用户名: 密码: 验证码:
基于日本脑炎病毒复制子载体系统的疫苗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型脑炎病毒(Japanese encephalitis virus,JEV)属于黄病毒科黄病毒属,主要在亚洲流行,可引起严重的中枢神经系统传染病,感染后致死率高达30%左右,并有50%的存活者会留下永久性的神经系统后遗症。目前国际通用的灭活疫苗存在着副作用较大且费用较高的问题,而我国应用的减毒活疫苗未通过国际认证且存在着一定的回复风险,因此对于乙型脑炎疫苗的研究工作依然十分重要。
     复制子表达系统是在RNA病毒感染性克隆的基础上删除病毒的结构基因,亚克隆其它外源基因,利用(+)RNA病毒的自主复制特性,转染细胞后表达自身非结构蛋白以及外源蛋白。如果辅以表达病毒结构蛋白的辅助载体共转染细胞,可以重新包装成新的假病毒颗粒。理论上讲,复制子RNA在细胞胞浆内大量扩增,使得外源基因也随之高水平表达,是表达异源基因的良好载体。假病毒颗粒只具有“一次感染能力”,因为其包装的RNA是去除了结构基因的复制子,感染细胞后由于缺乏病毒的结构蛋白,不能够重新包装成为病毒颗粒,不会感染周围细胞,作为疫苗是安全的。近年来,KUNV、TBEV和YFV复制子载体系统已经被报道可以作为发展新型疫苗的潜在的有用的工具。我们希望构建JEV复制子载体系统,并将其开发成为疫苗研究的新平台。
     我们在JEV疫苗株SA14-14-2基础上,经过优化构建了一系列复制子载体。分别将绿色荧光蛋白(EGFP)和LacZ报告基因插入复制子载体pCMW-2M、pCMW-G2R中。pCMW-2MEG转染BHK-21细胞,24小时后可以观察到EGFP的表达,在转染72小时后更为明显,在转染7天后也能观察到。流式细胞术定量检测EGFP复制子转染BHK-21细胞后有10%左右的阳性率。同样,含Lac Z的复制子转染细胞后也可获得报告基因的表达。进一步为检测复制子的体内功能活性,我们将含Lac Z报告基因的复制子载体直接进行乳鼠脑内注射,结果显示在小鼠脑组织广泛表达Lac Z,阳性信号强,覆盖面积广。这些结果表明了JEV复制子pCMW-2M能够有效地复制并高效表达外源蛋白,为建立JEV复制子载体系统打下良好基础。
     建立稳定表达结构蛋白的细胞系是复制子系统用于获得假病毒颗粒的重要环节,细胞系的成功建立能够使收获假病毒颗粒的实验步骤简化,并且获得的病毒量较多,进一步放大培养也成为现实。我们通过实验克服了E蛋白对宿主细胞的毒性,建立了稳定表达JEV结构蛋白的细胞系,可包装复制子产生假病毒颗粒,这是国内外首次关于JEV包装细胞系的报道。
     在先期实验中,我们尝试构建表达prM-E蛋白的细胞系,但是由于E蛋白对宿主细胞的毒性大,挑选不到有效表达prM-E蛋白的细胞克隆。为解决这一问题,我们先后进行了真核表达载体的改造、更换表达效率低的真核表达载体、构建在表达基因前添加信号肽序列的载体、构建了改变prM-E基因FURIN切割位点的真核表达载体等工作,但是都没有取得满意的效果。由于整体结构蛋白的完整性对于结构蛋白的翻译后加工有促进作用,添加JEV C基因可能对结构蛋白的表达起稳定作用,并且能进一步促进病毒的包装。因此我们构建了含有完整JEV结构基因的质粒pcJECME,转染BHK-21细胞后挑取细胞克隆,经过ELISA、Westren Blot、IFA的鉴定,最终获得了稳定表达JEV结构蛋白的细胞系,经过100代次以上的培养,仍有50%以上的细胞表达目的蛋白。用复制子载体pCMW-2MLac转染该细胞克隆,Lac Z的表达能力有了明显的提高。
     利用复制子系统获得假病毒颗粒的方式有两种,一种是复制子载体和表达结构蛋白的真核表达载体共转染敏感细胞;另一种是复制子载体转染稳定表达结构蛋白的细胞系。由于前者操作较为复杂且获得的假病毒滴度较低,我们利用已经构建好的JEV结构蛋白细胞系,包装JEV复制子载体以获得只具有一次感染能力的JEV假病毒颗粒。通过电镜及RT-PCR的方法鉴定了复制子转染包装细胞系后可产生假病毒颗粒,滴度可达到1.6×105 U/ml。将其免疫小鼠后,血清特异性抗E蛋白抗体滴度可达到1:2560,中和抗体滴度可达1:128。可对73%的小鼠保护免受病毒攻击。以上实验结果均表明JEV假病毒颗粒具有良好的免疫原性。
     由于假病毒颗粒疫苗具有很好的应用前景,我们首次将JEV复制子载体系统用于炭疽疫苗的研究。炭疽杆菌(Bacillus anthracis)是一种能形成芽胞的革兰氏阳性菌,由它感染引起的炭疽病是严重危害人类的一种致死性的重大传染病,同时它又是一种潜在的生物战剂,炭疽疫苗的研究对于生物反恐具有重要的意义。PA是炭疽毒素的三大组分之一,是引起机体免疫应答的最有效的免疫原,单独应用没有毒性,当前应用的疫苗主要成分是PA。将构建好的含炭疽PA4基因的JEV复制子转染包装细胞系,经过制备和纯化可得到病毒滴度为5×105U/ml的假病毒颗粒,免疫小鼠后能产生特异性的抗体,在免疫二次后的抗体滴度为1:1280,进一步验证了JEV复制子载体系统开发研究新型疫苗是可行的。
     由于JEV E蛋白可诱导产生保护性中和抗体并对病毒毒力起重要作用,是重要的抗原成份。我们还表达纯化了JEV E蛋白结构域Ⅲ,研究其作为亚单位疫苗预防JEV感染的可能。高效可溶性表达了融合蛋白Trx-JEDⅢ,表达量约占菌体蛋白的75%。利用纯化的JEDⅢ蛋白免疫新西兰兔,获得了高达1:4×105滴度的抗JEV抗体;免疫BALB/C鼠,获得了1:8×104滴度的抗JEV抗体和1:2×103滴度的抗YFV抗体。免疫小鼠血清的中和抗体可达1:256。实验表明JE DIII蛋白的抗原性及免疫原性较好,有开发研制成亚单位疫苗的潜能。
     综上所述,本研究建立了稳定的JEV复制子载体系统,可在体内外高效表达EGFP、LacZ报告基因。构建了高效稳定表达结构蛋白的细胞系,包装复制子后可产生1.6×105 U/ml的假病毒颗粒,具有良好的免疫原性,并获得了PA-JEV假病毒颗粒,免疫小鼠后可获得特异性抗体。总的来说,我们首次建立了JEV复制子载体系统的技术平台,为今后开发研究多种新型疫苗奠定了坚实的基础。
Japanese encephalitis virus (JEV) is an emerging threat throughout Southern and Southeast Asia and Australia. Although most JEV infections are asymptomatic, the estimated 0.3% that lead to disease result in over 35,000 cases including 10,000 deaths annually worldwide, and many of the remaining cases produce permanent sequelae. Japanese encephalitis virus is one of globally important human pathogens. Despite an emergence and resurgence of JEV-mediated disease,specific therapies are not yet available.
