用户名: 密码: 验证码:
微纳光学环腔生物传感芯片的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳光学环腔生物传感芯片,以其特有的光学谐振增强效应使得生物传感具有极高的灵敏度,可以实现对微量生物物质的无标记探测。此外,该传感芯片通常可设计成平面波导结构,可采用成熟的半导体平面工艺加工,易于实现同其它光电芯片和微流控芯片的系统集成,并且进行化学表面处理。因此,微纳光学环腔生物传感芯片是一类极具应用前景的光学微量生物传感器件。本文在国家自然科学基金的资助下,对微环生物传感芯片的设计理论、芯片制备、和功能测试进行了系统深入的研究,同时在完成纳米级光学环腔结构工艺加工的基础上,对微环传感片上集成器件的制备工作进行了研究,制备了纳米光栅耦合器件、富硅二氧化硅微盘器件和微环光子晶体器件。
     阐述了微纳光学环腔生物传感芯片的研究状况和其光谐振效应对生物物质进行传感的机理,并利用耦合模理论对传感芯片的模型进行设计分析,得到传感芯片中各参数的作用,其中,微环芯片的品质因数Q是决定探测灵敏度的一个重要因素。对微纳光学环腔芯片的制备工艺进行了深入的研究,实现了氮化硅和硅波导两种材料体系的微环芯片的制备工作。其中,利用热氧化、低压化学气相沉积(LPCVD)、光学光刻、电感耦合增强反应离子刻蚀(ICP)、等离子体增强化学气相沉积(PECVD)等工艺,制备了最小线宽为1μm,波导侧壁粗糙度小于30 nm的氮化硅/二氧化硅材料结构的光学环腔传感芯片;利用电子束光刻(EBL),ICP等工艺,制备了silicon-on-insulator(SOI)材料体系的微纳光学环腔结构,最小结构尺寸为160 nm,波导侧壁粗糙度小于10 nm。在完成了微纳光学环腔生物传感芯片的制备工作后,利用高精度精密调节架、宽谱光源、光谱仪等设备对微环芯片的光学特性进行了测试,测得所制备的光学环腔芯片品质因数Q高达25000。
     设计出相应的夹具对所制备的光学环腔芯片进行封装,使其成为密封的化学生物传感芯片。并利用光学环腔传感芯片对不同折射率的溶液进行了探测。在测量中,得到葡萄糖溶液的浓度响应曲线,探测灵敏度高达10~(-4)RIU(折射率单元)。采用表面探测的机理,利用经过炭疽杆菌单链DNA探针绑定的光学环腔芯片,通过DNA杂交的原理,实现该芯片对炭疽杆菌单链DNA浓度的测量,得出炭疽杆菌单链DNA浓度的响应曲线,探测灵敏度达到纳摩尔每升。
     对三种微环传感片上集成器件:纳米光栅耦合器件、富硅二氧化硅微盘器件和微环光子晶体器件的制备工艺进行了研究。其中,利用EBL,ICP等工艺,制备了二元闪耀光栅耦合器件,其最小尺寸为40 nm,波导侧壁粗糙度小于10 nm;利用PECVD、高温退火、电子束光刻、ICP刻蚀和RIE刻蚀等工艺,实现了最小直径为4μm的富硅二氧化硅微盘器件的制备;利用原子层淀积(ALD)、EBL、ICP等工艺,制备了具有纳米级自对准的微环光子晶体结构,实现精度为原子量级的自对准工艺。
Microring resonator biosensor shows promising because of its robustness, lable-free detection mechanism, mature CMOS fabrication technology, low cost and high sensitivity achieved by the long lifetime of photons that circle in the ring, which increases the probability of photons interacting with analytes. Based on planar waveguides, it not only allows surface chemical modifications, but can also be integrated with other optoelectronic devices and microfluidic handling, leading to highly integrated and intelligent sensing systmes. Furthermore, it offers a unique advantage of reducing the device size without sacrificing the sensitivity by virtue of the resonance. Therefore, micoring resonator biosensor is highly sensitive that can detect minute amount of analytes. Supported by the National Science Foundation of China, the fabrication and sensing application of the microring resonator are systematically studied in this thesis.
