用户名: 密码: 验证码:
扇型—线型聚赖氨酸共聚物的合成、自组装及其水凝胶的构筑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以扇型/线型结构的聚赖氨酸Dm-PZLys为前聚体,通过与PEO结合,得到了一系列扇型/线型-线型的可降解及具有生物相容性的嵌段聚合物,并通过脱除赖氨酸侧链氨基的保护基团得到聚阳离子共聚物。
     (1)点击化学和开环聚合方法制备扇型-线型Dm-PZLys-b-PEO嵌段共聚物及其表征利用具有“点击”功能化的端炔基化聚酰胺-胺,采用“点击”化学(Click Chemistry)和开环聚合(ROP)的方法,设计合成了扇型/线型-线型聚( -苄氧羰基-L-赖氨酸)嵌段共聚物,通过利用红外光谱、核磁氢谱、凝胶渗透色谱、差示扫描量热仪、偏光显微镜、广角X射线衍射等对嵌段共聚物的化学结构与物理性能进行了详细的表征;PZLys链段在聚赖氨酸均聚物和共聚物中均出现了液晶相的转变,并且这种转变是不可逆的。同时,随着PZLys链段组成的增加,PEO链段在线性共聚物中的结晶度从96.2 %降至20.4 %,而扇型-线型共聚物中的PEO链段的结晶完全受到了抑制;随着链长的增加,PZLys链段的二级结构从?-折叠构象向?-螺旋构象转变。这一系列的共聚物可在水溶液中组装成球形纳米粒子,阿霉素作为模型药物,负载后对共聚物组装形成纳米粒子的形貌几乎没有影响;所有的阿霉素载药纳米粒子在pH 7.4及pH 5.5条件下表现三相释放模式,释放周期长达两个月。
     (2)扇型-线型共聚物Dm-PLys-b-PEO的合成、性能表征,以及超分子水凝胶的制备在前面合成的Dm-PZLys-b-PEO基础上,利用脱保护化学,得到了聚阳离子共聚物Dm-PLys-b-PEO,利用红外光谱、核磁氢谱、广角X射线衍射、偏光显微镜、动态光散射等对共聚物的化学结构、物化性能及自组装性能进行了表征。运用主-客体化学和聚氨基酸链段之间的氢键相互作用,初步探索利用同一种聚赖氨酸基两嵌段共聚物来构筑“普通胶束水凝胶”和“反胶束水凝胶”,这种超分子水凝胶是通过聚(L-赖氨酸)链段之间的氢键相互作用以及聚乙二醇与-环糊精间的包络作用而共同形成的,并利用广角X射线衍射、差示扫描量热仪等表征手段对超分子水凝胶的物化性能和成胶机理进行了初步的探索。
Dendronlike poly(?-benzyloxycarbonyl-L-lysine)/linear poly(ethylene oxide) block copolymers (i.e., Dm-PZLys-b-PEO, m = 0 and 3; Dm are the propargyl focal point poly(amido amine) dendrons having 2m primary amine groups) were for the first time synthesized by combining ring-opening polymerization (ROP) of ?-benzyloxycarbonyl-L-lysine N-carboxyanhydride (Z-Lys-NCA) and click chemistry, where Dm-PZLys homopolypeptides were click conjugated with azide-terminated PEO.
     Then through the deprotection of benzyloxycarbonyl group on the PZLys block, Dm-PLys-b-PEO were achieved.
