用户名: 密码: 验证码:
铜阀锻前红冲加热炉设计及其温控策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以铜阀锻前红冲加热炉为研究对象,对加热炉的基于节能的创新结构设计、基于功能实现的电气系统设计以及基于炉温的控制策略等进行了深入的研究,主要涉及以下几方面:
     设计了一种自动进料式的连续加热炉,该加热炉通过提升机、排料器以及推料器实现自动进料;以双层导轨、电热元件以及保温层构成炉体结构。炉体设计围绕节能主线,包括炉体材料的选择,电热元件的布局以及保温层的设计等等。保温层布局借助ANSYS有限元软件进行分析和优化,通过对炉体温度场和热流场的分析,提出了保温层优化方案,并通过实验验证了其准确性和可靠性。
     完成加热炉的电气系统设计,主要包括在硬件上实现自动进料的控制、炉温的实时检测与控制以及完善的人机交互等功能。基于实际工况的复杂性考虑,本加热炉又增加了故障自监测功能,对缺料、断炉丝、超温以及传感器损坏等常见故障进行自动报警,并提示用户排除故障方法。
     研究以升温快速和不超调为目标的炉温控制策略。提出了将安排过渡过程和BP-PID结合应用于炉温控制的方案,仿真和实验均表明此方法可以很好地解决炉温升温快速性与不超调之间的矛盾。
     研究基于加载考虑的炉温控制策略。在进、卸料过程中,炉温会发生大幅波动,影响温控的稳定性和精确性。为此,本文提出了一种将干扰观测器集成到已有温控策略上的方案,仿真和实验均表明集成干扰观测器后,系统鲁棒性大大提高,对大范围的负载干扰有很强抑制作用。为了增加对比性,本文还安排了目前常用的炉温控制策略——模糊控制策略进行比较试验,结果表明模糊控制器只能适应小范围工况变化,在升温性能和对抗大范围负载干扰性能上都不及本文所提出的集成安排过渡过程和干扰观测器的BP-PID控制器。
Making a copper forging furnace as the research object, the studies have been carried out in depth on innovative structure design based on energy-saving and on electrical system design based on function and on control strategies based on furnace temperature.
     An automatic feed continuous furnace was designed, which achieved automatic feeding by the elevator, range equipment and pusher; and constituted the furnace body structure with double tracks, electric components and heat insulator. The design of furnace body was based on energy-saving, including the choice of furnace materials, the layout of electric components and the design of heat insulator layers and so on. The heat insulator layers was analyzed and optimized by ANSYS finite element software, and an optimization scheme was proposed after the analysis of temperature and heat flow field of the furnace body. Finally, the accuracy and the reliability of the optimization scheme were verified by experiment.
     The electrical system of furnace was completed, including the function realization of automatic feed control, real-time examination and control of temperature and human-computer interaction on the hardware. Considering the complexity of the actual operating, this study added a function of malfunction self-monitoring, which mean when the common malfunctions such as material lacking, furnace wire broken, overheat and sensor damage occurred, the system would alarm automatically, and would prompt the users how to solve the problems as soon as possible.
     The temperature control strategy of which the goal was heating rapidly and non-overshoot was studied. Arrange transition course based BP-PID controller was presented. Simulation and experimental results show that this method could solve the contradiction between heating rapidly and non-overshoot well.
     The temperature control strategy which considering loading was studied. In the process of load in or out, furnace temperature would fluctuate badly, which affected the stability and precision of temperature control. Therefore, a disturbance observer based on the existing controller was presented. Simulation and experimental results show that the system has very strong inhibitory action to the large range of payload disturbances and its robust is improved greatly, after the disturbance observer is added. In order to increase the contrast, this study also arranged other strategy-fuzzy control strategy which was commonly used at present for comparison experiments, the results show that the fuzzy controller could only adapt to small range condition changes, in the performance of heating and against large range load disturbance, it is worse than the BP-PID controller which integrates the Arrange transition course and disturbance observer.
引文
[1]. 吴传钧,中国经济地理. 北京:科学出版社.1998.
    [2]. http://www.tzzjj.gov.cn/3831.html,台州市质量技术监督政务网
    [3]. 夏巨谌.塑性成形工艺及设备[M].北京:机械工程出版社,2001.
    [4]. 施慧巍,铜阀锻前加热系统的设计及其温度控制系统的研究[D].杭州:浙江大学,2006.
    [5]. 肖兵,毛宗源.燃烧控制器的理论与应用[M].北京:国防工业出版社,2004.
    [6]. 张欣欣,殷晓静.火焰加热炉与加热缺陷[J].工业加热,1995(1):28-30.
    [7]. 徐平姣.锻造加热炉的现状及节能途径探析[J],吉林工程技术师范学院学报(工程技术版),2003,19(9):8-10.
    [8]. Hsun-Heng Tsai, Shiuh-Ming Chang. Improvement of fuel consumption and maintenance of heating furnaces using a modified heating pattern. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material. 2007,14(1):27-32.
    [9]. A. K. Gupta. Clean Energy Conversion from Waste Fuels Using High Temperature Air Combustion Technology. Asian J. Energy Environ.2004,5(4): 223-266.