     The sensing mechanism of the microring resonator biosensor was intrudoced and the optical parameters were analyzed of which the Q factor determines the sensitivity. Fabrication of the microring resonator biosensors based on silicon nitride and silicon waveguide systems was realized. By using thermal oxidation, Low pressure chemical vapor deposition (LPCVD), optical lithography, inductively coupled plasma etcher (ICP) and plasma enhanced chemical vapor deposition (PECVD) processes, the silicon nitride microring resonators with smallest feature size of 1 urn and waveguide sidewall roughness of less than 30 nm were fabricated and by using e-beam lithography (EBL) and ICP processes, the silicon microring resonators with smallest feature size of 160 nm and waveguide sidewall roughness of less than 10 nm were fabricated. Optical characterization of the as fabricated microring resonators based on transmission mechanism was done by using tunable light rource, optical transmission alignment system and optical spectrometer and Q factors of the devices as high as 25000 were measured.
     The microring resonators were later packaged to serve as a sealed chemical sensing system. Glucose solutions with various concentrations were detected by the system which results in a linear corresponding curve between the resonance wavelength shifts and the concentrations with a sensitivity of 10~(-4)RIU. Bacillus Anthracis ssDNA solutions with various concentrations by surface sensing mechanism with the microring resonators were detected and linear corresponding curves with sensitivity of n-mole per liter were achieved.
     Fabrication of nanoscale optical grating coupler, silicon rich silicon oxide microdisk and annular photonic crystals (APC), which are supposed to be integrated with the microring biosensor as optical coupler, light source and polarization controller on chip, was discussed. Nanoscale optical grating coupler with smallest features of 40 run in a dense fashion and waveguide sidewall roughness of less than 10 nm was realized. The fabrication process of silicon rich silicon oxide microdisk devices by using PECVD, high temperature annealing, e-beam lithography, ICP etching and RIE etching processes was studied and the microdisks with smallest diameter of 4μm were realized. Annular photonic crystals was fabricated by using atomic layer depositon (ALD), EBL, ICP, reactive ion etcher (RIE) and wet etching and a self-alignment technique was developed to achieve a precise nanoscale alignment resolution.
引文
[1]张先恩.生物传感器.第一版.北京:化学工业出版社,2006:1-15
    [2] Haake H M,Schutz A,Gauglitz G.Label-free detection of biomolecular interaction by optical sensors.Fresenius Journal of Analytical Chemistry,2000,366(6-7): 576-585
    [3] Rich R L,Myszk D G A.A Survey of the Year 2002 Commercial Optical Biosensor Literature.Journal of Molecular Recognition,2003,16(6):351-382
    [4] Shew B Y,Kuo C H,Huang Y C,et al.UV-LIGA interferometer biosensor based on the SU-8 optical waveguide.Sensors and Actuators A,2005,120:383-389
    [5] Yuan W,Ho H P,Wong C L,et al.Surface plasmon resonance biosensor incorporated in a Michelson interferometer with enhanced sensitivity.IEEE Sensors Journal,2007,7(1):70-73
    [6] Ran B,Lipson S G.Comparison between sensitivities of phase and intensity detection in surface plasmon resonance.Opt.Lett.,2006,14(11):5641-5650
    [7] Chinowsky T M,Quinn J G,Bartholomew D U,et al.Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor.Sensors and Actuators B,2003,91:266-274