     Subgenomic replicons of positive-stranded RNA viruses , which contain all the non-structural proteins required for amplifying themselves but lack some or all of the structural proteins,have been shown to be useful tools to study viral replication in the absence of virion assembly and maturation。Several of the flaviviruses, including JEV, display a number of characteristics that make them useful for the development of delivery vectors to express foreign genes。In the past few years, heterologous genes have been expressed in the context of (i) an infectious virus genome, in the case of WNV and TBEV; or (ii) a replicon lacking viral structural proteins (C, prM, and E), in the case of several flaviviruses, including DENV,YFV, WNV,KUNV and TBEV. JEV has not been used for this purpose to date. Here we report three strategies for utilizing JEV replicon vectors to express foreign genes in a variety of cell types, taking advantage of a full-length infectious JEV cDNA that we have previously constructed. These JEV replicon expression systems can potentially serve as powerful tools in both in vitro and in vivo applications. The large packaging capacity of JEV offers a distinct advantage with regard to expressing larger genes and the treatment of associated diseases.
     We report the construction of subgenomic replicons derived from a full-length cDNA clone of the SA14-14-2 strain of JEV. Using multiple strategies, various reporter genes including green fluorescence protein (GFP) and Lac Z were expressed from these replicons in a DNA replication-dependent manner. That expressed the JEV structural proteins were also constructed and could be used to package JEV replicons into pseudo-infectious virus-like particles (PIPs). We inserted enhanced green fluorescent protein (EGFP) and Lac Z reporter gene into JEV replicon pCMW-2M, pCMW-G2R respectively,expressions of EGFP in BHK -21 cells transfected with pCMW-2MEG were determined from 24h post-transfection. EGFP was observed in cytoplasm. EGFP positive cells were seen at 72h post-transfection, whereas the expression was very few at 24h post-transfection. These results indicate that pCMW-2MEG can express foreign gene of EGFP. Just like these, Expression of the Lac Z gene could be detected at 4 days after transfection.
     The 53-kDa envelope (E) glycoprotein of JEV has an important role in virus adhesion and entry into target cells through receptor binding and, therefore, in inducing neutralizing antibodies that protect hosts against JEV infection. The higher expression of the E-VLP antigen should be more toxic to the expressing cells, resulting in cell fusion, apoptosis, and death.The presence of the capsid protein was found to be absolutely required for packaging. Moreover, the ability to efficiently package JEV replicons indicates that any potential RNA sequences within JEV genome, which might function as packaging signals, are not contained within the JEV structural protein coding sequence.
     Based on the infectious clone of JEV vaccine strain SA14-14-2, prM-E genes and C-prM-E genes were cloned into pCDNA3.1 vectors. The recombinant plasmid pCJEME was transfected into BHK-21 cells, the expressed proteins were toxic to the cell growth and accelerated the cell death. But when transfected with the plasmid pCJECME, the cell lines continuously expressing structural proteins can be selected with G418. And the expression products of pCJECME vector could be detected by ELISA,Western Blot and IFA assay. It shows that the JEV capsid protein can enhance the stability of the cell lines expressing the structural proteins. The established cell lines can make the acquirement of the virus-like particles much easier.
     To facilitate our future investigations of virus assembly, expressing the JEV structural proteins were constructed and used to package JEV replicons into PIPs. With the application of recombinant DNA technology and reverse genetics, PIPs of several flaviviruses thus established have been shown to be valuable for studying viral replication and inhibitors and promising for developing vectors of gene therapy and vaccines。In this study, we have established a cell line stably producing structural proteins of JEV, which can successfully incorporate JEV replicon and produce single-round infectious PIPs. A closer examination of the expression of replicon and the infectivity of PIPs containing replicon revealed that the infectivity of PIPs correlated with the expression of the replicon, The highest titer of JE PIPs in this study, was 1.6×105 U/ml.After immune with JE PIPs induced specific antibody after immunization of mice.The antibody titers reached to 1:2560 after the twice immunization,Further improvement in the efficiency of RNA transfection is needed to increase the titers of our PIPs.
     The fetal disease anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis, and Bacillus anthracis has been postulated to be a potential agent of biowarfare and bioterrorism. PA is the main composition of current vaccine and the most effective immunogen to induce immune response. The fourth domain of PA gene was cloned into JEV replicon DNA vector, then transfect packaging cell lines with and obtain the PIPs with high titers of 5×105U/ml. The PIPs can infect cell in vitro and induced 1:1280 titer antibody after immunization of mice.The PA4 PIPs based on JEV replicon are prominsing candiant vaccines for human use and establish the foundation for deep reseach of multi-antigen vaccine of anthrax.
     Here we report the development of a JEV-based vector system for foreign gene expression that utilizes a full-length infectious JEV cDNA. involved a variety of replication-competent, propagation-deficient viral replicon vector DNAs showing a spectrum of DNA replication efficiencies. The other procedure made use of stable packaging cell lines for the production of single-round infectious, propagation-deficient JEV PIPs. These data strongly suggest that our JEV replicon vector systems represent attractive potential candidates for foreign gene expression and antiviral compound screening in a wide variety of cells in vitro,and possibly in vivo for immunization applications.
     The E protein of Japanese encephalitis virus (JEV) is the major antigen used to elicit neutralizing antibody response and protective immunity in hosts. In this study, the domain III protein of the attenuated strain SA14-14-2 was cloned to the pET32a expression vector and expressed as a thioredoxin (Trx) fusion protein in Escherichia coli. The recombinant protein was unique in forming a large fraction of the soluble recombinant protein in E. coli. The antigenicity and immunogenicity of the purified DⅢprotein was tested by Western Blot analysis .The purified domain III protein was emulsified in Freund’s adjuvant (FA) for immunization in mice and rabbits. After 3 times immunized,Rabbits’serum generated 1:4×105 anti-JEV antibody titers .Mice’serum generated 1:7×104 anti-JEV antibody titers and1:2×103 anti-YFV antibody titers .Then resulted in eliciting neutralizing antibodies and protective immunity in ICR mice. These studies can provide useful information for further developing the domain III recombinant protein vaccine against JEV.
引文
1 Tsai TF. New initiatives for the control of Japanese encephalitis by vaccination : minutes of a WHO/ CVI meeting,Bangkok ,Thailand,13- 15 October 1998[J] . Vaccine, 2000, 18 (Suppl 2) : 1– 251.
    2 Mackenzie JS.Emerging flaviviruses:the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 2004,10:98-109.
    3翁育伟,严延生.分子生物学方法在登革热研究中的新进展[J].中国人兽共患病杂志, 2001,17(6): 113-115.
    4.Liao CL,LinYL,Shen SL,et al.Antiapoptotic but not antiviral function of human B cl-2 assistsestablishment of Japanese encephalitis virus persistence in cultured cell[J] .1 V irol,1998,72(12):9 844-9854.
    5 Solomon T.Recent advances in Japnese encephalitis[J] Neroviro,2003,9:274~283
    6 Chambers TJ , Nestorowicz A , Mason PW,et al1 Yellow fever/ Japanese encephalitis chimeric viruses : construction and biological properties [J]. Virol,1999,73(4): 3095~31011
    7 Mason PW, Pincus S, Fournier MJ, et al. Japanese encephalitis virus-vaccinia recombinants p roduce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection [J]. Virology, 1991, 180(1) : 294-305.
    8 Rey FA,Heinz FX,Mandl C,et al.The envelope glycoprotein from tick-bone encalitis virus at
    2A resolution[J].Nature,1995,375(6529); 291-298
    9 Mason PW, Dalrymple JM, Gentry MK,et al. Molecular characterization of a neutralizing domain of the Japanese encephalitis virus structural glycoprotein. [J]Gen Virol, 1989,70: 2037-2049.
    10 Takada K,Masaki H,Konishi E,et al. Definition of an epitope on Japanese encephalitis virus (JEV) envelope protein recognized by JEV-specific murine CD8+ cytotoxic T lymphocytes. Arch Virol, 2000, 145: 523-534.
