not play a significant role for cross-protection. J Phytopathol, 1989, 124: 323-331.
    112. Gierer A, Schramm G. Infectivity of ribonucleic acid from tobacco mosaic virus. Nature, 1956, 177:702-703.
    113. Goelet P, Lomonossoff GP, Butler PJG, Akam ME, Gait MJ, Kam J. Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci USA, 1982, 79: 5818-5822.
    114. Golemboski DB, Lomonossof GP, Zaitlin M. Plants transformed with tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci USA, 1990,87:6311.
    115. Gorbalenya AE, Blinov VM, Donchenko AP, Koonin EV. An NTP-binding motif is the most conserved sequence in a strand RNA viral replication. J Mol Evol, 1989, 28: 256-268.
    116. Goregaoker SP, Eckhardt LG, Culver JN. Tobacco mosaic virus replicase-mediated cross-protection: contributions of RNA and protein-derived mechanisms. Virology, 2000, 273(2) : 267-75.
    
    
    117. Grant TJ. A mild strain of tristeza virus of citrus. Phytopathology, 1951, 41: 114-118.
    118. Grdzelishvili VZ, Chapman SN, Dawson WO, Lewandowski DJ. Mapping of the Tobacco mosaic virus movement protein and coat protein subgenomic RNA promoters in vivo. Virology, 2000, 275(1) : 177-192.
    119. Guilley H, Jonard G, Kukla B, Richards KE. Sequence of 1000 nucleotides at the 3 end of tobacco mosaic virus RNA. Nucleic Acids Res, 1979, 6: 1287-1308.
    120. Habili N, Symons RH. Evolutionary relationship between luteoviruses and other RNA plant viruses based on sequence motifs and their putative RNA polymerases and nucleic acid helicases. Nucleic Acids Res, 1989, 17: 9543.
    121. Harrison BD, Wilson TM. Milestones in the research on tobacco mosaic virus. Philos Trans R Soc Lond B Biol Sci, 1999, 354(1383) : 521-529.
    122. Hilf ME, Dawson WO. The tobamovirus capsid protein functions as a host-specific determinant of long-distance movement. Virology, 1993, 193: 106-114.
    123. Hills GJ, Plaskitt KA, Young ND, Dunigan DD, Watts JW, Wilson TMA, Zaitlin M. Immunogold localization of the intracellular sites of structural and nonstructural tobacco mosaic virus protein. Virology, 1987, 161: 488-496.
    124. Hodgson RAJ, Beachy RN, Pakrasi HB. Selective inhibition of photosystem II in spinach by tobacco mosaic virus: an effect of the viral coat protein. FEBS Lett, 1989, 245: 267-270.
    125. Holmes FO. A masked strain of tobacco mosaic virus. Phytopathology, 1934, 24(8) : 845-873.
    126. Holmes FO. Inheritance of resistance to tobacco mosaic disease in tobacco. Phytopathology, 1938, 28: 553-561.
    127. Holt CA, Hodgson RAJ, Coker FA, Beachy RN, Nelson RS. Characterization of the masked strain of tobacco mosaic virus: identification of the region responsible for symptom attenuation by analysis of an infectious cDNA clone. Mol Plant-Microbe Interact, 1990, 3(6) : 417-23.
    128. Hull R, Davies FW. Approaches to norconvertional control of plant virus Disesses. Critical Review in Plant. Sciences, 1992,11(1) : 17.
    129. Igwegbe ECK. Some properties of a tobacco mosaic virus strain isolated from pepper(Capsicum annuum) in Nigeria. Plant Dis, 1983, 63(3) : 317-320.
    130. Ikeda R, Watanabe E, Watanabe YV, Okada Y. Nucleotide sequence of tobamovirus Ob
    
    which can spread systemically in N gene tobacco. J Gen Virol, 1993, 74: 1939-1944.
    131. Ishikawa M, Meshi T, Motoyoshi F, Takamatsu N, Okada Y. In vitro mutagenesis of the putative replicase genes of tobacco mosaic virus. Nucleic Acids Res, 1986, 14: 8291-8305.