     (1) Synthesis and Characterization of Dendron-like/Linear Dm-PZLys-b-PEO Copolymers via ROP and Click Chemistry A new class of dendron-like/linear Dm-PZLys-b-PEO block copolymers was synthesized via controlled ring-opening polymerization (ROP) of Z-Lys-NCA followed by a click conjugation with azide-terminated poly(ethylene oxide) (PEO-N3). Their molecular structures and physical properties were characterized in detail by FT-IR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, polarized optical microscopy, and wide angle X-ray diffraction. Both homopolypeptides and copolymers presented a liquid crystalline phase transition for PZLys block, and the transition was irreversible. Moreover, the degree of crystallinity of PEO block within linear copolymers decreased from 96.2 % to 20.4 % with increasing PZLys composition, while that within dendritic copolymers decreased to zero. The secondary conformation of PZLys progressively changed from -sheet to -helix with increasing the chain length. These copolymers self-assembled into spherical nanoparticles in aqueous solution, and the anticancer drug doxorubicin-loaded nanoparticles gave a similar morphology compared to their blank counterparts. The drug-loaded nanoparticles showed a triphasic drug-release profile at aqueous pH 7.4 or 5.5 and 37℃, and sustained a longer drug-release period for about two months.
     (2)Synthesis and Hydrogelation of Dendronlike/Linear Dm-PLys-b-PEO Copolymers Dm-PLys-b-PEO copolymers were synthesized through the deprotection of benzyloxycarbonyl group on the PZLys block,their molecular structures and physical properties were characterized in detail by FT-IR, 1H NMR, polarized optical microscopy, and wide angle X-ray diffraction. The self-assembly behavior of Dm-PLys-b-PEO copolymers was investigated by means of dynamic light scattering (DLS), and the corresponding normal and reverse micellar hydrogel from the same polypeptide-based copolymer were prepared via the cooperation of host-guest chemistry and hydrogen-bonding interactions.
引文
[1] P. De Gennes and H. Hervet, Journal De Physique Lettres 1983, 44, 351-360.
    [2] M. A. Mintzer and M. W. Grinstaff, Chemical Society Reviews 2011, 40, 173-190.
    [3] E. Buhleier, W. Wehner and F. V?gtle, Synthesis 1978, 2, 155-158.
    [4] D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder and P. Smith, Polymer Journal 1985, 17, 117-132.
    [5] G. R. Newkome, Z. Yao, G. R. Baker and V. K. Gupta, The Journal of Organic Chemistry 1985, 50, 2003-2004.
    [6] D. A. Tomalia, Progress in polymer science 2005, 30, 294-324.
    [7] R. G. Denkewalter, J. Kolc and W. J. Lukasavage in Macromolecular highly branched homogeneous compound based on lysine units, Vol. Google Patents, 1981.
    [8] M. A. Carnahan and M. W. Grinstaff, Macromolecules 2006, 39, 609-616.
    [9] H. Ihre, A. Hult and E. S?derlind, Journal of the American Chemical Society 1996, 118, 6388-6395.
    [10] G. R. Newkome and C. D. Shreiner, Polymer 2008, 49, 1-173.
    [11] M. J. Joralemon, R. K. O'Reilly, J. B. Matson, A. K. Nugent, C. J. Hawker and K. L. Wooley, Macromolecules 2005, 38, 5436-5443.
    [12] K. L. Killops, L. M. Campos and C. J. Hawker, Journal of the American Chemical Society 2008, 130, 5062-5064.
    [13] C. J. Hawker and J. M. J. Frechet, Journal of the American Chemical Society 1990, 112, 7638-7647.
    [14] P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless and V. V. Fokin, Angewandte Chemie International Edition 2004, 43, 3928-3932.
    [15] C. J. Hawker, K. L. Wooley and J. M. J. Fréchet, J. Chem. Soc., Perkin Trans. 1 1993, 1287-1297.
    [16] R.H.E.Hudson,M.J.Damha. Journal of the American Chemical Society,1993, 115, 2119-2124.
    [17] S.Campagna,L.Sabatino. Chemical Communications 1989, 1500-1501.
    [18] T. Kim, H. J. Seo, J. S. Choi, H. S. Jang, J. Baek, K. Kim and J. S. Park, Biomacromolecules 2004, 5, 2487-2492.
    [19] A. Harada, Y. Kimura, C. Kojima and K. Kono, Biomacromolecules 2010, 11, 1036-1042.
