用户名: 密码: 验证码:
己内酯磷酸酯共聚物的合成、表征及其抗菌性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
价格低廉的聚己内酯(PCL)有着良好的生物相容性、可加工性、药物透过性,在生物医用材料中已经被应用到组织工程,药物控释等多个领域。但是其结晶度高和疏水性使得其生物降解速率很慢,阻碍了其在生物医用材料中进一步的应用。磷酸酯聚合物同样有着良好的生物相容性,在生物医用材料中也是研究热门。己内酯和磷酯的共聚产物可以很好的结合两者的优点,得到有生物相容性好、价格低廉和生物降解性好的材料。同时,磷原子的五价结构使共聚物很容易进行化学修饰,这样的可降解材料在生物医用材料有着潜在的应用前景。
     本论文采用芳氧基稀土化合物在温和条件下催化己内酯和环磷酸酯的开环共聚合,合成了己内酯磷酸酯无规共聚物。选取了氯乙氧基环磷酸酯和炔丙氧基环磷酸酯作为共聚单体,得到含卤素或炔基的官能化共聚物,分别通过直接季铵化反应和“点击”化学反应,将季铵盐基团引入到共聚物中。共聚物的组成、结构和分子量通过核磁共振(NMR)、红外光谱(IR)、凝胶渗透色谱(GPC)等手段表征,还通过X射线衍射(XRD)、差示扫描量热法(DSC)、静态接触角等表征了无规共聚物及其季铵化产物的结晶度、熔点及亲水性。采用扫描电子显微镜(SEM)、OD600法和抑菌圈法表征了具有不同磷脂含量和烷基链长的季铵化聚合物的抗菌性能,含有十二烷基疏水链的季铵化产物具有较好的抗菌性能,这种可降解抗菌聚合物有望在生物医用材料领域得到应用。
Polycaprolactone(PCL) has attracted considerable interest in biomedicine, pharmacy, and tissue engineering because of its good drug permeability, biocompatibility, nontoxicity, and low cost. However, hydrolytic degradation rate of PCL is rather low because of its high crystallinity and hydrophobicity, and the lack of functional groups on PCL chain prevents it from further modification, which restrains its potential applications. Polyp hosphoesters are another kind of biomedical material with good biodegradability and hydrophilicity, which has attracted interesting all over the world. The copolymer of ε-caprolcatone and phosphoester has higher hydrophilicity and faster degradation rate than PCL homopolymer. In addition, the copolymers could be facilely modified on the phosphoester unit due to the pentavalent phosphorus atom. This work reports the synthesis and characterization of copolymer based on cyclic phosphoesters and ε-caprolcatone via rare earth phenolates catalysted ring-opening copolymerization under mild conditions. Utilizing2-(2-chloroethoxy)-2-oxo-1,3,2-di-oxaphospholane and2-(2-propynyloxy)-2-oxo-1,3,2-dioxaphospholane as functional cyclic phosphoester comonomer, poly(ester-phosphoester)s bearing chloro and alkyne functional groups were prepared respectively. Ammonium groups were introduced into these copolymers by direct quaternization or "click" chemistry, resulting in biodegradable poly(ester-phosphoester)s with antibacterial properties. The composition and chain structure of copolymer were characterized by NMR, FT-IR and GPC. The crystallinity and hydrophilicity of the copolymers were studied by XRD, DSC, SWCA in detail. The antibacterial abilities of the copolymers with ammonium groups were characterized by SEM, OD600and inhibition zone methods. The copolymers with dodecyl groups on the ammonium moieties exhibit higher antibacterial ability than those with shorter alkyl chains.
引文
[1]乔金樑.高分子材料发展热点展望[J].新材料产业,2011,2(2):34-6.
    [2]王磊,窦宏仪,徐士清,Et Al医用高分子材料的现状与应用[J].热固性树脂,2004,03):37-8.
    [3]任铁钢,补朝阳,李伟杰,Et Al高分子电致发光材料研究进展[J].化学研究,2010,06):85-90.