    132. Ishikawa M, Meshi T, Ohno T, Okada Y. Specific cessation of minus-strand RNA accumulation at an early stage of tobacco mosaic virus infection. J Virol, 1991, 65: 861-868.
    133. Ivanowski D. Ober die Mosaikkrankheit der Tabakspflanze. Bull Acad Imp Sci St Petersb, 1892,3:35,67-70.
    134. Ivanowski D. Ober die Mosaikkrankheit der Tabakspflanze. Zpflanzenkr Pflanzenschutz, 1903, 13: 1-41.
    135. Jockusch H, Jockusch B. Early cell death caused by TMV mutants with defective coat protein. Mol Gen Genet, 1968, 102: 204-209.
    136. Joshi S, Pleij CWA, Haenni AL, Chapeville F, Bosch L. The nature of the tobacco mosaic virus intermediate length RNA2 and its translation. Virology, 1983, 127: 100-111.
    137. Kadare G, Haenni AL. Virus-encoded RNA helicases. J Virol, 1997, 71: 2583-2590.
    138. Kaniewski W, Lawson C, Loveless J, Thomas P, Mowry T, Reed G, Mitsky T, Zalewski J, Muskopf Y. Expression of potato leafroll virus(PLRV) replicase genes in Russet Burbank potatoes provide immunity to PLRV. in: Proceed, Rd EFPP Conference, ed. Manka M, 1994, p.289-292.
    139. Kaper JM, Waterworth HE. Cucumber mosaic virus associated RNA5:causal agent for tomato necrosis. Science, 1977, 196: 429-431.
    140. Kausche GA, Pfankuch E, Ruska H. Die Sichtbarmachung von pflanzlichem Virus im Ubermikroskop. Naturwissenschaften, 1939, 27: 292-299.
    141. Kohler E, Hanschild I. Betrachtungen und Versuche zum Problem der "erworbenen Immunitat" gegen Virusinfektionem bei Pflanzen. Zuechter, 17-18, 97-105(1950) . Rev Appl Mycol, 1947,29:78.
    142. Kong F, Sivakumaran K, Kao C. The N-terminal half of the brome mosaic virus la protein has RNA capping-associated activities: Specificity for GTP and S-aednosylmethionine. Virology, 1999, 259: 200-210.
    143. Koonin EV. The phylogeny of RNA-dependent RNA polymerases of positive-strand
    
    RNA viruses. J Gen Virol, 1991, 72: 2197-2206.
    144. Kunkel LO. Studies on acquired immunity with tobacco and aucuba mosaics. Phytopathology, 1934, 24: 436-466.
    145. Kwon S, Sako N. A new strain of tobacco mosaic virus infecting rakky(Allium chinense G Don). Annu Phytopathol Soc Japan, 1994, 60: 36-44.
    146. Lauffer MA, Ansevin AT, Cartwright TE, Brinton CC. Polymerization depolymerization of tobacco mosaic virus protein. Nature, 1958, 181: 1338-1339.
    147. Leathers V, Tanguay R, Kobayashi M, Gallie DR. A phylogenetically conserved sequence within viral 3' untranslated RNA pseudoknots regulates translation. Mol Cell Biol, 1993, 13:5331-5347.
    148. Lecoq H. Control of plant virus disease by cross protection, in: Plant virus disease control, eds. Hadidi A, Khetarpal RKK, Koganezawa H, Minnesota, APS Rress, 1998, p.33-40.
    149. Lewandowski DJ, Dawson WO. A single amino acid change in tobacco mosaic virus replicase prevents symptom production. Mol Plant-Microbe Interact, 1993, 6: 157-160.
    150. Lindbeck AGC, Dawson WO, Thomson WW. Coat protein-related polypeptides from in vitro tobacco mosaic virus mutants do not accumulate in the chloroplasts of directly inoculated leaves. Mol Plant-Microb Interact, 1991, 4: 89-94.