    [20] H.-T. Chen, M. F. Neerman, A. R. Parrish and E. E. Simanek, Journal of the American Chemical Society 2004, 126, 10044-10048.
    [21] Y. Huang, M. Y. Zheng, S. Wang, F. Q. Huang, W. Tian, X. D. Fan and Q. O. Kang, Acta Polymerica Sinica 2010, 903-909.
    [22] V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni and M. Venturi, Accounts of chemicalresearch 1998, 31, 26-34.
    [23] C. Z. Chen, N. C. Beck-Tan, P. Dhurjati, T. K. van Dyk, R. A. LaRossa and S. L. Cooper, Biomacromolecules 2000, 1, 473-480.
    [24] M. K. Calabretta, A. Kumar, A. M. McDermott and C. Cai, Biomacromolecules 2007, 8, 1807-1811.
    [25] S. R. Meyers, F. S. Juhn, A. P. Griset, N. R. Luman and M. W. Grinstaff, Journal of the American Chemical Society 2008, 130, 14444-14445.
    [26] A. Pérez-Anes, G. Spataro, Y. Coppel, C. Moog, M. Blanzat, C. O. Turrin, A. M. Caminade, I. Rico-Lattes and J. P. Majoral, Organic & Biomolecular Chemistry 2009, 7, 3491-3498.
    [27] M. Gingras, J. M. Raimundo and Y. M. Chabre, Angewandte Chemie International Edition 2007, 46, 1010-1017.
    [28] C. Kojima, K. Kono, K. Maruyama and T. Takagishi, Bioconjugate chemistry 2000, 11, 910-917; b) M. Liu, K. Kono and J. M. J. Fréchet, Journal of controlled release 2000, 65, 121-131.
    [29] X. Bi, X. Shi, I. J. Majoros, R. Shukla and J. R. Baker, Journal of Computational and Theoretical Nanoscience 2007, 4, 1179-1187.
    [30] Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies and R. Y. Tsien, Proceedings of the National Academy of Sciences 2010, 107, 4317.
    [31] H. C. Kolb, M. Finn and K. B. Sharpless, Angewandte Chemie International Edition 2001, 40, 2004-2021.
    [32] R. Huisgen, G. Szeimies and L. M?bius, Chemische Berichte 1967, 100, 2494-2507.
    [33] C. W. Torn?e, C. Christensen and M. Meldal, The Journal of Organic Chemistry 2002, 67, 3057-3064.
    [34] V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angewandte Chemie-International Edition 2002, 41, 2596-2599.
    [35] H. Lin and C. T. Walsh, Journal of the American Chemical Society 2004, 126, 13998-14003.
    [36] Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless and M. G. Finn, Journal of the American Chemical Society 2003, 125, 3192-3193.
    [37] B. S. Lee, J. K. Lee, W.-J. Kim, Y. H. Jung, S. J. Sim, J. Lee and I. S. Choi, Biomacromolecules 2007, 8, 744-749.
    [38] D. A. Ossipov and J. Hilborn, Macromolecules 2006, 39, 1709-1718.
    [39] M. Malkoch, R. Vestberg, N. Gupta, L. Mespouille, P. Dubois, A. F. Mason, J. L. Hedrick, Q. Liao, C. W. Frank, K. Kingsbury and C. J. Hawker, Chemical Communications 2006, 2774-2776.
    [40] L. A. Canalle, M. van der Knaap, M. Overhand and J. C. M. van Hest, Macromolecular Rapid Communications 2011, 32, 203-208.
    [41] R. Hoogenboom, B. C. Moore and U. S. Schubert, Chemical Communications 2006, 4010-4012.
    [42] H. G. Borner and H. Schlaad, Soft Matter 2007, 3, 394-408.
    [43] E. Katchalski, I. Grossfeld and M. Frankel, Journal of the American Chemical Society 1947, 69, 2564-2565.
    [44] H. Schlaad, B. Smarsly and M. Losik, Macromolecules 2004, 37, 2210-2214.