    [4]许鑫华,李冬光,刘强,Et Al高分子电池隔膜的研究进展[J].材料导报,2004,01):49-52.
    [5]耿奎士,董然.高分子膜材料的研究概况[J].合成树脂及塑料,1993,02):52-7.
    [6]王志斌,申静,高朝祥,Et Al高分子膜材料在膜分离过程的应用[J].过滤与分离,2010,02):1-4.
    [7]林思聪.高分子生物材料分子工程研究进展(上)[J].高分子通报,1997,01):1-7+14.
    [8]王正辉,萧翼之.高分子生物材料的研究进展[J].高分子材料科学与工程,2005,05):19-22.
    [9]Burg K J L, Porter S, Kellam J F. Biomaterial Developments For Bone Tissue Engineering [J]. Biomaterials, 2000, 21(23):2347-59.
    [10]Jarcho M. Biomaterial Aspects Of Calcium Phosphates - Properties And Applications [J]. Dental Clinics Of North America, 1986, 30(1):25-47.
    [11]Ratnr B D, Johnston A B, Lenk T J. Biomaterial Surfaces [J]. Journal O f Biomedical Materials Research-Applied Biomaterials, 1987, 21(A1):59-8 9.
    [12]Williams D F. Tissue-Biomaterial Interactions [J]. J Mater Sci, 1987,22(10): 3421-45.
    [13]Barenberg S A, Anderson J M, Mauritz K A. Thrombogenesis - An Epitaxial Phenomena. 1 [J]. J Biomed Mater Res,1981,15(2):231-45.
    [14]Hoffman A S. Academic Focus - The Biomaterials Program At The University-Of-Washington (Seattle) [J]. J Biomed Mater Res, 1982,16(5): 735-40.
    [15]Hoffman A S. A General Classification Scheme For Hydrophilic And Hydrophobic Biomaterial Surfaces [J]. J Biomed Mater Res, 1986, 20(9): R9-R11.
    [16]Nakabayashi N, Kojima K, Masuhara E. The Promotion Of Adhesion By The Infiltration Of Monomers Into Tooth Substrates [J]. J Biomed Mater Res, 1982, 16(3):265-73.
    [17]Lloyd A W. Interfacial Bioengineering To Enhance Surface Biocompatibility [J]. Medical Device Technology, 2002,13(1):18-21.
    [18]王周玉,岳松,蒋珍菊,Et Al.可生物降解高分子材料的分类及应用[J].四川工业学院学报,2003,S1):145-7.
    [19]苟鹏飞.两亲星形聚合物的合成、表征及其在药物传输系统中的初步应用研究[D];浙江大学,2010.
    [20]Woodruff M A, Hutmacher D W. The Return Of A Forgotten Polymer-Polycaprolactone In The 21st Century [J]. Prog Polym Sci, 2010, 35(10):1217-56.
    [21]Cho K Y, Park J K. Synthesis And Characterization Of Poly(Ethylene Glycol) Grafted Poly(Epsilon-Caprolactone) [J]. Polym Bull, 2006, 57(6):849-56.
    [22]Gimenez S, Ponsart S, Coudane J, Et Al. Synthesis, Properties And In Vitro Degradation Of Carboxyl-Bearing Pcl [J]. J Bioact Compat Pol, 2001,16(1): 32-46.
    [23]Ponsart S, Coudane J, Vert M. A Novel Route To Poly(Epsilon-Caprolactone)-Based Copolymers Via Anionic Derivatization [J]. Biomacromolecules,2000,1(2):275-81.
    [24]Wei X W, Gong C Y, Gou M Y, Et Al. Biodegradable Poly(Epsilon-Caprolactone)-Poly(Ethylene Glycol) Copolymers As Drug Delivery System [J]. International Journal Of Pharmaceutics, 2009, 381(1): 1-18.
    [25]Gopferich A. Mechanisms Of Polymer Degradation And Erosion [J]. Biomaterials,1996,17(2):103-14.
    [26]Von Burkersroda F, Schedl L, Gopferich A. Why Degradable Polymers Undergo Surface Erosion Or Bulk Erosion [J]. Biomaterials, 2002,23(21): 4221-31.