    151. Lomonssoff GP. Virus resistance mediated by a nonstructural viral gene sequence in transgenic plants, in: Fundamentals and Applications, Ed. Hiatt AJ, New York, Marcel Dekker Press, 1992, p.122.
    152. Lomonssoff GP. Pathogen-derived resistance to plant virus. Annu Rev Phytopathol,1995, 33: 323-343.
    153. Lu B, Stubbs G, Culver JN. Carboxylate interactions involved in the disassembly of tobacco mosaic tobamovirus. Virology, 1996,225(1) : 11-20.
    154. Lu B, Stubbs G, Culver JN. Coat protein interaction involved in tobacco mosaic virus tobamovirus cross-protection. Virology, 1998, 248: 188-198.
    155. Marano MR, Baullcombe D. Pathogen-derived resistance targeted against the negative-strand RNA of tobacco mosaic virus: RNA strand-specific gene silencing? J Plant, 1998, 13:537-546.
    156. Marrou J, Migliori A. La premunition, une nouvelle methode de protection des cultures contre le virus de la mosaYque du tabac. PHM-Revue Horticole, 1972, 124: 27-31.
    
    
    157. Martelli GP, Russo M. Virus host relationships: Symptomatological and ultrastructural aspects, in: Plant Viruses, Polyhedral Virions with Tripartite Genomes, ed. Francki RIB, New York , Plenum Press, 1985, 1: 163-205.
    158. Matthews REF. Induction of disease by viruses, with special reference to turnip yellow mosaic virus. Annu Rew Phytopathol, 1973, 11: 147-170.
    159. Mayer A. Ober die Mosaikkrankheit des Tabaks. Landwn Vers-Stnen, 1886, 32: 451-467.
    160. Mckinney HH. Mosaic diseases in the Canary Islands, West Africa, and Gibraltar. J Agric Res, 1929,39:557-578.
    161. McMillen J, Consigli RA. Immunological reactivity of antisera to sodium dodecyl sulfate-derived polypeptides of polyoma virus. J Virol, 1978, 21: 1113-1221.
    162. Merits A, Kettunen R, Makinen K, Lampio A, Auvinen P, Kaariainen L, Ahola T. Virus-specific capping of tobacco mosaic virus RNA: Methylation of GFP prior to formation of covalent complex p126-m7GTP. FEBS Lett, 1999, 455: 45-48.
    163. Mi S, Stollar V. Expression of Sindbis virus nsPl and methyltransferase activity in Escherichia coli. Virology, 1991, 184:423-427.
    164. Mossop DW, Franki RIB. Comparative studies on two satellite RNAs of cucumber mosaic virus. Virology, 1979, 95: 395-404.
    165. Murakishi HH, Carlson PS. Regeneration of virus-free plants from dark-green islands of tobacca mosaic virus-infected tobacco leaves. Phrtopathology, 1976, 66: 931-932.
    166. Nelson RS, Powell-Abel P, Beachy RN. Lesions and virus accumulation in inoculation in inoculated transgenic tobacco plants expressing the coat protein gene of tobacco mosaic virus. Virology, 1987, 158: 126-132.
    167. Nguyen L, Lucas WJ, Ding B, Zaitlin M. Viral RNA trafficking is inhibited in replicase-mediated resistant transgenic tobacco plants. Proc Natl Acad Sci, 1996, 93(22) : 12643-12647.
    168. Nishiguchi M, Kikuchi S, Kino Y, Ohno T, Meshi T, Okada Y. Molecular basis of plant viral virulence:the complete nucleotide sequence of an attenuated strain of tobacco mosaic virus. Nucleic Acids Res, 1985, 13: 5585-5590.
    169. Nishiguchi M, Mori M, Suzuki F, Nagata R, Morishita T, Sakai J, Shanada K and Usugi T. Specific detection of a severe strain of sweet potato feathery mottle virus (SPFMV-S) by reverse transcription and polymerase chain reaction (RT-PCR). Annu Phytopathol Soc Jpn, 1995,61: 119-122.