    11 Ni H, Chang GJ, Xie H, et al. Molecular basis of attenuation of neurovirulence of wide type Japanese encephalitis virus strain SA 14.[J] Gen Virol, 1995, 76: 409-413.
    12 Kolaskar AS, Kulkarni-Kale U. Prediction of th reedimensional structure and mapp ing of confo rmational epitopes of envelope glycoprotein of Japanese encephalitis virus.Virology, 1999, 261: 31-42.
    13 Wu SC, Lin CW. Neutralizing peptide ligands selected from phage-displayed libraries mimic the conformational epitope on domain ? of the Japanese encephalitis virus envelope protein.Virus Res, 2001, 76: 59-69.
    14李晓宇,宋宏,付士红,等.中国流行性乙型脑炎病毒分子生物学特性研究.病毒学报, 2004,
    20: 200-209.
    15汤德元,郭万柱.日本脑炎病毒及其疫苗的研究.中国兽医学报,2005,25: 217-221.
    16 Halstead SB,Jacobson J.Japanese encephalitis.[J].J,Adv.Virus Res. 2003,61: 103-138
    17 Chang GJ, Hunt AR, Davis B, et al. A single instramuscular injection of recombinant plasmid DNA induces protective immunity and prevents Japanese encephalitis in mice[J]. Virology, 2000,74(9):4244- 4252.
    18 Pugachev KV, Guirakhoo F, Trent DW, et al. Traditional and novel approaches to flavivirus vaccines[J]. Int J Parasitol, 2003,33(5- 6):567- 582.
    19 Deubel V , Kinng RM , Trent DW. Nucleotide sequence and deduced amino acid sequences of the nonstructural proteins of dengue type I virus, Jamaicageno type: comparative analysis of the full-length genome[J]. Viro logy, 1988, 165: 2342244.
    20俞永新.流行性乙型脑炎疫苗.见:张延龄,张晖,主编.疫苗学.第1版.北京:科学出版社, 2004. 1186-1212.
    21 M ason PW. Maturation of Japanese encephalitis virus glycoproteins produced by infected mammlian and mosquito cells[J]. Virology, 1989, 169: 354-364.
    22 Winkier G, Randolph VB. Cleaves GR. Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer[J]. V iro logy, 1988, 162: 187-196.
    23 Flamand M. Expression andsecretion of Japanese encephalitis virus nonstructral protein NS1 by insect cell using a recombinant baculo virus[J].Virology, 1992,191:826.
    24 Kuo MD, Chin C, Hsu SL,et al. Characterization of the NTPase activity of Japaneseencephalitis virus NS3 protein [J]. Gen Virol,1996,77:2077- 2084.
    25 Takegami T, Sakamuro D, Furukawa T. Japanese encephalitis virus nonstructural protein NS3 has RNA binding and ATPase actlvities[J]. Virus Genes, 1995, 9 (2) : 105-112.
    26 Raung SL, Chen SY, Liao SL,et al.Japanese encephalitis virus infection stimulates Src tyrosine kinase in neuron/glia[J]. Neurosci Lett, 2007,419:263- 268.
    27 Chen CJ, Kuo MdD, Chien LJ, et al. RNA-protein interactions, involvement of NS3, N55 and 3’noncoding regions of Japanese encephalitis virus genomic RNA [J].Virol,1997,71(5): 3466-3473.
    28 Rice CM , Grakoui A , Galler R, et al. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation [J]. New Biol, 1989, 1: 285-296.
    29余福勋,吴振溢,曾贵金,等.流行性乙型脑炎患者IgG抗体对乙脑病毒蛋白的识别[J].中国人兽共患病杂志, 1998, 14 (1) :27-29.
    30 Koonin EV. The phylngenv of RNA- dependent RNA polymerases of positive- strand RNA viruses[J]. Gen Virol, 1991,72:2197.
    31 Shlim, D.R. and Solomon, T. (2002). Japanese encephalitis vaccine for travelers: exploring the limits of risk. Clin. Infect.Dis. 35, 183–188.
    32 Barrett AD. Current status of flavivirus vaccines [ J ] . Ann NY Acad Sci ,2001 ,951 (2) :262-271.
    33 Lin CW,Wu SC.A functional epitope determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites[J].J Virol,2003,77(4):2600.
    34俞永新.流行性乙型脑炎减毒活疫苗的发展和应用.上海预防医学杂志,2006,18:110-112
    35 Guirakhoo F, Zhang ZX, Chambers TJ , et al. Immunogenicity,genetic stability and protective efficacy of a recombinant chimeric yellow fever2Japanese encephalitis virus (ChimeriVax-JE)as a live, attenuated vaccine candidate against Japanese encephalitis[J].Virology,1999, 257:3634-3672.
    36 Monath T P, So ike K, L evenbook I, et al. Recombinant,chimeric, live, attenuatedvaccine (Ch imeriV axR) incorporating the envelope genes of Japanese encephalitis (SA 14-14-2) virus and the cap sid and nonstructural genes of yellow fever (17D) virus is safe, immunogenic and pro tective in nonhuman p rimates[J]. Vaccine, 1999, 17 (15216) : 1869-1882.
    37 Monath TP,M cCarthy K, Bedfo rd P, et al. Clinical p roof of principle for ChimeriVax: recombinant live, attenuated vaccines against flavivirus infections. [J].Vaccine,2002,20: 1004-1018.
    38 ChimeriVaxTM-JE Acambis plc (2007). Acambis’JE vaccine meets and exceeds primary endpoint in pivotal Phase 3 efficacy trial. Press release March 1, 2007.
    39 Konishi E,Fujii A,Mason PW.Generation and Characterization of a Mammalian Cell Line Continuously Expressing Japanese Encephalitis Virus Subviral Particles [J].J .Virol. 2001,75: 2204–2212.
    40 Kojima A, YasudaA, Asanuma H,et al.Stable High-Producer Cell Clone ExpressingVirus-Like Particles of the Japanese Encephalitis Virus E Protein for a Second-Generation Subunit Vaccine[J].J . Virol. 2003,77: 8745–8755
    41 Monath TP. Prospects for development of a vaccine against the West Nile virus. Ann NY Acad Sci 2001; 951: 1-12.
    42 Shwn CC, Patrick S. C. L, Chun PL, et al. Fragment of Japanese encephalitis virus envelope protein produced in Escherichia coli protects mice from virus challenge [J]. Microbial Pathogenesis,2001,31: 9–19.
    43 Wu SC,Yu CH,Lin CW,et al.The domain III fragment of Japanese encephalitis virus envelope protein: mouse immunogenicity and liposome adjuvanticity[J].Vaccine. 2003,21: 2516–2522
    44 Ge FF,Qiu YF,Gao XF,et a1.Fusion expression of major antigenic segment of JEV E protein-hsp70 and the identification of domain acting as adjuvant in hsp70[J].Veterinary Immunology and Immunopathology,2006,113:288.
    45 Alka,Kaushik B,Malik YPS,et al. Immunogenicity and protective eYcacy of the E. coli-expressed domain III of Japanese encephalitis virus envelope protein in mice[J]. Med Microbiol Immunol ,2007,196:227–231
    46 LeitnerWW, Ying H, DriverDA, et al. Enhancement of tumor specific immune responsewith p lasmid DNA rep licon vectors[ J ]. Cancer Res, 2000, 60 (1) : 51 - 55.
    47 Ashok MS, Rangarajan PN. Protective efficacy of a plasmid DNA encoding Japanese encephalitis virus envelope protein fused to tissue plasminogen activator signal sequences: studies in a murine intracerebral virus challenge model [J]. Vaccine, 2002,20:1563–1570
    48 Feng GH, Liu N , Zhou Y,et al. Immunologic Analysis Induced by DNA Vaccine Encoding E Protein of Beijing-1 Strain Derived from Japanese Encephalitis Virus [J]. Intervirology, 2007,50:93–98.