    [8] Tetz K.A,Pang L,Fainman Y.High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array Transmittance.Optics Lett.,2006,31(10):1528-1530
    [9] Heideman R G,Lambeck P V.Remote opto-chemical sensing with extreme sensitivity:design,fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder Interferometer System.Sensors and Actuators B,1999,61:100-127
    [10]Kinrot N,Nathan M.Investigation of a Periodically Segmented waveguide Fabry-Perot Interferometer for Use as a Chemical/Biosensor.Journal of Lightwave Tech.,2006,24(5):2139-2145
    [11]Yih J N,Chu Y M,Mao Y C,et al.Optical waveguide biosensors constructed with subwavelength gratings. Appl. Opt., 2006, 45(9): 1938-1942
    [12] Vollmer F, Braun D, Libchaber A, et al. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett., 2002, 80(21): 4057-4059
    [13] Blair S, Chen Y. Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. Appl. Opt., 2001, 40(4): 570-582
    [14] Krioukov E, Klunder D J W, Driessen A, et al. Sensor based on an integrated optical microcavity. Opt. Lett., 2002, 27(7): 512-514
    [15] Cho S Y, Jokerst N M. A polymer microdisk photonics sensor integrated onto silicon. IEEE Photonics Technology Lett., 2006, 18(20): 2096-2098
    [16] Vahala K J. Optical microcavities. Nature, 2003, 424(8): 839-846
    [17] Boyd R W, Heebner J E. Sensitive disk resonator photonic biosensor. Appl. Opt.,2001, 40(31): 5742-5747
    [18] Marcatili E A J. Bends in optical dielectric guides. Bell Syst. Tech. J., 1969, 48(9):2103-2132
    [19] Heebner J E, Chak P, Pereira S, et al. Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. J. Opt. Soc. Am. B, 2004,21(10): 1818-1832
    [20] Oda K, Suzuki S, Takahashi H, et al. An optical FDM Distribution Experiment Using a High Finesse Waveguide-Type Double Ring Resonator. IEEE. Photonic Lett., 1994,6(8): 1031-1034
    [21] Almeida V R, Barrios C A, Panepucci R R, et al. All-optical control of light on a silicon chip. Nature, 2004, 431(10): 1081-1083
    [22] Hagnes S C, Rafizadeh D, Ho S T, et al. FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators. Journal of Lightwave Tech., 1997, 15(11):2154-2165
    [23] Yan X, Ma C S, Xu Y Z, et al. Analysis and optimization for a polymer cross-grid array of microring resonant wavelength multiplexers. Opt. Engineering, 2005, 44(7):075001
    [24] Absil P P, Hryniewicz J V, Little B E, et al. Compact microring notch filters. IEEE Photonics Tech. Lett., 2000, 12(4): 398-400
    [25] Madsen C K, Lenz G. Optical all-pass filters for phase design with application for dispersion compensation. IEEE Photonics Tech. Lett., 1998, 10(7): 994-996
    [26] Absil P P, Hryniewicz J V, Little B E, et al. Wavelength conversion in GaAs micro-ring resonators. Opt. Lett., 2000, 25(8): 554-556
    [27] Xu Q F, Schmidt B, Pradhan S, et al. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(5): 325-327
    [28] Ksendzov A, Lin Y. Integrated optics ring-resonator sensors for protein detection.Opt. Lett., 2005, 30(24): 3344-3346
    [29] Chao C Y, Guo L J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett., 2003, 83(8): 1527-1529
    [30] Guo J P, Shaw M J, Vawter G A, et al. High-Q microring resonator for biochemical Sensors. In Proc. SPIE, 2005, 5728: 83-92
    [31] Kiyat I, Kocabas C, Aydinli A. Integrated micro ring resonator displacement sensor for scanning probe microscopies. Journal of Micromech. and Microeng., 2004, 14:374-381