    [45] A. Harada, S. Cammas and K. Kataoka, Macromolecules 1996, 29, 6183-6188.
    [46] K. Akiyoshi, A. Ueminami, S. Kurumada and Y. Nomura, Macromolecules 2000, 33, 6752-6756.
    [47] M. ?osik, S. Kubowicz, B. Smarsly and H. Schlaad, The European Physical Journal E: Soft Matter and Biological Physics 2004, 15, 407-411.
    [48] T. J. Deming, Nature 1997, 390, 386-388.
    [49] I. Dimitrov and H. Schlaad, Chemical Communications 2003, 2944-2945.
    [50] W. Vayaboury, O. Giani, H. Cottet, A. Deratani and F. Schué, Macromolecular Rapid Communications 2004, 25, 1221-1224.
    [51] T. Aliferis, H. Iatrou and N. Hadjichristidis, Biomacromolecules 2004, 5, 1653-1656.
    [52] R. B. Merrifield, Journal of the American Chemical Society 1963, 85, 2149-2154.
    [53] M. Bodanszky and A. Bodanszky, The practice of peptide synthesis, Springer-Verlag New York, 1984, p.
    [54] E. Kang, S. C. Lee and K. Park, Nanobiotechnology 2007, 3, 96-103.
    [55] J. Sun, Y. Huang, Q. Shi, X. Chen and X. Jing, Langmuir : the ACS journal of surfaces and colloids 2009, 25, 13726-13729;
    [56] E. P. Holowka, V. Z. Sun, D. T. Kamei and T. J. Deming, Nature materials 2006, 6, 52-57.
    [57] Y. L. Peng, Y. Huang, H. J. Chuang, C. Y. Kuo and C. C. Lin, Polymer 2010, 51, 4329-4335.
    [58] B. Nottelet, A. El Ghzaoui, J. Coudane and M. Vert, Biomacromolecules 2007, 8, 2594-2601.
    [59] X. He, L. Zhong, K. Wang, S. Lin and S. Luo, Reactive and Functional Polymers 2009, 69, 666-672.
    [60] G. Orts Gil, M. ?osik, H. Schlaad, M. Drechsler and T. Hellweg, Langmuir : the ACS journal of surfaces and colloids 2008, 24, 12823-12828.
    [61] J. Babin, J. Rodriguez-Hernandez, S. Lecommandoux, H. A. Klok and M. F. Achard, Faraday Discuss. 2004, 128, 179-192.
    [62] C. Konák, T. Reschel, D. Oupicky and K. Ulbrich, Langmuir : the ACS journal of surfaces andcolloids 2002, 18, 8217-8222.
    [63] L. Y. Li, W. D. He, J. Li, B. Y. Zhang, T. T. Pan, X. L. Sun and Z. L. Ding, Biomacromolecules 2010.
    [64] A. Harada and K. Kataoka, Macromolecules 1995, 28, 5294-5299.
    [65] A. Harada, M. Kawamura, T. Matsuo, T. Takahashi and K. Kono, Bioconjugate chemistry 2006, 17, 3-5.
    [66] H. Yu, X. Shen, Y. Li and Y. Duan, Journal of Macromolecular Science?, Part A: Pure and Applied Chemistry 2010, 47, 230-234.
    [67] T. Koga, A. Nagaoka and N. Higashi, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 284, 521-527.
    [68] S. Motala-Timol, D. Jhurry, J. Zhou, A. Bhaw-Luximon, G. Mohun and H. Ritter, Macromolecules 2008, 41, 5571-5576.
    [69] J. Rao, Y. Zhang, J. Zhang and S. Liu, Biomacromolecules 2008, 9, 2586-2593.
    [70] Y. Xiao, H. Peng, X. Mao, A. K. Whittaker and R. Crawford, Advanced Materials Research 2008, 32, 215-222.