    49 Boyer J C,Haenni A L,Infectious Transcripts and cDNA Clones of RNA Viruses[J]. Virol,1994,198:415-426.
    50 Zeng M.Research Advance on Infectious Clones of Flaviriade[J]. Chinese Journal of Microbiology and Immunology ,2001,21 (6):695-697 .
    51 Khromykh AA. Replicon-based vectors of positive strand RNA viruses[J] . Curr Opin Mol Ther, 2000,2(5):555-569.
    52 Westaway EG, Mackenzie JM , Khromykh AA. Kunjin RNA replication and applications of Kunjin replicons[J] . Adv Virus Res ,2003,59:99-140.
    53 Christopher T. Jones,Chinmay G. Patkar,Richard J. Kuhn.Construction and applications of yellow fever virus replicons [J]. Virol,2005,331:247-259.
    54 Corver J,Lenches E,Smith K,et al.Fine mapping of a cis-acting sequence element in yellow fever virus RNA that is required for RNA replication and cyclization[J].J Virol,2003,77(3):2265
    55 Khromykh AA, Westaway EG.Subgenomic replicons of the flavivirus Kunjin: construction and applications[J]. J Virol, 1997,71(2):1497-1505.
    56 Shi PY, Tilgner M, Lo MK. Construction and characterization of subgenomic replicons of New York strain of West Nile virus [J].Virology, 2002, 296(2):219-233.
    57 Jones CT, Patkar CG, Kuhn RJ. Construction and applications of yellow fever virus replicons[J]. Virology, 2005, 331(2): 247-259.
    58 Hayasaka DK, Yoshii K, Ueki T,et al.Sub-genomic replicons of tick-borne encephalitis virus [J]. Arch Virol, 2004, 149(6):1246-1256.
    59 Pang XW, ZhangMJ, Dayton AI. Development of dengue virus replicons capable of prolonged expression in host cells [J]. BMC Microbiol, 2001,1(1):18.
    60 Khromykh AA , Varnavski AN , Sedlak PL , et al. Coupling between replication and packaging of flavivirus RNA : evidence derived from the use of DNA-based full2length cDNA clones of Kunjin virus[J ] . J Virol ,2001 ,75(10):4633- 4640.
    61 Anraku I , Harvey TJ , Linedale R, et al. Kunjin virus replicon vaccine vectors induce protective CD8 + T cell immunity[J] . J Virol ,2002,76(8): 3791- 3799.
    62 Ward SM , Tindle RW, Khromykh AA, et al. Generation of CTL responses using Kunjin replicon RNA[J ] . Immunol Cell Biol ,2003,81(1):73-78.
    63 Herd K A , Harvey T , Khromykh A A , et al. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity againsthuman papillomavirus 16 E7-expressing tumour [J] . Virology,2004 ,319 (2) : 237 - 248.
    64 Anraku I , Harvey TJ , Linedale R, et al. Kunjin virus replicon vaccine vectors induce protective CD8 + T cell immunity[J] . J Virol ,2002,76(8): 3791- 3799.
    65 Harvey TJ , Anraku I , Linedale R, et al. Kunjin virus replicon vectors for human immunodeficiency virus vaccine development [J]. Virol ,2003 ,77 (14) : 7796 - 7803.
    66俞永新.流行性乙型脑炎减毒活疫苗的发展和应用.上海预防医学杂志,2006,18(3):110-112
    67黄莺,贾丽丽,孙志伟,等.乙型脑炎病毒(JEV)全长感染性克隆的制备及恢复病毒的获得[J] .病毒学报, 2003 ,19 (4) : 313-319.
    68 Zhao Z, Tomoko D, Li Y, et al.Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable,full-length, infectious cDNA clone[ J ] .J.Gen Virol,2005,86:2209-2220
    69 Yun SI, Kim SY, Rice CM, et al. Development and App lication of a Reverse genetics System for Japanese Encephalitis Virus[ J ] .J.Virol, 2003, 77: 6450 - 6465
    70 Yun SI, Choi YJ, Yu XF,et al.Engineering the Japanese encephalitis virus RNA genome for the expression of foreign genes of various sizes: Implications for packaging capacity and RNA replication efficiency.[J].Neurovirology, 2007,13(6): 522– 535
    71 Lundstrom K. Alaphavirus-based vaccines. Curr Opin Mol Ther, 2002, 4(1): 28-34
    72 Fayzuli R, Scholle F, Petrakova O,et al.Evaluation of replicative capacity and genetic stability of West Nile virus replicons using highly efficient packaging cell lines[J].Virology, 2006,351:196–209.
    73 Gehrke R,Ecker M, Aberle SW,et al.Incorporation of tick-borne encephalitis virus replicons into virus-like particles by a packaging cell line[J].Virol, 2003,77: 8924–8933.
    74 Lai CY, Hu HP, King CC,et al.Incorporation of dengue virus replicon into virus-like particlesby a cell line stably expressing precursor membrane and envelope proteins of dengue virus type 2.[J]. Biomedical Science ,2008,15:15–27.
    75 Chaudry GJ, MoayeriM, Liu SH, et al. Quickening the pace of anthrax research: three advances point towards possible therap ies.Trends inMicrobiol, 2002, 10 (2) : 58262.
    76 Cunningham K, Mogridge J, Collier RJ, et al. Mapping the lethal factor and edema factor binding sites on oligomeric anthrax p rotective antigen. Proc Natl Acad Sci USA, 2002, 99 (10) : 704927053.
    77 Mili Gu, Paul M. Hine, W. James Jackson, et al Increased potency of BioThrax anthrax vaccine with the addition of the C-class CpG oligonucleotide adjuvant CPG 10109.Vaccine 2007,25:526–534
    78 Matyas GR, Friedlander AM, Glenn GM, et al.Needle-free skin patch vaccination method for anthrax. Infect Immun 2004;72(2):1181–3.
    79 Kenney RT, Yu J, Guebre-Xabier M, etal. Induction of protective immunity against lethal anthrax challenge with a patch. J Infect Dis 2004;190(4):774–82.
    80 Rachel S , Joanna K, Yung L , et al . Poly (γ-D-PGA) protein conjugates induce IgG antibodies in mice to the capsule of Bacillus anthracis : A potential addition to the anthrax vaccine. PANS ,2003 , 100 :8945 - 89501
    81 Flick-Smith HC, Walker NJ, Gibson P, etal. Arecombinant carboxy-terminal domain of the protective antigen of Bacillus anthracis protects mice against anthrax infection. Infect Immun ,2002,70(3):1653–6.
    82 Gu ML, Leppla SH, Klinman DM. Protection against anthrax toxin by vaccination with a DNA plasmid encoding anthrax protective antigen, Vaccine,1999;17(4):340–4.
    83 Riemenschneider J, Garrison A, Geisbert J, etal. Comparison of individual and combination DNA vaccines for B. anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine,2003;21(25–26):4071–80.
    84 Tan Y, Hackett NR, Boyer JL, etal. Protective immunity evoked against anthrax lethal toxin after a single intramuscular administration of an adenovirus-based vaccine encoding humanized protective antigen. Hum Gene Ther 2003,14(17):1673–82.
    85 Garmory HS, Titball RW, Griffin KF, Salmonella enterica serovar typhimurium expressing a chromosomally integrated copy of the Bacillus anthracis protective antigen gene protects mice against an anthrax spore challenge. Infect Immun 2003,71(7):3831–6.
    86 Coulson NM, Fulop M, Titball RW. Bacillus anthracis protective antigen, expressed in Salmonella typhimurium SL 3261, affords protection against anthrax spore challenge. Vaccine.1994,12(15):1395–401.