    
    
    170. Nishiguchi M, Motoyoshi F, Oshima N. Comparison of virus production in infected plants an attenuated tomato strain(L11A) and its wild strain(L) of tobacco mosaic virus. Annu Phytopath Soc Japan, 1981,47:421.
    171. Ohno T, Aoyagi M, Yamanashi Y, Saito H, Ikawa S, Meshi T, Okada Y. Nucleotide sequence of the tobacco mosaic virus (tomato strain) genome and comparison with the common strain genome. J Biochem (Tokyo), 1984, 96(6) : 1915-23.
    172. Ohno T, Takamatsu N, Meshi T, Okada Y, Nishiguchi M, Kiho Y. Single amino acid substitution in 30K. protein of TMV defective in virus transport function. Virology, 1983, 131:255-258.
    173. Okada Y. Molecular assembly of tobacco mosaic virus in vitro. Adv Biophys, 1986, 22: 95-149.
    174. Osbourn JK, Watts JW, Beachy RN, Wilson TMA. Evidence that nucleocapsid disassembly and a later step in virus replication are inhibited in transgenic tobacco protoplasts expressing TMV coat protein. Virology, 1989, 172: 370-373.
    175. Oshima N. Contral of tomato mosaic disease by attenuated virus. Jap agrc Res Q, 1981, 14:222-228.
    176. Palukaitis P, Zaitlin M. A model to explain the cross-protection phenomenon shown by plant viruses and viroids. in: Plant-Microbe Interactions: Molecular and Genetic Perspectives, Eds. Kosuge T and Nester EW, New York, Macmillan Press, 1984, p.420-429.
    177. Palukaitis P, Zaitlin M. Replicase-mediated resistance to plant virus disease. Adv in Virus Res, 1997, 48: 349-377.
    178. Peden KWC, Symons RH. Cucumber mosaic virus contains a functionally divided genome. Virology, 1973, 53: 487-492.
    179. Pelham HRB. Leaky UAG termination codon in tobacco mosaic virus RNA. Nature, 1978,272:469-471.
    180. Ponz F, Bruening G. Mechanisms of resistance to plant viruses. Annu Rev Phytopathol, 1986,24:355-381.
    181. Powell-Abol P, Sanders PR, Turner N, Fraley RT, Beachy RN. Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of coat protein rather than coat protein RNA sequences. Virology, 1990, 175: 124-130.
    182. Powell-Abol P, Nelson RS, De B, Hoffman N, Rogers SG, Fraley RT, Beachy RN. Delay
    
    of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 1986, 232: 738-743.
    183. Rast ATB. MII-16, an artificial symptomless mutant of tobacco mosaic virus for seeding inoculation of tomato crops. Neth J Plant Pathol, 1972, 78: 110-112.
    184. Register JC11I, Beachy RN. Resistance to TMV in transgenic plants results from interference with an early event in infection. Virology, 1988, 166: 524-532.
    185. Register JC1I1, Powell PA, Nelson RS, Beachy RN. Genetically engineered cross protection against TMV interferes with initial infection and long distance spread of the virus, in: Molecular Biology of Plant-Pathogen Interactions, Eds. Staskawicz B, Ahlquist P, Yoder O, New York, Liss Press, 1989, p.269-281.
    186. Reinero A, Beachy RN. Association of TMV coat protein with chloroplast membranes in virus-infected leaves. Plant Mol Biol, 1986, (6) : 291-301.
    187. Reinero A, Beachy RN. Reduced Photosystem II Activity and Accumulation of Viral Coat Protein in Chloroplasts of Leaves Infected with Tobacco Mosaic Virus. Plant Physiol, 1989,89: 111-116.
    188. Rochon D, Siegel A. Chloroplast DNA transcripts are encapsidated by tobacco mosaic virus coat protein. Proc Natl Acad Sci USA, 1984, 81: 1719-1723.