    [71] C. Zhao, X. Zhuang, C. He, X. Chen and X. Jing, Macromolecular Rapid Communications 2008, 29, 1810-1816;
    [72] C. Deng, X. Chen, H. Yu, J. Sun, T. Lu and X. Jing, Polymer 2007, 48, 139-149.
    [73] G. M. Whitesides, J. P. Mathias and C. T. Seto, Science 1991, 254, 1312.
    [74] G. M. Whitesides and B. Grzybowski, Science 2002, 295, 2418.
    [75] T. Yamamoto, P. Nair, N. E. Jacobsen, P. Davis, S. Ma, E. Navratilova, S. Moye, J. Lai, H. I. Yamamura and T. W. Vanderah, Journal of Medicinal Chemistry 2008, 51, 6334-6347.
    [76] D. Tang, J. Lin, S. Lin, S. Zhang, T. Chen and X. Tian, Macromolecular Rapid Communications 2004, 25, 1241-1246.
    [77] A. Toyotama, S. Kugimiya, J. Yamanaka and M. Yonese, CHEMICAL AND PHARMACEUTICAL BULLETIN-TOKYO- 2001, 49, 169-172.
    [78] C. M. Dong, K. M. Faucher and E. L. Chaikof, Journal of Polymer Science Part A: Polymer Chemistry 2004, 42, 5754-5765.
    [79] C. M. Dong, X. L. Sun, K. M. Faucher, R. P. Apkarian and E. L. Chaikof, Biomacromolecules 2004, 5, 224-231.
    [80] Z. Yang, J. Yuan and S. Cheng, European Polymer Journal 2005, 41, 267-274.
    [81] M. L. Patil, M. Zhang and T. Minko, Acs Nano 2011, 5, 1877-1887.
    [84] F. Van De Manakker, T. Vermonden, C. F. Van Nostrum and W. E. Hennink, Biomacromolecules 2009, 10, 3157-3175.
    [83] G. Grabner, S. Monti, G. Marconi, B. Mayer, C. Klein and G. K?hler, The Journal of Physical Chemistry 1996, 100, 20068-20075.
    [84] A. Nakamura, S. Sato, K. Hamasaki, A. Ueno and F. Toda, The Journal of Physical Chemistry 1995, 99, 10952-10959.
    [85] J. Li, A. Harada and M. Kamachi, Polymer Journal 1994, 26, 1019-1026.
    [86] J. Li, X. Li, K. C. Toh, X. Ni, Z. Zhou and K. W. Leong, Macromolecules 2001, 34, 8829-8831.
    [87] X. Ni, A. Cheng and J. Li, Journal of Biomedical Materials Research Part A 2009, 88, 1031-1036.
    [88] J. Li, X. Li, X. Ni and K. W. Leong, Macromolecules 2003, 36, 2661-2667.
    [89] Y. Chen, X. H. Pang and C. M. Dong, Advanced Functional Materials 2010, 20, 579-586.
    [1] B. Obermeier, F. Wurm, C. Mangold and H. Frey, Angewandte Chemie International Edition 2011, 50, 7988-7997.
    [2] D.Wilms, S. E. Stiriba, H. Frey, Accounts of Chemical Research 2010, 43, 129-141.
    [3] M. Calderón, M. A. Quadir, S. K. Sharma and R. Haag, Advanced Materials 2010, 22, 190-218.
    [4] J. del Barrio, L. Oriol, C. Sa?nchez, J. L. Serrano, A. Di Cicco, P. Keller and M. H. Li, Journal of the American Chemical Society 2010, 132, 3762-3769.
    [5] A. Carlmark, C. Hawker, A. Hult and M. Malkoch, Chem. Soc. Rev. 2008, 38, 352-362.
    [6] D. A. Tomalia, Progress in polymer science 2005, 30, 294-324.
    [7] C. O. Liang and J. M. J. Fréchet, Macromolecules 2005, 38, 6276-6284.
    [8] C. Gao, D. Yan, Progress in Polymer Science 2004, 29, 183-275.