    [27]Pukkinen M, Malin M, Bohm J, Et Al. In Vivo Implantation Of 2,2 '-Bis(Oxazolilne)-Linked Poly-Epsilon-Caprolactone: Proof For Enzyme Sensitive Surface Erosion And Biocompatibility [J]. European Journal Of Pharmaceutical Sciences,2009,36(2-3):310-9.
    [28]PuIkkinen M, Malin M, Tarvainen T, Et AL Effects Of Block Length On The Enzymatic Degradation And Erosion Of Oxazoline Linked Poly-Epsilon-Caprolactone [J]. European Journal Of Pharmaceutical Sciences, 2007,31(2):119-28.
    [29]Gaucher G, Dufresne M H, Sant V P, Et Al. Block Copolymer Micelles: Preparation, Characterization And Application In Drug Delivery [J]. J Control Release,2005,109(1-3):169-88.
    [30]Middleton J C, Tipton A J. Synthetic Biodegradable Polymers As Orthopedic Devices [J]. Biomaterials,2000,21(23):2335-46.
    [31]Dhanaraju M D, Gopinath D, Ahmed M R, Et Al Characterization Of Polymeric Poly(Epsilon-Caprolactone) Injectable Implant Delivery System For The Controlled Delivery Of Contraceptive Steroids [J]. J Biomed Mater Res A, 2006,76a(1):63-72.
    [32]Dhanaraju M D, Jayakumar R, Vamsadhara C. Influence Of Manufacturing Parameters On Development Of Contraceptive Steroid Loaded Injectable Microspheres [J]. Chemical & Pharmaceutical Bulletin, 2004,52(8):976-9.
    [33]Hutmacher D W. Scaffolds In Tissue Engineering Bone And Cartilage [J]. Biomaterials,2000,21(24):2529-43.
    [34]Dalton P D, Woodfield T, Hutmacher D W. Snapshot:Polymer Scaffolds For Tissue Engineering (Vol 30, Pg 701,2009) [J]. Biomaterials, 2009,30(12): 2420-.
    [35]Wang Y C, Yuan Y Y, Du J Z, Et Al. Recent Progress In Polyphosphoesters: From Controlled Synthesis To Biomedical Applications [J]. Macromol Biosci, 2009,9(12):1154-64.
    [36]Kaluzynski K, Libiszowski J, Penczek S. New Class Of Synthetic Polyelectrolytes - Acidic Polyesters Of Phosphoric-Ac id, (Poly(HydroxyaIkylene Phosphates)) [J]. Macromolecules, 1976,9(2):365-7.
    [37]Kaluzynski K, Libiszowski J, Penczek S. Poly(2-Hydro-2-Oxo-1,3,2-Dioxaphosphorinane) - Preparation And Nmr-Spectra [J]. Makromolekulare Chemie-Macromolecular Chemistry And Physics, 1977,178(10):2943-7.
    [38]Libiszowski J, Kaluzynski K, Penczek S. Polymerization Of Cyclic Esters Of Phosphoric-Acid.6. Poly(AIkyl Ethylene Phosphates) - Polymerization Of 2-Alkoxy-2-Oxo-1,3,2-Dioxaphospholans And Structure Of Polymers [J]. Journal Of Polymer Science Part A-Polymer Chemistry, 1978,16(6):1275-83.
    [39]Pretula J, Kaluzynski K, Penczek S. Synthesis Of Poly(Alkylene Phosphates) With Nitrogen-Containing Bases In The Side-Chains. 1. N-Substituted And C-Substituted Imidazoles [J]. Macromolecules,1986,19(7):1797-9.
    [40]刘振华,曾春龙,范昌烈,卓仁禧.聚磷酸酯型脂质体膜材的合成[J].高分子学报,1995,04):483-7.
    [41]Pretula J, Kaluzynski K, Szymanski R, Et Al. Preparation Of Poly(AIkylene H-Phosphonate)S And Their Derivatives By Polycondensation Of Diphenyl H-Phosphonate With Diols And Subsequent Transformations [J]. Macromolecules,1997,30(26):8172-6.