    [32] Chao C Y, Fung W, Guo L J. Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Topics Quantum Electron, 2006, 12(1): 134-142
    [33] White I M, Oveys H, Fan X D. Liquid-core optical ring-resonator sensors. Opt. Lett.,2006,31(9): 1319-1321
    [34] Yal(?)(?)n A, Popat K C, Aldridge J C, et al. Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Topics Quantum Electron, 2006, 12(1): 148-154
    [35] Vlassov Y A, McNab S J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express., 2004, 12(8): 1622-1630
    [36] Van V, Absil P P, Hryniewicz J V, et al. Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model. Journal of Lightwave Tech., 2001, 19(11): 1734-1739
    [37] Bulla P D A, Borges B H V, Romero M A, et al. Design and fabrication of SiO_2/Si_3N_4 integrated-optics waveguides on silicon substrates. IEEE Transactions on Microwave theory and tech., 2002, 50(1): 9-12
    [38] Little B E. Advances in Microring Resonator. In Proc. of Integrated Photonics Research Conference, Washington, DC, 2003: 165-167
    [39]Tee C W,Williams K A,Penty R V,et al.Fabrication-Tolerant Active-Passive Integration Scheme for Vertically Coupled Microring Resonator.IEEE J.Sel.Topics Quantum Electron,2006,12(1):108-116
    [40]方俊鑫,曹庄琪,杨傅子.光波导技术物理基础.第一版.上海:上海交通大学出版社,1987:204-209
    [41]李玉权,崔敏.光波导理论与技术.第一版.北京:人民邮电出版社,2002:140-146
    [42]赵策洲.全硅集成光学一理论与工艺(续三).半导体光电,1995,16(1):86-91
    [43]Yariv A.Universal relations for coupling of optical power between microrsonators and dielectric waveguides.Electronics Lett.,2000,36(4):321-322
    [44]Little B E,Chu S T,Haus H A,et al.Microring resonator channel dropping filters.Journal Lightwave Technol.,1997,15(6):998-1005
    [45]Liu Y,Chang T,Craig A E.Coupled mode theory for modeling microring resonators.Opt.Engineering,2005,44(8):084601
    [46]Vassallo C.Optical Waveguide Concepts.Netherlands:Elsevier Science,1991.102-135
    [47]Niehusmann J,V(o|¨)rckel A,Bolivar P H,et al.Ultrahigh-quality-factor silicon-oninsulator microring resonator.Opt.Lett.,2004,29(24):2861-2863
    [48]Chao C Y,Guo L J.Design and optimization ofmicroring resonators in biochemical sensing applications.Journal of Lightwave Tech.,2006,24(3):1395-1402
    [49]Flamm D L.Mechanisms of silicon etching in fluorine-and-chlorine-containing plasmas.Pure Applied Chemistry,1990,62(9):1709-1720
    [50]夏志轩.光学微环生物传感器的设计与优化:[硕士学位论文].武汉:华中科技大学图书馆,2008
    [51]Riley P E,Hanson D A.Comparison of etch rates of silicon nitride,silicon dioxide,and polycrystalline silicon upon O_2 dilution of CF_4 plasmas.J.Vac.Sci.Technol.B,1989,7(6):1352-1356
    [52]Dulak J,Howard B J,Steinbruchel Ch.Etch mechanism in the reactive ion etching of silicon nitride.J.Vac.Sci.Technol.A,1991,9(3):775-778
    [53]Riley P E,Defonseka B N,Sum J C,et al.Reactor Characterization for a process to etch Si_3N_4 Formed on Thin SiO_2. IEEE Transactions on Semiconductor Manufacturing, 1993, 6(3): 290-292
    [54] Mele T C, Nulman J, Krusius J P. Selective and anisotropic reactive ion etch of LPCVD silicon nitride with CHF_3 based gases. J. Vac. Sci. Technol. B, 1984, 2(4);684-687
    [55] Betanzo C R, Moshkalyov S A, Swart J W. Silicon nitride etching in high- and low-density plasmas using SF_6/O_2/N_2 mixtures. J. Vac. Sci. Technol. A, 2003, 21(2):461-469
    [56] Bulla D A P, Borges B V, Romero M A. Design and Fabrication of SiO_2/Si_3N_4 Integrated-Optics Waveguides on Silicon Substrates. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(1): 9-12