    [9] I. Gitsov, Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, 5295-5314.
    [10] Y. Li and Y. Zou, Advanced Materials 2008, 20, 2952-2958.
    [11] W. M. Wan and C. Y. Pan, Chemical Communications 2008, 5639-5641.
    [12] Z. Ge, D. Chen, J. Zhang, J. Rao, J. Yin, D. Wang, X. Wan, W. Shi and S. Liu, Journal of Polymer Science Part A: Polymer Chemistry 2007, 45, 1432-1445.
    [13] M. A. Mintzer and E. E. Simanek, Chemical Reviews 2008, 109, 259-302.
    [14] J. B. Wolinsky and M. W. Grinstaff, Advanced Drug Delivery Reviews 2008, 60, 1037-1055.
    [15] D. Tomalia, L. Reyna and S. Svenson, Biochemical Society Transactions 2007, 35, 61.
    [16] J. K. Kim, E. Lee, Y. H. Jeong, J. K. Lee, W. C. Zin and M. Lee, Journal of the American Chemical Society 2007, 129, 6082-6083.
    [17] C. C. Lee, J. A. MacKay, J. M. J. Fréchet and F. C. Szoka, Nature biotechnology 2005, 23, 1517-1526.
    [18] E. R. Gillies, T. B. Jonsson and J. M. J. Fréchet, Journal of the American Chemical Society 2004, 126, 11936-11943.
    [19] A. P. Goodwin, J. L. Mynar, Y. Ma, G. R. Fleming and J. M. J. Fréchet, Journal of the American Chemical Society 2005, 127, 9952-9953.
    [20] L. Sun, Y. Yang, C. M. Dong, Y. Wei, Small 2011, 7, 401-406.
    [21] J-P. Billot, A. Douy, B.Gallot, Die Makromolekulare Chemie 1976, 177, 1889.
    [22] K.T. Kim, C. Park, G. W. M. Vandermeulen, D. A. Rider, C. Kim, M.A. Winnik, I. Manners, Angewandte Chemie International Edition 2005, 44, 7964-7968.
    [23] S. W. Kuo, H. F. Lee, W. J. Huang, K. U. Jeong and F. C. Chang, Macromolecules 2009, 42, 1619-1626.
    [24] Y. You, Y. Chen, C. Hua and C. M. Dong, Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, 709-718.
    [25] H. A. Klok and J. Rodríguez-Hernández, Macromolecules 2002, 35, 8718-8723.
    [26] H. Collet, E. Souaid, H. Cottet, A. Deratani, L. Boiteau, G. Dessalces, J. C. Rossi, A. Commeyras and R. Pascal, Chemistry-a European Journal 2010, 16, 2309-2316.
    [27] J. T. Wilson and E. L. Chaikof, Advanced Drug Delivery Reviews 2008, 60, 124-145.
    [28] J. Li, A. Harada and M. Kamachi, Polymer Journal 1994, 26, 1019-1026.
    [29] J. Li, X. Li, K. C. Toh, X. Ni, Z. Zhou and K. W. Leong, Macromolecules 2001, 34, 8829-8831.
    [30] X. Ni, A. Cheng and J. Li, Journal of Biomedical Materials Research Part A 2009, 88, 1031-1036.
    [31] J. Li, X. Li, X. Ni and K. W. Leong, Macromolecules 2003, 36, 2661-2667.
    [32] H. S. Choi, T. Ooya, S. Sasaki, N. Yui, M. Kurisawa, H. Uyama and S. Kobayashi, ChemPhysChem 2004, 5, 1431-1434.
    [33] S. C. Lee, H. S. Choi, T. Ooya and N. Yui, Macromolecules 2004, 37, 7464-7468.
    [34] R. K. Iha, K. L. Wooley, A. M. Nystrom, D. J. Burke, M. J. Kade, C. J. Hawker, Chemical Review 2009, 109, 620-5686.
    [35] C. J. Hawker and K. L. Wooley, Science 2005, 309, 1200.