    189. Roossinck MJ. Mechanisms of plant virus evolution. Annu Rev Phytopathol, 1997, 35: 191-209.
    190. Rozanov MM, Koonin EV, Gorbalenya AE. Conservation of the putative methyltransferase domain.A hallmark of the 'Sindbis-like' supergroiup of positive-strand RNA viruses. J Gen Virol, 1992, 73: 2129-2134.
    191. Rubino L, Lupo R, Russo M. Resistance to cymbidium ringspot tombusvirus infection in transgenci Nicotiana benthamiana plants expressing a full-length viral replicase gene. Mol Plant-Microbe Interact, 1993, 6: 729-734.
    192. Ryoji I, Eijiro W, Yuichiro W, Yoshimi O. Nucleotide sequence of tobamovirus Ob which can spread systemically in N gene tobacco. J Gen Virol, 1993, 74: 1939-1944.
    193. Saito T, Meshi T, Takamatsu N, Okada Y. Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant. Proc Natl Acad Sci USA, 1987, 84(17) : 6074-6077.
    194. Saito T, Yamanaka K, Watanabe Y, Takamatsu N, Meshi T, Okada Y. Mutational analysis of the coat protein gene of tobacco mosaic virus in relation to hypersensitive response in
    
    tobacco plants with the N' gene. Virology, 1989, 173: 11-20.
    195. Sarkar S, Smitamana P. A proteinless mutant of tobacco mosaic virus: evidence against the role of a viral coat protein for interference. Mol Gen Genet, 1981, 184(1) : 158-159.
    196. Satto T, Hosokawa D, Meshi T, Okada Y. Immunocytochemical localization of the 130K and 180K proteins (putative replicase components) of tobacco mosaic virus. Virology, 1987, 160:477-481.
    197. Schoelz JE, Zaitlin M. Tobacco mosaic virus RNA enters chloroplasts in vivo. Proc Natl Acad Sci USA, 1989, 86: 4496-4500.
    198. Shaw JG. Tobacco mosaic virus and the study of early events in virus infections. Philos Trans R Soc Lond B Biol Sci, 1999, 354(1383) : 603-611.
    199. Sherwood JL, Fulton RW. The specific involvement of coat protein in tobacco mosaic virus cross protection. Virology, 1982, 119: 150-158.
    200. Sherwood JL. Demonstration of the specific involvement of coat protein in tobacco mosaic virus(TMV) cross protection using a TMV coat protein mutant. J Phytopathol. 1987, 118:358-362.
    201. Shintaku MH, Carter SA, Bao Y, Nelson RS. Mapping nucleotides in the 126-kDa protein gene that control the differential symptoms induced by two strains of tobacco mosaic virus. Virology, 1996, 221: 218-225.
    202. Sijen T, Wellenk J, Hendriks J, Verner J, van Kammen A. Replication of cowpea mosaic virus RNA lor RNA2 is specifically blocked in transgenic Nicotiana benthamiana plants expressing the full-length replicase or movement protein genes. Mol Plant-Microbe Interact, 1995,8:340-347.
    203. Skuzeski JM, Nichols LM, Gesteland RF, Atkins JF. The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J Mol Biol, 1991, 218(2) : 365-73.
    204. Song EK, Koh HK, Kim JK, Lee SY. Genetically engineered transgenic plants with the domain 1 sequence of tobacco mosaic virus 126 kDa protein gene are completely resistant to viral infection. Mol Cells, 1999, 9(6) : 569-575.
    205. Stanley WM. Isolation of a crystalline protein possessing the properties of to-bacco mosaic virus. Science, 1935, 81: 644-645.
    206. Taraku N, Tolin SA. A new legume strain of tobacco mosaic virus from soybean in Yugoslavia. Phytopathology, 1984, 74(6) : 759.
    
    
    207. Tosic M, Videnov V. Contribution to the study of some isolates of tobacco mosaic virus from pepper. Zastita Bilja, 1981, 32(3) : 285-292.