    [57] Kuo Y. Etch mechanism in the low refractive index silicon nitride plasma-enhanced chemical vapor deposition process. Appl. Phys. Lett., 1993, 63(2): 144-146
    [58] Dulak J, Howard B J, Steinbruchel Ch. Etch mechanism in the reactive ion etching of silicon nitride. J. Vac. Sci. Technol. A, 1991, 9(3): 775-778
    [59] Standaert T, Hedlund C, Joseph E A. Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide. J. Vac. Sci. Technol. A, 2004, 22(1): 53-60
    [60] Li Y X, French P J, Wolffenbuttel R F. Selective reactive ion etching of silicon nitride over silicon using CHF_3 with N_2 addition. J. Vac. Sci. Technol. B, 1995,13(5): 2008-2012
    [61] Yoo K J, Chi S H, Han S B, et al. Dependence of metal sheet resistance on metal etch/post-etch treatment and subsequent process conditions. Vacuum, 2000,59(2000): 693-700
    [62] Paul A K, Rangelow I W. Fabrication of High Aspect Ratio Structures using Chlorine Gas Chopping Technique. Microelectronic Engineering, 1997, 35(1997):79-82
    [63] Kim B, Chung S, Cho S M. Layer-by-layer etching of Cl-adsorbed silicon surfaces by low energy A~+ ion irradiation. Applied Surface Science, 2002, 187(2002):124-129
    [64] Flamm D L. Mechanisms of silicon etching in fluorine- and chlorine-containing plasmas. Pure & Appl. Chem., 1990, 62(9): 1709-1720
    [65] Nold M, Kleditzsch S, Riedel U. Modelling inductively coupled plasmas: a sensitivity study on plasma chemistry and surface chemistry. Surface and Coatings Technology, 2001, 142-144(2001): 531-535
    [66] Barone M E, Robinson T O, Graves D B. Molecular Dynamics Simulations of Direct Reactive Ion Etching: Surface Roughening of Silicon by Chlorine. IEEE Transactions on Plasma Science, 1996, 24(1): 77-78
    [67] Paul A K, Dimri A K, Bajpai R P. Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application. Vacuum, 2003,68(2003): 191-196
    [68] Rangelow I W. Reactive ion etching for high aspect ratio silicon micromachining.Surface and Coatings Technology, 1997, 97(1997): 140-150
    [69] Jung M Y, Choi S S, Kim J W, et al. The influence of He addition on Cl-etching procedure for Si-nanoscale structure fabrication using reactive ion etching system.Surface Science, 2001, 482-485(2001):1119-1124
    [70] Welch C C, Goodyear A L, Wahlbrink T, et al. Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas. Microelectronic Engineering, 2006, 83(2006): 1170-1173
    [71] Yalcin A. label-free optical sensing of biomolecules using microring resonators: [硕士学位论文], 2006
    [72] Liang X, Zhang Q, Jiang H. Quantitative reconstruction of refractive index distribution and imaging of glucose concentration using diffusing light. Applied Optics, 2006, 45(32): 8360-8365
    [73] Rich R L, Myszka D G. A Survey of the Year 2002 Commercial Optical Biosensor Literature. Journal of Molecular Recognition, 2003, 16: 351-382
    [74] Farahi F. Multiplexed Fiber-optic Sensors Using Ring Interferometers. Journal of Modern Optics, 1989, 3(1989): 337-348
    [75] Chovan T, Gutman A. Microfabricated Devices in Biotechnology and Biochemical Processing. Trends in Biotechnology, 2002, 20(3):116-122
    [76] Bier F F. Determination of the Turnover Number of the Restriction Endonuclease EcoRI Using Evanescent Wave Technology, Analytical Bioanal. Chemistry, 2002,372:308-313
    [77] Tarsa P B, Rabinowitz P, Lehmann K. Evanescent Field Absorption in a Passive Optical Fiber Resonator Using Continuous-wave Cavity Ring-down Spectroscopy.Chemical Physics Letters, 2004, 383: 297-303