    [36] B. Parrish, R. B. Breitenkamp and T. Emrick, Journal of the American Chemical Society 2005, 127, 7404-7410.
    [37] X. L. Sun, C. L. Stabler, C. S. Cazalis and E. L. Chaikof, Bioconjugate chemistry 2006, 17, 52-57.
    [38] A. C. Engler, H. Lee and P. T. Hammond, Angewandte Chemie International Edition 2009, 48, 9334-9338.
    [39] Y. Cheng, C. He, C. Xiao, J. Ding, X. Zhuang, X. Chen, Journal of Polymer Science Part A:Polymer Chemistry 2011, 2, 2627-2634.
    [40] Y. C. Lin and S. W. Kuo, Polym. Chem. 2011, 3, 162-171.
    [41] C. Hua, C. M. Dong and Y. Wei, Biomacromolecules 2009, 10, 1140-1148.
    [42] S. M. Peng, Y. Chen, C. Hua and C. M. Dong, Macromolecules 2008, 42, 104-113.
    [43] Y. Chen, X. H. Pang and C. M. Dong, Advanced Functional Materials 2010, 20, 579-586.
    [44] C. M. Dong, X. L. Sun, K. M. Faucher, R. P. Apkarian and E. L. Chaikof, Biomacromolecules 2004, 5, 224-231.
    [45] J. W. Lee, B. K. Kim, H. J. Kim, S. C. Han, W. S. Shin and S. H. Jin, Macromolecules 2006, 39, 2418-2422.
    [46] J. W. Lee, H. J. Kim, S. C. Han, J. H. Kim and S. H. Jin, Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, 1083-1097.
    [47] D. A. O. F. IMIDAZOLIDIN-LONE and C. E. T. O. A. IMINES, Synth. Commun 1999, 29, 167.
    [48] R. Wilder and S. Mobashery, The Journal of Organic Chemistry 1992, 57, 2755-2756.
    [49] O. Altintas, B. Yankul, G. Hizal and U. Tunca, Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, 6458-6465.
    [50] O. Altintas, G. Hizal and U. Tunca, Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, 5699-5707.
    [51] L. Zhang and A. Eisenberg, Journal of the American Chemical Society 1996, 118, 3168-3181.
    [52] X. H. Dai, C. M. Dong and D. Yan, The Journal of Physical Chemistry B 2008, 112, 3644-3652.
    [53] S. Y. Park, B. R. Han, K. M. Na, D. K. Han and S. C. Kim, Macromolecules 2003, 36, 4115-4124.
    [54] N. Higashi, T. Koga, N. Niwa and M. Niwa, Chemical Communications 2000, 361-362.
    [55] S. Qiu, H. Huang, X. H. Dai, W. Zhou and C. M. Dong, Journal of Polymer Science Part A: Polymer Chemistry 2009, 47.
    [56] J. Babin, J. Rodriguez-Hernandez, S. Lecommandoux, H. A. Klok and M. F. Achard, Faraday Discuss. 2004, 128, 179-192.
    [57] S. Lecommandoux, M. F. Achard, J. F. Langenwalter and H. A. Klok, Macromolecules 2001, 34, 9100-9111.
    [58] C. Hua, S. M. Peng and C. M. Dong, Macromolecules 2008, 41, 6686-6695.
    [59] L. Sun, L. J. Shen, M. Q. Zhu, C. M. Dong and Y. Wei, Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, 4583-4593.
    [60] H. Feng and C. M. Dong, Biomacromolecules 2006, 7, 3069-3075.
    [61] D. E. Discher and F. Ahmed, Annu. Rev. Biomed. Eng. 2006, 8, 323-341.
    [62] E. R. Gillies and J. M. J. Fréchet, Bioconjugate chemistry 2005, 16, 361-368.
    [63] R. Yuan and X. Shuai, Journal of Polymer Science Part B: Polymer Physics 2008, 46, 782-790.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700