    [42]Duda A, Penczek S. Polymerization Of Epsilon-Caprolactone Initiated By Aluminum Isopropoxide Trimer And/Or Tetramer [J]. Macromolecules, 1995, 28(18):5981-92.
    [43]Wang Y C, Shen S Y, Wu Q P, Et AL Block Copolymerization Of Epsilon-Caprolactone And 2-Methoxyethyl Ethylene Phosphate Initiated By Aluminum Isopropoxide:Synthesis, Characterization, And Kinetics [J]. Macromolecules,2006,39(26):8992-8.
    [44]Du J Z, Sun T M, Weng S Q, Et Al. Synthesis And Characterization Of Photo-Cross-Linked Hydrogels Based On Biodegradable Polyphosphoesters And Poly(Ethylene Glycol) Copolymers [J]. Biomacromolecules,2007, 8(11): 3375-81.
    [45]Wang Y C, Li Y, Yang X Z, Et AL Tunable Thermosensitivity Of Biodegradable Polymer Micelles Of Poly (Epsilon-Caprolactone) And Polyp hosphoester Block Copolymers [J]. Macromolecules, 2009, 42(8): 3026-32.
    [46]Wang Y C, Tang L Y, Li Y, Et AL Thermoresponsive Block Copolymers Of Poly(Ethylene Glycol) And Polyphosphoester:Thermo-Induced Self-Assembly, Biocompatibility, And Hydrolytic Degradation [J]. Biomacromolecules, 2009, 10(1):66-73.
    [47]Yang X Z, Wang Y C, Tang L Y, Et Al. Synthesis And Characterization Of Amphiphilic Block Copolymer Of Polyphosphoester And Poly(L-Lactic Acid) [J]. Journal Of Polymer Science Part A-Polymer Chemistry, 2008,46(19): 6425-34.
    [48]Yuan Y Y, Wang Y C, Du J Z, Et Al. Synthesis Of Amphiphilic Abc 3-Miktoarm Star Terpolymer By Combination Of Ring-Opening Polymerization And "Click" Chemistry [J]. Macromolecules, 2008,41(22):8620-5.
    [49]Xiao C S, Wang Y C, Du J Z, Et Al. Kinetics And Mechanism Of 2-Ethoxy-2-Oxo-1,3,2-Dioxaphospholane Polymerization Initiated By Stannous Octoate [J]. Macromolecules,2006,39(20):6825-31.
    [50]Liu J Y, Pang Y, Huang W, Et AL Controlled Topological Structure Of Copolyphosphates By Adjusting Pendant Groups Of Cyclic Phosphate Monomers [J]. Macromolecules, 2010, 43(20): 8416-23.
    [51]Liu J, Huang W, Pang Y, Et AL Hyperbranched Polyphosphates For Drug Delivery Application: Design, Synthesis, And In Vitro Evaluation [J]. Biomacromolecules,2010,11(6):1564-70.
    [52]Liu J Y, Huang W, Pang Y, Et AL The In Vitro Biocompatibility Of Self-Assembled Hyperbranched Copolyphosphate Nanocarriers [J]. Biomaterials,2010,31(21):5643-51.
    [53]Liu J, Huang W, Pang Y, Et AL Self-Assembled Micelles From An Amphiphilic Hyperbranched Copolymer With Polyphosphate Arms For Drug Delivery [J]. Langmuir, 2010, 26(13):10585-92.
    [54]Liu J Y, Pang Y, Huang W, Et Al. Self-Assembly Of Phospholipid-Analogous Hyperbranched Polymers Nanomicelles For Drug Delivery [J]. Bio materials, 2010,31(6):1334-41.
    [55]Liu J, Huang W, Zhou Y, Et Al. Synthesis Of Hyperbranched Polyphosphates By Self-Condensing Ring-Opening Polymerization Of Heep Without Catalyst [J]. Macromolecules,2009,42(13):4394-9.