    87 Ivins BE, Welkos SL. Cloning and expression of the Bacillus anthracis protective antigen gene in Bacillus subtilis. Infect Immun 1986;54(2):537–42.
    88 Iacono-Connors LC, Welkos SL, Ivins BE, etal. Protection against anthrax with recombinant virus-expressed protective antigen in experimental animals. Infect Immun 1991,59(6):1961–5.
    89 Lee JS, Hadjipanayis AG, Welkos SL. Venezuelan equine encephalitis virus-vectoredvaccines protect mice against anthrax spore challenge.Infect Immun 2003,71(3):1491–6.
    90 John S. Lee, Angela G. Hadjipanayis, Susan L. Welkos,Venezuelan Equine Encephalitis Virus-Vectored Vaccines Protect Mice against Anthrax Spore Challenge Infection and Immunity,2003,71:1491–1496
    [ 1 ] Polo JM,Dubensky TW. Virus-based vectors for human vaccine applications[J]. Drug Discovery Today,2002,7(13):719-727.
    [ 2 ] Schlesinger S,Dubensky TW.Alphavirus vectors for gene expression and vaccines[J] . Curr Opin Biotechnol,1999,10:434- 439.
    [3] Khromykh AA, Westaway EG.Subgenomic replicons of the flavivirus Kunjin: construction and applications[J]. J Virol, 1997,71(2):1497-1505.
    [4] Shi PY, Tilgner M, Lo MK. Construction and characterization of subgenomic replicons of New York strain of West Nile virus [J].Virology, 2002, 296(2):219-233.
    [5] Jones CT, Patkar CG, Kuhn RJ. Construction and applications of yellow fever virus replicons[J]. Virology, 2005, 331(2): 247-259.
    [6] Hayasaka DK, Yoshii K, Ueki T,et al.Sub-genomic replicons of tick-borne encephalitis virus [J]. Arch Virol, 2004, 149(6):1246-1256.
    [7] Pang XW, ZhangMJ, Dayton AI. Development of dengue virus replicons capable of prolonged expression in host cells [J]. BMC Microbiol, 2001,1(1):18.
    [8] Polo JM, Gardner JP ,Ji Y,et al. Alphavirus DNA and particlereplicons for vaccines and gene therapy. Dev Biol ,2000 ,104 :181-1851
    [9]Vignuzzi M, Gerbaud S, WerfSvd, Escriou N. Naked RNA immunization with replicons derived from poliovirus and Semliki Forest virus genomes for the generation of a cytotoxic T cell response against the influenza A virus nucleoprotein.[J],Gen Virol 2001; 82: 1737–1747.
    [10]Ying H, Zaks TZ, Wang RF, et al. Cancer therapy using a self-replicating RNA vaccine. Nat Med 1999; 5: 823–827.
    [11] Hariharan M J, Driver D A , Townsend K. et al . DNA immunizationagainst herpes simplex virus : enhance efficacy using Sindbis virus based vector. J Virol , 1998 ,72 (2) :950 - 958.
    [12] Leitner W W, Hwang L N, et al. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med, 2003, 9(1): 33~39
    [13] Leitner W W, Hwang L N, Bergmann-Leitner E S, et al. Apoptosis is essential for the increased efficacy of alphavirus-based DNA vaccines. Vaccine, 2004, 22:1537~1544
    [14] Lee JS, Hadjipanayis AG, Welkos SL. Venezuelan Equine Encephalitis Virus-Vectored protect mice against anthrax spore challenge. Infection and immunity, 2003, 71(3):1491-1496
    [15] Harolod Connett. South African village prepares for first HIV vaccine trial.Nature Medicine, 2000, 6(11):1199-1200
    [16] Cheng W F ,Hung C F ,Chai C Y, et al . Enhancement of Sindbisvirus self-replicating RNA vaccine potency by linkage ofMycobacterium tuberculosis heat shock protein 70 gene to anantigen gene. J Immunol ,2001,166 (10) :6218-6226
    [17] Cheng W F ,Hung C F ,Hsu K F ,et al . Enhancement of Sindbisvirus self-replicating RNA vaccine potency by targeting antigen toendosomalPlysosomal compartments. Hum Gene Ther , 2001, 12(3) :235-252
    [18] Cheng WF , Hung CH ,Chai CY,et al . Enhancement of Sindbisvirus self-replicating RNAvaccine potency by linkage of herpessimplex virus type 1 VP-2 protein to antigen. J Virol ,2001,75(5) :2368-2376
    [19] Lundstrom K. Alaphavirus-based vaccines. Curr Opin Mol Ther, 2002, 4(1): 28-34
    [20]Hewson R. RNA viruses :emerging vectors for vaccination and gene therapy[J ] . Mol Med Today ,2000 ,6 :28 - 35.
    [21] Jonathan OR, Sergey AD, Kurt IK. Alphavirus vectors and vaccination. Rev Med Virol, 2002, 12: 279-296
    [22] Polo J M, Gardner J P ,Ji Y,et al . Alphavirus DNA and particlereplicons for vaccines and gene therapy. Dev Biol ,2000 ,104 :181-1851
    [23] Hayasaka DK, Yoshii K, Ueki T, et al. Sub2genomic replicons of tick-borne encephalitis virus [J]. Arch Virol, 2004, 149 ( 6 ) :1246 - 1256.
    [24]黄莺,邵炜,贾丽丽,等.日本脑炎病毒( JEV)复制子表达载体的构建及其鉴定[J].病毒学报, 2007 , 24 (1) : 33-38
    [25]Zhao Z, Tomoko D, Li Y, et al.Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable,full-length, infectious cDNA clone[J].J.Gen Virol,2005,86:2209-2220
    [26]De Felipe P. Skipping the co-expression p roblem: the new 2A"CHYSEL" technology [ J ]. BMC Gene Vaccines Ther, 2004, 2(1) : 13.
    [27] Khromykh AA, Varnavski AN, Westaway EG. Encapsidation of the flavivirus kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans[J ] . J Virol ,1998 ,72 (7) : 5967- 5977.
    [28] Varnavski AN , Khromykh AA. Noncytopathic flavivirus replicon RNA-based systemfor expression and delivery of heterologous genes [J]. Virology,1999,255(2):366- 375.
    [29] Varnavski AN , Young PR , Khromykh AA. Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors[J]. Virol ,2000,74(9) :4394- 4403.
    [30] Harvey TJ , Liu WJ , Wang XJ , et al. Tetracycline-inducible packaging cell line for production of flavivirus replicon particles[J]. Virol ,2004,78(1):531-538.
    [31] Khromykh AA , Varnavski AN , Sedlak PL , et al. Coupling between replication and packaging of flavivirus RNA : evidence derived from the use of DNA-based full2length cDNA clones of Kunjin virus[J ] . J Virol ,2001 ,75(10):4633- 4640.
    [32] Anraku I , Harvey TJ , Linedale R, et al. Kunjin virus replicon vaccine vectors induce protective CD8 + T cell immunity[J] . J Virol ,2002,76(8): 3791- 3799.
    [33] Ward SM , Tindle RW, Khromykh AA, et al. Generation of CTL responses using Kunjin replicon RNA[J ] . Immunol Cell Biol ,2003,81(1):73-78.
    [34] Herd K A , Harvey T , Khromykh A A , et al. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity againsthuman papillomavirus 16 E7-expressing tumour [J] . Virology,2004 ,319 (2) : 237 - 248.
    [35] Anraku I , Harvey TJ , Linedale R, et al. Kunjin virus replicon vaccine vectors induceprotective CD8 + T cell immunity[J] . J Virol ,2002,76(8): 3791- 3799.
    [36] Harvey TJ , Anraku I , Linedale R, et al. Kunjin virus replicon vectors for human immunodeficiency virus vaccine development [J]. Virol ,2003 ,77 (14) : 7796 - 7803.