    208. Tsugita A, Gish DT, Young J, Fraenkel-Conrat H, Knight CA, and Stanley W.M. The complete amino acid sequence of the protein of tobacco mosaic virus. Proc Natl Acad Sci USA, 1960,46: 1463-1469.
    209. Van Regenmortel MHV. Tobamovirus. in: Handbook of plant virus infection comparative diagnosis, ed. Kurstak E, Amsterdam: Elsevier, North-Holland Biomedical Press, 1981, p.542-564.
    210. Vaquero C, San AI, Serra MT, Luque 1G. Accumulation kinetics of CMV RNA3 encoded proteins and subcellular localization of the 3a protein in infected and transgenic tobacco plants. Arch Virol, 1996, 141: 987-999.
    211. Waigmann E, Lucas W, Citovsky V, Zambryski P. Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA, 1994, 91: 1433-1437.
    212. Wang HL, Gonsalves D, Rrovvidenti R, Lecoq HL. Effectiveness of cross protection by a mild strain of zucchini yellow mosaic virus in cucumber, melon, and squash. Plant Dis, 1991,75:203-207.
    213. Watanabe Y, Emori Y, Ooshika I, Meshi T, Ohno T, Okada Y. Synthesis of TMV specific RNAs and proteins at the early stage of infection in tobacco protoplasts: Transient expression of the 30 K protein and its RNA. Virology, 1984, 133: 18-24.
    214. Wijdeveld MM, Goldbach RW, Verduin BJ, van Loon LC. Association of viral 126 kDa protein-containing X-bodies with nuclei in mosaic-diseased tobacco leaves. Arch Virol, 1989, 104(3-4) : 225-39.
    215. Wijdeveld MMG, Goldbach RW, Meurs C, Loon LC. Accumulation of the 126kDa protein of tobacco mosaic virus during systemic infection analysed by immunocytochemistry and ELISA. Arch Virol, 1992, 127: 195-207.
    216. Wilson TMA. Cotranslational disassembly of tobacco mosaic virus in vitro. Virology, 1984, 137:255-265.
    217. Wintermantel WM., Zaitlin M. Transgene translatability increases effectiveness of replicase-mediated resistance to cucumber mosaic virus. J Gen Virol, 2000, 81: 587-595.
    218. Wintermantel WM, Banerjee N, Oliver JC, Paolillo DJ, Zaitlin M. Cucumber mosaic virus is restricted from entering minor veins in transgenic tobacco exhibiting replicase-
    
    mediated resistance. Virology, 1997, 231: 248-257.
    219. Wolf S, Deom CM, Beachy RN, Lucas WJ. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science, 1989, 246: 377-379.
    220. Wu X, Shaw JG. Bidirectional uncoating of the genomic RNA of a helical virus. Proc Natl Acad Sci USA, 1996, 93: 2981-2984.
    221. Wu X, Shaw JG. Evidence that a viral replicase protein is involved in the disassembly of tobacco mosaic virus particles in vivo. Virology, 1997, 239: 426-434.
    222. Yamaya J, Yoshiolca M, Meshi T. Expression of tobacco mosaic virus RNA in transgenic plants. Mol Gen Genel, 1988, 211: 520.
    223. Yeh SD, Gonsalves D. Evalution of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology, 1984, 74(9) : 1086-1091.
    224. Yeh SD. Control of ringspot disease of papaya by induced mild virus strains. Acta Horticulturac, 1990, 257: 753-760.
    225. Zaitlin M. Viral cross-protection: More understanding is needed. Phytopathology, 1976, 66: 382-383.
    226. Zimmern D. The 5' end group of tobacco mosaic virus RNA is m7G5'ppp5'Gp. Nucleic Acids Res, 1975,2: 1189-1201.
    227. Zinnem TM, Fulton RW. Cross-protection between sunhemp mosaic and tobacco mosaic viruses. J Gen Virol, 1986, 67: 1679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700