    [78] Feng J, Zhou Z. High efficiency compact grating coupler for integrated optical circuits. In: Proceedings of SPIE, Changsha, 2006: 6351-63511H
    [79] Englund D, Altug H, Fushman I, et al. Efficient terahertz room-temperature photonic crystal nanocavity laser. Applied Physics Letters, 2007, 91(7): 071126
    [80] Tanabe T, Notomi M, Mitsugi S, et al. A112optical switches on a silicon chip realized using photonic crystal nanocavities. Applied Physics Letters, 2005, 87 (15):151112
    [81] Vlasov Y A, Bo X Z, Sturm J C, et al. On2chip natural assembly of silicon photonic bandgap crystals. Nature, 2001, 414(6861): 289-293
    [82] Tanabe T, Notomi M, Mitsugi S, et al. Fast bistable all-optical switch and memory on a silicon photonic crystal on2chip. Optics Letters, 2005, 30(19): 2575-2577
    [83] Gao D, Hao R, Zhou Z. Mach-Zehnder interferometer based on coupled dielectric pillars. Chinese Physics Letters, 2007, 24(11): 3172-3174
    [84] Kurt H, Citrin D S. Annular photonic crystals. Opt. Express, 2005, 13: 10316-10326
    [85] Kurt H, Hao R, Chen Y, et al. Design of annular photonic crystal slabs. Optics Letters, 2008, 33(14): 1614-1616
    [86] Suntola T. Atomic layer epitaxy. Thin Solid Films. 1992, 216: 84-86
    [87] Suntola T. Surface chemistry of materials deposition at atomic layer level. Applied Surface Science. 1996, 100-101: 391-398
    [88] King J S, Graugnard E, Summers C J. Atomic layer deposition in porous structures:3D photonic crystals. Applied Surface Science, 2005, 244: 511-516
    [89] Pavesi L, Negro L D, Mazzoleni C, et al. Optical gain in silicon nanocrystals.Nature, 2000, 408: 440-444
    [90] Pavesi L, Negro L D, Mazzoleni C, et al. Optical gain in silicon nanocrystals.Nature, 2000, 408: 440-444
    [91] Ross G G, Barba D, Martin F. Structure and luminescence of Silicon nanocrystals embedded in SiO_2. Review article submitted to International Journal of Nanotechnology, 2006
    [92] Walters R J, Kalkman J, Polman A, et al. Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO_2. Phys. Rev. B, Condens. Matter, 2006,73: 132302-1-132302-4
    [93] Walters R J, Bourianoff G I, Atwater H A. Field effect electroluminescence in silicon nanocrystals. Nat. Mater, 2005, 4(2): 143- 146
    [94] Jaiswal S L, Simpson J T, Withrow S P, et al. Design of a nanoscale silicon laser.Appl. Phys, 2003, A77, 57
    [95] Franzo G, Irrera A, Moreira E C, et al. Electroluminescence of silicon nanocrystals in MOS structures. Appl. Phys. A, 2002, 74: 1-5
    [96] Zhang R, Seo S, Alexey P M, et al. Visible range whispering-gallery mode in microdisk array based on size-controlled Si nanocrystals. Applied Physics Letters,2006,88: 153120
    [97] Ghulinyan M, Navarro-Urrios D, Pitanti A, et al. Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator. Optics Express, 2008, 16(17): 13218-13224
    [98] Kekatpure R D, Brogersma M L. High-Q Whispering Gallery Modes in Wet Etched Silica Microdisk Resonators Containing Silicon Nanocrystals. In: Proceeding of Group IV Photonics, IEEE, 2006: 22-24
    [99] Guizhen Y, Chan P C H, Hsing I M, et al. An improved TMAH Si-etching solution without attacking exposed aluminum. Sensors & Actuators A, 2001, 89(1-2):135-141
    [100] Veenendaal E V, Sato K, Shikida M, et al. Micromorphology of single crystalline silicon surfaces during anisotropic wet chemical etching in KOH and TMAH.Sensors & Actuators A, 2001, 93(3): 219-231

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700