    1 Takegami T,M iytamoto H, Nakamura H, et al. D ifferences in biological activity of the V
    3 envelope protein of two Japanese Encephalitis virus strains[J ]. Acta Virol, 1982, 26: 321.
    2 Barrett AD. Current status of flavivirus vaccines [J] . Ann NY Acad Sci ,2001 ,951 (2) :262-271.
    3 Skaguchi M, Nakashima K, Takahashi H, et al. Anaphylaxis to Japanese encephalitis vaccine[J] ,Allergy ,2001 ,56 (8) :804-805.
    4黄莺,贾丽丽,孙志伟,等.乙型脑炎病毒(JEV)全长感染性克隆的制备及恢复病毒的获得[J] .病毒学报, 2003 , 19 ( 4) : 313-319.
    5 Khromykh, A. A., A. N. Varnavski, and E. G. Westaway. 1998. Encapsidation of the flavivirus Kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans. J. Virol. 72:5967–5977.
    6 Wu Y, Zhang F , Ma W, et al . A plasmid encoding Japanese encephalitis virus prM and E proteins elicits protective immunity in sucking mice. Microbiol Immunol , 2004 , 48(8) : 585-590.
    7 Kaur R, Sachdeva G, Vrati S.Plasmid DNA immunization against Japanesee encephalitis virus : immunogenicity of membrane-anchored and secretary envelope protein. J Infect Dis , 2002 , 185 (1) : 1-12.
    8 Konishi E , Ajiro N , Nukuzuma C , et al . Comparison of protective efficacies of plasmid DNAs encoding Japanese encephalitis virus proteins that induce neutralizing antibody or cytotoxic T lymphocytes in mice.Vaccine , 2003 , 21 (25-26) : 3675-3683.
    9 Wu HH, Chen CT, Lin YL, et al . Sub-fragments of the envelope gene are highly protective against the Japanese encephalitis virus lethal infection in DNA priming-protein boosting immunization strategies.Vaccine , 2004 , 22 (5-6) : 753-800.
    10 Konishi E, Terazawa A , Imoto J . Simultaneous immunization with DNA and protein vaccines against Japanese encephalitis or dengue synergistically increases their own abilities to induce neutralizing antibody in mice. Vaccine , 2003 , 21 (17-18) : 1826-1832.
    11 Imoto J , Konishi E. Needle-free jet injection of a mixture of Japanese encephalitis DNA and protein vaccines : a strategy to effectively enhance immunogenicity of the DNA vaccine in a murine model . Viral Immunol ,2005 , 18 (1) : 205-212
    12 Konosh E ,Pincus S ,Paoletti E ,et al.Mice immunized with a subviral particle containing the Japanese encephalitis virus PrM/ E and E proteins are protected from lethal JEV infection[J]1Virology , 1992 ,188 :7141.
    13 Mason PW, Pincus S, Fournier MJ ,et al.Japanese encephalitis virus- vaccinia recombinants produce particulate forms of the structuralmembrane proteins and induce high levels of protection against lethal JEV infection[J],Virology ,1991 ,180 :2941
    14 Konishi E ,Khin SW,Kurane I ,et al.Particulate vaccine candidate for Japanese encephalitis induces long lasting virus specific memory Tlymphocytes in mice [J],Vaccine ,1997 ,15 :2811
    15黄莺,邵炜,贾丽丽,等.日本脑炎病毒( JEV)复制子表达载体的构建及其鉴定[J].病毒学报, 2007 , 24 (1) : 33-38
    16 Konishi, E., A. Fujii, and P. W. Mason. 2001. Generation and characterization of a mammalian cell line continuously expressing Japanese encephalitis virus subviral particles. [J]. Virol. 75:2204–2212.
    17 Rafik Fayzulin, Frank Scholle, Olga Petrakova,et al,Evaluation of replicative capacity and genetic stability of West Nile virus replicons using highly efficient packaging cell lines[J], Virology 351 (2006) 196–209.
    [1] Gehrke R,Ecker M, Aberle SW,et al.Incorporation of tick-borne encephalitis virus replicons into virus-like particles by a packaging cell line[J].Virol, 2003,77: 8924–8933.
    [2] Hayasaka D,Yoshii K,Ueki T, et al.Sub-genomic replicons of Tick-borne encephalitis virus [J]. Arch. Virol, 2004,149: 1245–1256.
    [3] Holden KL,Stein DA,Pierson T.C et al.Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3¢stem-loop structure. [J].Virology, 2006,344: 439–452.
    [4] Jones CT,Patkar CG,Kuhn RJ.Construction and applications of yellow fever virus replicons. [J], Virology, 2005,331:247–259.
    [5] Khromykh AA. Westaway EG. Subgenomic replicons of the flavivirus Kunjin: construction and applications.[J]. Virol. 1997,71: 1497–1505.
    [6] Pang X., Zhang M. and Dayton A.I., Development of dengue virus type 2 replicons capable of prolonged expression in host cells. BMC Microbiol. 2001, 1: 18.
    [7] Shi PY,Tilgner M,Lo MK.Construction and characterization of subgenomic replicons of New York strain of West Nile virus. Virology. 2002,296: 219–233.
    [8] Lai CY, Hu HP, King CC,et al.Incorporation of dengue virus replicon into virus-like particles by a cell line stably expressing precursor membrane and envelope proteins of dengue virus type 2.[J]. Biomedical Science ,2008,15:15–27.
    [9] Guirakhoo F, Zhang ZX, Chambers TJ , et al. Immunogenicity,genetic stability and p ro tective efficacy of a recombinant chimeric yellow fever Japanese encephalitis virus (ChimeriVax-JE)as a live, attenuated vaccine candidate against Japanese encephalitis [J].Virology,1999, 257:3634-3672.
    [10]Monath TP, Soike K, Levenbook I, et al.Recombinant,chimeric, live, attenuatedvaccine (ChimeriVaxR) incorporating the envelope genes of Japanese encephalitis (SA 14-14-2) virus and the cap sid and nonstructural genes of yellow fever (17D) virus is safe, immunogenic and pro tective in nonhuman p rimates[J]. Vaccine, 1999, 17 (15216) : 1869-1882.
    [11] Monath TP,M cCarthy K, Bedfo rd P, et al. Clinical p roof of principle for ChimeriVax:recombinant live, attenuated vaccines against flavivirus infections. [J].Vaccine,2002,20: 1004-1018.
    [12] ChimeriVaxTM-JE Acambis plc (2007). Acambis’JE vaccine meets and exceeds primary endpoint in pivotal Phase 3 efficacy trial. Press release March 1, 2007.
    [13] Monath, T.P., Guirakhoo, F., Nichols, R., et al. (2003). Chimeric live, attenuated vaccine against Japanese encephalitis (ChimeriVax-JE): phase II clinical trials for safety and immunogenicity, effect of vaccine dose and schedule, and memory response to challenge with inactivated Japanese encephalitis antigen. J. Infect. Dis. 188,1213–1230.
    [14] Khromykh A A , Westaway E G. Subgenomic replicons of the flavivirus Kunjin : construction and applications[J ] . J Virol ,1997 ,71(2) :1497 - 1505.
    [15] Khromykh A A , Varnavski A N , Westaway E G. Encapsidation of the flavivirus kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans[J ] . J Virol ,1998 ,72 (7) : 5967 - 5977.
    [16] Varnavski A N , Khromykh A A. Noncytopathic flavivirus replicon RNA-based systemfor expression and delivery of heterologous genes[J ] . Virology ,1999 ,255 (2) :366 - 375.
    [17] Varnavski A N , Young P R , Khromykh A A. Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors[J] . J Virol ,2000 , 74 (9) :4394 - 4403.