    [56]Wang J, Mao H Q, Leong K W. A Novel Biodegradable Gene Carrier Based On Poryphosphoester [J]. J Am Chem Soc, 2001,123(38):9480-1.
    [57]Li Y, Wang J, Lee C G L, Et Al. Cns Gene Transfer Mediated By A Novel Controlled Release System Based On Dna Complexes Of Degradable Polycation Ppe-Ea:A Comparison With Polyethylenimine/Dna Complexes [J]. Gene Therapy, 2004, 11 (1):109-14.
    [58]Sun T M, Du J Z, Yan L F, Et AL Self-Assembled Biodegradable Micellar Nanoparticles Of Amphiphilic And Cationic Block Copolymer For Sirna Delivery [J]. Biomaterials, 2008,29(32):4348-55.
    [59]Wang S, Wan A C A, Xu X Y, Et Al. A New Nerve Guide Conduit Material Composed Of A Biodegradable Poly(Phosphoester) [J]. Biomaterials, 2001, 22(10):1157-69.
    [60]Qiu J J, He Z X, Liu C M, Et AL Crosslinking Property Of An Oligomeric Unsaturated Phosphoester Used As A Potential Injectable Biomaterial [J]. Biomedical Materials, 2008,3(4):
    [61]Qiu J J, Liu C M, Hu F, Et Al. Synthesis Of Unsaturated Polyphosphoester As A Potential Injectable Tissue Engineering Scaffold Materials [J]. J Appl Polym Sci, 2006,102(4):3095-101.
    [62]Zhang Z X, Feng X L, Mao J, Et Al. In Vitro Cytotoxicity Of A Novel Injectable And Biodegradable Alveolar Bone Substitute [J]. Biochemical And Biophysical Research Communications, 2009, 379(2):557-61.
    [63]Zhu W P, Sun S, Xu N, Et Al. Synthesis, Characterization, And Properties Of Poly(Ester-Phosphoester)S By Lanthanum Triphenolate-Catalyzed Ring-Opening Copolymerization [J]. Journal Of Polymer Science Part A-Polymer Chemistry, 2011,49(23):4987-92.
    [64]Wang Y-C, Li Y, Yang X-Z, Et AL Tunable Thermo sensitivity Of Biodegradable Polymer Micelles Of Poly (Epsilon-Capro lac tone) And Polyphosp ho ester Block Copolymers [J]. Macromolecules, 2009, 42(8): 3026-32.
    [65]Zhu W-P, Sun S, Xu N, Et AL Synthesis, Characterization And Micellization O f Heterograft Copolymers Based On Phosphoester Functionalized Macromonomers Via "Grafting Through" Method [J]. J Appl Polym Sci, 2012, 123(1):365-74.
    [66]Patel M B, Patel S A, Ray A, Et Al. Synthesis, Characterization, And Antimicrobial Activity Of Acrylic Copolymers [J]. J Appl Polym Sci, 2003, 89(4):895-900.
    [67]Kenawy E R Biologically Active Polymers. Iv. Synthesis And Antimicrobial Activity Of Polymers Containing 8-Hydroxyquinoline Moiety [J]. J Appl Polym Sci, 2001,82(6):1364-74.
    [68]Kenawy E R. Abdel-Hay F I, El-Shanshoury A, Et Al. Biologically Active Polymers. V. Synthesis And Antimicrobial Activity Of Modified Poly(Glycidyl Methacrylate-Co-2-Hydroxyethyl Methacrylate) Derivatives With Quaternary Ammonium And Phosphonium Salts [J]. J Polym Sci Pol Chem, 2002,40(14): 2384-93.
    [69]Kenawy E R, Abdel-Fattah Y R Antimicrobial Properties Of Modified And Electrospun Poly(Vinyl Phenol) [J]. Macromol Biosci, 2002,2(6):261-6.
    [70]Ulkur E, Oncul O, Karagoz H, Et AL Comparison Of Silver-Coated Dressing (Acticoat (Tm)), Chlorhexidine Acetate 0.5% (Bactigrass((R))), And Fusidic Acid 2% (Fucidin((R))) For Topical Antibacterial Effect In Methicillin-Resistant Staphylococci-Contaminated, Full-Skin Thickness Rat Burn Wounds [J]. Burns,2005,31(7):874-7.