    [18] Khromykh A A , Varnavski A N , Sedlak P L , et al. Coupling between replication and packaging of flavivirus RNA : evidence derived from the use of DNA2based full2length cDNA clones of Kunjin virus[J ] . J Virol ,2001 ,75 (10) :4633 - 4640.
    [19] Anraku I , Harvey T J , Linedale R , et al. Kunjin virus replicon vaccine vectors induce protective CD8 + T2cell immunity[J ] . J Virol ,2002 ,76 (8) : 3791 - 3799.
    [20] Ward S M , Tindle R W, Khromykh A A , et al. Generation of CTL responses using Kunjin replicon RNA[J ] . Immunol Cell Biol ,2003 ,81 (1) :73 - 78.
    [21] Harvey T J , Anraku I , Linedale R , et al. Kunjin virus replicon vectors for human immunodeficiency virus vaccine development[J ] . J Virol ,2003 ,77 (14) : 7796 - 7803.
    [22] Harvey T J , Liu W J , Wang X J , et al. Tetracycline-inducible packaging cell line for production of flavivirus replicon particles[J ] . J Virol ,2004 ,78 (1) :531 - 538.
    [23] Herd K A , Harvey T , Khromykh A A , et al. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity againsthuman papillomavirus 16 E7-expressing tumour [ J ] . Virology ,2004 ,319 (2) : 237 - 248.
    [24] Khromykh AA,Sedlak PL, Guyatt KJ, et al. Efficient trans-complementation of the flavivirus kunjin NS5 protein but not of the NS1 protein requires its coexpression with other components of the viral replicase.[J]. Virol. 1999,73 (12):10272– 10280.
    [25] Fayzuli R, Scholle F, Petrakova O,et al.Evaluation of replicative capacity and genetic stability of West Nile virus replicons using highly efficient packaging cell lines[J].Virology, 2006,351:196–209.
    [26] Widman DG,Ishikawa T,Fayzulin R,et al.Construction and characterization of asecond-generation pseudoinfectious West Nile virus vaccine propagated using a new cultivation system.Vaccine,2008,26:2762-2771.
    [27] Ishikawa T,Widman DG, Bourne N,et al.Construction and evaluation of a chimeric pseudoinfectious virus vaccine to prevent Japanese encephalitis.Vaccine,2008,26: 2772-2781.
    [28] Yoshii K, Goto A, Kawakami K,et al.Construction and application of chimeric virus-like particles of tick-borne encephalitis virus and mosquito-borne Japanese encephalitis virus.[J],General Virology,2008, 89:200–211.
    [29] Yun SI, Choi YJ, Yu XF,et al.Engineering the Japanese encephalitis virus RNA genome for the expression of foreign genes of various sizes: Implications for packaging capacity and RNA replication efficiency.[J].Neurovirology, 2007,13(6): 522 - 535
    [30] Mason PW, Shustov AV, Frolov I.Production and characterization of vaccines based on flaviviruses defective in replication.[J].Virology,2006,351: 432–443.
    [31] Lee JS, Hadjipanayis AG, Welkos SL. Venezuelan Equine Encephalitis Virus-Vectored protect mice against anthrax spore challenge. Infection and immunity, 2003, 71(3):1491-1496
    [32]John S. Lee, Angela G. Hadjipanayis, Susan L. Welkos,Venezuelan Equine Encephalitis Virus-Vectored Vaccines Protect Mice against Anthrax Spore Challenge Infection and Immunity,2003,71:1491–1496
    [33]John S. Lee , Jennifer L. Groebner, Angela G. Hadjipanayis,Multiagent vaccines vectored by Venezuelan equine encephalitis virus replicon elicits immune responses to Marburg virus and protection against anthrax and botulinum neurotoxin in mice,Vaccine,2006,24:6886–6892.
    [1] Chu JH, Chiang CC, Ng ML. Immunization of flavivirus West Nile recombinant envelope domain III protein induced specific immune response and protection against West Nile virus infection[J]. Immunol, 2007,178(5):2699–705.
    [2] Wu SC,Yu CH,Lin CW,et al.The domain III fragment of Japanese encephalitis virus envelope protein:mouse immunogenicity and liposome adjuvanticity[J].Vaccine, 2003,21(19/20): 2516–22.
    [3] Mota J, Acosta M, Argotte R,et al. Induction of protective antibodies against dengue virus by tetravalent DNA immunization of mice with domain III of the envelope protein [J].Vaccine ,2005,23(26): 3469–76.
    [4] Nybakken GE, Nelson CA, Chen BR,et al.Crystal structure of the West Nile virus envelope glycoprotein.[J].Virol ,2006,80(23):11467-74.
    [5] Lin CW, Wu SC. A functional epitope determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites.[J]. Virol,2003,77(4):2600-6.
    [6] Mason PW, Dalrymple JM, Gentry MK, et al. Molecular characterization of a neutralizing domain of the Japanese encephalitis virus structural glycoprotein.[J]. Gen Virol ,1989,70(Pt 8):2037-49.
    [7] Nybakken GE, Oliphant T, Johnson S,et al. Structural basis of West Nile virus neutralization by a therapeutic antibody.[J] Nature, 2005,437(7059):764-9.
    [8] Wu KP,Wu CW, Tsao YP, et al. Structural basis of a flavivirus recognized by its neutralizing antibody:solution structure of the domain III of the Japanese encephalitis virus envelope protein. [J ]Biol Chem, 2003,278(46):46007-13.
    [9] Holzmann H, Stiasny K, York H,et al. Tick-borne encephalitis virus envelope protein E-specific monoclonal antibodies for the study of low pH-induced conformational changes and immature virions. Arch Virol 1995;140(2):213—21.
    [10] Wu SC, Lin CW. Neutralizing peptide ligands selected from phage-displayed libraries mimic the conformational epitope on domain III of the Japanese encephalitis virus envelope protein.Virus Res 2001;76(1):59—69.
    [11] Mcminn P C.The molecular basis of virulence of the encephalitogenic flaviviruse [J].J Gen Virol,1997,78:2711.
    [12] Kolaskar AS,Kulkarni-kale U.Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein Japanese encephalitis virus [J].Virology,1999,261:31.
    [13] Hung JJ, Hsieh MT, Young MJ. An external loo Pregion of domainⅢof Dengue virustype 2 envelope protein is involved in serotype2 specific binding tomosquito but notmammalian cells[J]. Virol,2004, 78 (1) : 378—388.
    [14] Chu JJ,Leong PW, NgM L. Characterization of plasma membrane-associated proteins from Aedesalbopictus mosquito (C6/36)cells that mediate West Nile virus binding and infection[J].Virology,2005,339 (2):249—260.
    [15] Ge FF,Qiu YF,Gao XF,et a1.Fusion expression of major antigenic segment of JEV E protein-hsp70 and the identification of domain acting as adjuvant in hsp70[J].Veterinary Immunology and Immunopathology,2006,113:288.
    [16] Alka,Kaushik B,Malik YPS,et al. Immunogenicity and protective eYcacy of the E. coli-expressed domain III of Japanese encephalitis virus envelope protein in mice[J]. Med Microbiol Immunol,2007,196:227-231.
    [17]任君萍,高淑娴,张伟,等.乙型脑炎病毒E蛋白Ⅲ区基因的克隆表达及亲合层析纯化.科学技术与工程,2007,7(14):3373-3377.
    [18]葛菲菲,邱亚峰,杨耀武,等.乙型脑炎病毒SA14-14-2株E蛋白主要抗原片段的高效表达.中国病毒学,2005,20(2):117-120
    [19] Shwn CC, Patrick S. C. L, Chun PL, et al. Fragment of Japanese encephalitis virus envelope protein produced in Escherichia coli protects mice from virus challenge [J]. Microbial Pathogenesis,2001,31: 9–19.
    1 Tsai TF. New initiatives for the control of Japanese encephalitis by vaccination : minutes of a WHO/ CVI meeting,Bangkok ,Thailand,13- 15 October 1998[J] . Vaccine, 2000, 18 (Suppl 2) : 1– 251.
    2 Mackenzie JS.Emerging flaviviruses:the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 2004,10:98-109.
    3 Chang GJ , Kuno G, Purdy DE , et al . Recent advancement in flavivirus vaccine development . Exp Rev Vaccines , 2004 , 3 (2) :199-220.
    4 Pugachev K V, Guirakhoo F, Trent D W, et al. Traditional and novel approaches to flavivirus vaccines[J]. Int J Parasitol, 2003,33(5- 6):567- 582.
    5 Halstead SB,Jacobson J.Japanese encephalitis.[J].J,Adv.Virus Res.2003,61:103-138
    6 Chang G J, Hunt A R, Davis B, et al. A single instramuscular injection of recombinant plasmid DNA induces protective immunity and prevents Japanese encephalitis in mice[J]. Virology, 2000,74(9):4244- 4252.
    7汤德元,郭万柱.日本脑炎病毒及其疫苗的研究.中国兽医学报, 2005, 25: 217-221
    8 Roehrig J. Antigenic structure of flavivirus proteins[J]. Adv Virus Res, 2003,59:14- 175.
    9 Rey F A, Heiz F X, Mandle C, et al. The envelope glycoprotein from tick- brone encephalitis virus at 2 resolution[J]. Nature, 1995,75:291.
    10 Flamand M. Expression andsecretion of Japanese encephalitis virus nonstructral protein NS1 by insect cell using a recombinant baculo virus[J]. Virology, 1992,191:826。
    11 Chen CJ , Kuo MD, Chien LJ , et al. RNA-protein interactions, involvement of NS3, NS5 and 3′noncoding regions of Japanese encephalitis virus genom ic RNA [ J ]. J Virol, 1997, 71 (5) : 3 466-3473.
    12 Rice CM , Grakoui A , Galler R, et al. T ranscrip tion of infectious yellow fever RNA from full2length cDNA temp lates produced by in v itro ligation [J ]. N ew Bio l, 1989, 1: 285-296.
    13 Shlim, D.R. and Solomon, T. (2002). Japanese encephalitis vaccine for travelers: exploring the limits of risk. Clin. Infect.Dis. 35, 183–188. Barrett AD. Current status of flavivirus vaccines [ J ] . Ann NY Acad Sci ,2001 ,951 (2) :262-271. 14 Lin CW and Wu SC.A functional epitope determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites[J].J Virol,2003,77(4):2600.
    15俞永新.流行性乙型脑炎减毒活疫苗的发展和应用.上海预防医学杂志,2006,18:110-112
    16 LeitnerWW, Ying H, DriverDA, et al. Enhancement of tumor specific immune responsewith p lasmid DNA rep licon vectors[ J ]. Cancer Res, 2000, 60 (1) : 51 - 55.
    17 PAN CH,CHEN SW, HUANG W,et al..Protective Mechanisms Induced by a Japanese Encephalitis Virus DNA Vaccine:Requirement for Antibody but Not CD8+ Cytotoxic T-Cell [ J ]. Res Virol, 2001, 11457–11463
    18 KONISHI E, YAMAOKA M,KHIN SW,et al.Induction of Protective Immunity against Japanese Encephalitis in Mice by Immunization with a Plasmid Encoding Japanese Encephalitis Virus Premembrane and Envelope Genes. [J].J Virol 1998,72:4925–4930
    19 LIN YL, CHEN LK,LIAO CL,et al. DNA Immunization with Japanese Encephalitis Virus Nonstructural Protein NS1 Elicits Protective Immunity in Mice. [J].J Virol ,1998,72: 191–200.
    20 Ashok MS, Rangarajan PN. Protective efficacy of a plasmid DNA encoding Japanese encephalitis virus envelope protein fused to tissue plasminogen activator signal sequences: studies in a murine intracerebral virus challenge model [J]. Vaccine, 2002,20:1563–1570
    21 Feng GH, Liu N , Zhou Y,et al. Immunologic Analysis Induced by DNA Vaccine Encoding E Protein of Beijing-1 Strain Derived from Japanese Encephalitis Virus [J]. Intervirology, 2007,50:93–98
    22 Guirakhoo F, Zhang ZX, Chambers TJ , et al. Immunogenicity,genetic stability and p ro tective efficacy of a recombinant chimeric yellow fever2Japanese encephalitis virus (ChimeriVax-JE)as a live, attenuated vaccine candidate against Japanese encephalitis[J].Virology,1999, 257:3634-3672.
    23 Monath T P, So ike K, L evenbook I, et al. Recombinant,chimeric, live, attenuatedvaccine (Ch imeriV axR) incorporating the envelope genes of Japanese encephalitis (SA 14-14-2) virus and the cap sid and nonstructural genes of yellow fever (17D) virus is safe, immunogenic and pro tective in nonhuman p rimates[J]. Vaccine, 1999, 17 (15216) : 1869-1882.
    24 Monath TP,M cCarthy K, Bedfo rd P, et al. Clinical p roof of principle for ChimeriVax: recombinant live, attenuated vaccines against flavivirus infections. [J].Vaccine,2002,20: 1004-1018.
    25 ChimeriVaxTM-JE Acambis plc (2007). Acambis’JE vaccine meets and exceeds primary endpoint in pivotal Phase 3 efficacy trial. Press release March 1, 2007.
    26 Konishi E,Fujii A,Mason PW.Generation and Characterization of a Mammalian Cell Line Continuously Expressing Japanese Encephalitis Virus Subviral Particles [J].J .Virol. 2001,75: 2204–2212.
    27 Kojima A, YasudaA, Asanuma H,et al.Stable High-Producer Cell Clone Expressing Virus-Like Particles of the Japanese Encephalitis Virus E Protein for a Second-Generation Subunit Vaccine[J].J . Virol. 2003,77: 8745–8755
    28 Monath TP. Prospects for development of a vaccine against the West Nile virus. Ann NY Acad Sci 2001; 951: 1-12.
    29 Shwn CC, Patrick S. C. L, Chun PL, et al. Fragment of Japanese encephalitis virus envelope protein produced in Escherichia coli protects mice from virus challenge [J]. Microbial Pathogenesis,2001,31: 9–19.
    30 Wu SC,Yu CH,Lin CW,et al.The domain III fragment of Japanese encephalitis virus envelope protein: mouse immunogenicity and liposome adjuvanticity[J].Vaccine. 2003,21: 2516–2522
    31 Ge FF,Qiu YF,Gao XF,et a1.Fusion expression of major antigenic segment of JEV E protein-hsp70 and the identification of domain acting as adjuvant in hsp70[J].Veterinary Immunology and Immunopathology,2006,113:288.
    32 Alka,Kaushik B,Malik YPS,et al. Immunogenicity and protective eYcacy of the E. coli-expressed domain III of Japanese encephalitis virus envelope protein in mice[J]. Med Microbiol Immunol ,2007,196:227–231
    33黄莺,贾丽丽,孙志伟,等.乙型脑炎病毒(JEV)全长感染性克隆的制备及恢复病毒的获得[J] .病毒学报, 2003 ,19 (4) : 313-319.
    34 Yun SI, Kim SY, Rice CM, et al. Development and App lication of a Reverse genetics System for Japanese Encephalitis Virus[ J ] .J.Virol, 2003, 77: 6450 - 6465
    35 Zhao Z, Tomoko D, Li Y, et al.Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable,full-length, infectious cDNA clone[ J ] .J.Gen Virol,2005,86:2209-2220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700