    [71]Rupp M E, Fitzgerald T, Marion N, Et AL Effect Of Silver-Coated Urinary Catheters:Efficacy, Cost-Effectiveness, And Antimicrobial Resistance [J]. Am J Infect Control, 2004,32(8): 445-50.
    [72]Strathmann M, Wingender J.Use Of An Oxonol Dye In Combination With Confocal Laser Scanning Microscopy To Monitor Damage To Staphylococcus Aureus Cells During Colonisation Of Silver-Coated Vascular Grafts [J].Int J Antimicrob Agents, 2004,24(3):234-40.
    [73]Ohashi S,Saku S,Yamamoto K.Antibacterial Activity Of Silver Inorganic Agent Yda Filler[J].J Oral Rehabil, 2004,31(4):364-7.
    [74]Sun R W Y, Chen R, Chung N P Y, Et Al. Silver Nanoparticles Fabricated In Hepes Buffer Exhibit Cytoprotective Activities Toward Hiv-1 Infected Cells[J]. Chem Commum, 2005,40): 5059-61.
    [75]Kolar M,Urbanek K,Latal T Antibiotic Selective Pressure And Development OfBacterial Resistance [J].Int JAntimicrob Agents,2001,17(5):357-63.
    [76]Travan A, Pelillo C, Donati I, Et Al. Non-Cytotoxic Silver Nanoparticle-Polysaccharide Nanocomposites With Antimicrobial Activity [J]. Biomacromolecules,2009,10(6):1429-35.
    [77]Li W J, Laurencin C T, Caterson E J,Et Al. Electrospun Nanofibrous Structure: ANovel Scaffold For Tissue Engineering[J]. J Biomed Mater Res,2002,60(4): 613-21.
    [78]Kong H, Jang J. Synthesis And Antimicrobial Properties Of Novel Silver/Polyhodanine Nanofibers [J]. Biomacromolecules,2008,9(10): 2677-81.
    [79]Zhang L,Jiang Y, Ding Y, Et Al. Mechanistic Investigation Into Antibacterial Behaviour Of Suspensions Of Zno Nanoparticles Against E.Coli[J]. Journal Of Nanoparticle Research, 2010,12(5):1625-36.
    [80]Zhang L, Jiang Y, Ding Y, Et Al. Investigation Into The Antibacterial Behaviour Of Suspensions Of Zno Nanoparticles(Zno Nanofluids)[J].Journal Of Nanoparticle Research, 2007,9(3):479-89.
    [81]Thorsteinsson T, MassonM,Kristinsson K G,Et Al. Soft Antimicrobial Agents: Synthesis And Activity Of Labile Environmentally Friendly Long Chain Quaternary Ammonium Compounds[J].Journal Of Medicinal Chemistry, 2003, 46(19): 4173-81.
    [82]Lee S B, Koepsel R R, Morley S W, Et AL Permanent, Nonleaching Antibacterial Surfaces. 1. Synthesis By Atom Transfer Radical Polymerization [J]. Biomacromolecules,2004,5(3):877-82.
    [83]Chen C Z S, Beck-Tan N C, Dhurjati P, Et AL Quaternary Ammonium Functionalized Poly(Propylene Imine) Dendrimers As Effective Antimicrobials: Structure-Activity Studies [J]. Biomacromolecules, 2000, 1(3):473-80.
    [84]Nonaka T, Hua L, Ogata T, Et Al. Synthesis OfWater-Soluble Thermosensitive Polymers Having Phosphonium Groups From Methacryloyloxyethyl Trialkyl Phosphonium Chlorides-N-Isopropylacrylamide Copolymers And Their Functions [J]. J Appl Polym Sci, 2003,87(3):386-93.
    [85]Allan C R, Hadwiger L A. Fungicidal Effect Of Chitosan On Fungi Of Varying Cell-Wall Composition [J]. Experimental Mycology, 1979, 3(3):285-7.
    [86]Kendra D F, Hadwiger L A. Characterization Of The Smallest Chitosan Oligomer That Is Maximally Antifungal To Fusarium-Solani And Elicits Pisatin Formation In Pisum-Sativum [J]. Experimental Mycology, 1984,8(3):276-81.
    [87]Nagano T, Hirano T, Hirobe M. Superoxide-Dismutase Mimics Based On Iron Invivo [J]. Journal Of Biological Chemistry, 1989, 264(16):9243-9.
    [88]Jung B O, Kim C H, Choi K S, Et AL Preparation Of Amphiphilic Chitosan And Their Antimicrobial Activities [J]. J Appl Polym Sci, 1999, 72(13):1713-9.
    [89]沈之荃.稀土催化剂在高分子合成中的开拓应用[J].高分子通报,2005,04):1-12.
    [90]Ling J, Shen Z Q. Lanthanum Tris(2,6-Di-Tert-Butyl-4-Methylphenolate) As A Novel, Versatile Initiator For Homo- And Copolymerization Of Cyclic Carbonates And Lactones (Vol 203, Pg 735,2002) [J]. Macromol Chem Phys, 2002, 203(12):1872-
    [91]Ling J, Shen Z Q. Lanthanum Tris(2,6-Di-Tert-Butyl-4-Methylphenolate) As A Novel, Versatile Initiator For Homo- And Copolymerization Of Cyclic Carbonates And Lactones [J]. Macromol Chem Phys, 2002,203(4):735-8.
    [92]Wang X L, Zhuo R X, Liu L J. Synthesis And Characterization Of Novel Biodegradable Poly(Carbonate-Co-Phosphate)S [J]. Polym Int, 2001,50(11): 1175-9.
    [93]徐宁.磷酸酯聚合物的合成、功能化及生物医用研究[D];浙江大学,2010.
    [94]Yu C P, Zhang L F, Shen Z Q. Ring-Opening Polymerization Of Epsilon-Caprolactone Using Lanthanide Tris(4-Tert-Butylphenolate)S As A Single-Component Initiator [J]. Chinese Chemical Letters, 2003,14(10): 1021-3.
    [95]Zhang L F, Shen Z Q, Yu C P. Ring-Opening Polymerization Of Epsilon-Caprolactone By Lanthanide Tris(2,6-Dimethylphenolate)S [J]. Chinese Journal Of Chemistry, 2003,21(9):1236-7.
    [96]Ikeda T, Yamaguchi H, Tazuke S. New Polymeric Biocides - Synthesis And Antibacterial Activities Of Polycations With Pendant Biguanide Groups [J]. Antimicrob Agents Ch, 1984,26(2): 139-44.
    [97]Kenawy E-R, Worley S D, Broughton R The Chemistry And Applications Of Antimicrobial Polymers:A State-Of-The-Art Review [J]. Biomacromolecules, 2007,8(5):1359-84.
    [98]Ikeda T, Tazuke S, Suzuki Y. Biologically-Active Polycations.4. Synthesis And Antimicrobial Activity Of Poly(TriaIkylvinylbenzylammonium Chloride)S [J]. Makromolekulare Chemie-Macromolecular Chemistry And Physics, 1984, 185(5):869-76.
    [99]Bass L, Liebert C A, Lee M D, Et Al. Incidence And Characterization Of Integrons, Genetic Elements Mediating Multiple-Drug Resistance, In Avian Escherichia Coli [J]. Antimicrob Agents Ch, 1999, 43(12): 2925-9.
    [100]Jia Z S, Shen D F, Xu W L. Synthesis And Antibacterial Activities Of Quaternary Ammonium Salt Of Chitosan [J]. Carbohydrate Research, 2001, 333(1):1-6.
    [101]Uhlich G A, Cooke P H, Solomon E B. Analyses Of The Red-Dry-Rough Phenotype Of An Escherichia Coli 0157:H7 Strain And Its Role In Biofilm Formation And Resistance To Antibacterial Agents [J]. Applied And Environmental Microbiology, 2006,72(4): 2564-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700