    [10]. M.BOJIC, M.TOMIC.EFFECT OF REFUSE-GAS FUEL USE ONENERGY CONSUMPTION IN AN INDUSTRIAL PUSHER FURNACE.Energy.1998,23(9):767-775.
    [11]. Hamzeh Jafar Karimi, Mohammad Hassan Saidi. Heat Transfer and Energy Analysis of a Pusher Type Reheating Furnace Using Oxygen Enhanced Air for Combustion. JOURNAL OF IRON AND STEEL RESEARCH, INTERNATIONAL.2010,17(4):12-17.
    [12]. W.H. Chen, Y.C. Chung, J.L. Liu. Analysis on energy consumption and performance of reheating furnaces in a hot strip mill. International Communications in Heat and Mass Transfer.2005,32:695-706.
    [13]. 昂桂兰.工业加热[M].西安:机械电子工业部西安电炉研究所,1991.
    [14]. Unal Camdali, Murat Tunc. Exergy analysis and efficiency in an industrial AC electric ARC furnace. Applied Thermal Engineering.2003, Vol.23:p. 2255-2267.
    [15]. 雷聚超.一种新的自适应PID控制算法[J].工业仪表与自动化装置,2002,5:23-25.
    [16]. 刘秀红.模糊自整定PID控制在电阻炉温度控制中的应用[J].测量与设备,2007,2:25-28.
    [17]. A.G. Abilov, Z. Zeybek, O. Tuzunalp, Z. Telatar. Fuzzy temperature control of industrial refineries furnaces through combined feedforward/feedback multivariable cascade systems[J]. Chemical Engineering and Processing,2002, 41:87-98.
    [18]. Wei Wang, Han-Xiong Li, Jingtao Zhang, A hybrid approach for supervisory control of furnace temperature[J]. Control Engineering Practice,2003,11: 1325-1334.
    [19]. RADAKOVIC Z R, MILOSEVIC V M, RADAKOVIC S B. Application of temperature fuzzy controller in an indirect resistance furnace[J]. Applied Energy,2002,73:167-182.
    [20]. Shaoyuan Li, Qing Chen, Guang-Bin Huang. Dynamic temperature modeling of continuous annealing furnace using GGAP-RBF neural network[J]. Neurocomputing,2006,69:523-536.
    [21]. 李韵豪.锻压工业中的感应加热——铜及铜合金的感应加热及感应器的设计与参数计算[J].2007,7:79-82.
    [22]. 程志强,戴连奎,孙优贤.基于温度的加热炉热效率在线估计[J].化工自动化及仪表,2002,29(6):48-51.
    [23]. 张鹏立,王军学.提高中小型普通功率电炉生产效率的捷径[J].钢铁研究学报,2002,2(14):72-74.
    [24]. Marcus Kirschen, Victor Risonarta, Herbert Pfeifer. Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry[J]. Energy,2009,34:1065-1072.
    [25]. Unal Camdali, Murat Tune. Exergy analysis and efficiency in an industrial AC electric ARC furnace[J]. Applied Thermal Engineering,2003,23:2255-2267.
    [26]. 池桂兴等.工业炉节能技术[M].西安:冶金工业出版社,1994.
    [27]. 邰晓曦,孙婧.耐高温节能涂料的原理与应用[J].广东化工.2009,36(9):109-111.
    [28]. 张建贤,邹永军等.高发射率涂料的研究及应用现状[J].红外技术.2007,29(8):491-494.
    [29]. Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity, and Emissions Performance [J]. Energy Efficiency and Renewable Energy Information Center, U.S. Department of Energy.
    [30]. 韩新生,李银河等.空煤气双蓄热技术在加热炉上的应用[J].承钢技术.2006(1):22-24.
    [31]. 黄丽萍,卞洪山.膜法富氧助燃技术在燃煤锅炉上的应用[J].石油和化工节能.2005(4):21-23.
    [32]. MARTINEAU S, BURNHAM K J, HAAS O C L, et al. Four-term bilinear PID controller applied to an industrial furnace[J]. Control engineering practice, 2003,12:457-464.
    [33]. RADAKOVIC Z R, MILOSEVIC V M, RADAKOVIC S B. Application of temperature fuzzy controller in an indirect resistance furnace[J]. Applied Energy,2002,73:167-182.
    [34]. 周海艳,刘军.电加热炉炉温的Fuzzy-pid复合控制[J].重庆科技学院学报:自然科学版,2009,11(4):120-121.
    [35]. 石晓瑛.基于神经网络PID炉温控制系统设计[J].武汉工业学院学报,2008,27(1):43-45.
    [36]. Ilyas Eker, Yunis Torun. Fuzzy logic control to be conventional method[J]. Energy Conversion and Management.2006(47):377-394.
    [37]. G.P. Liu, S. Daley. Optimal-tuning PID control for industrial systems[J]. Control Engineering Practice.2001(9):1185-1194.
    [38]. K.J.Astrom, T.H.agglund. The future of PID control [J]. Control Engineering Practice.2001(9):1163-1175.
    [39]. Cemalettin K, Harun T, Recep A, Ayten Y. Bofy-fuzzy logic control for the basic oxygen furnace (BOF)[J]. Robotics and Autonomous Systems.2004(49): 193-205.
    [40]. Mercedes R, Rodolfo H, Vi'ctor P, Iva'n R. Fuzzy control of a multiple hearth furnace[J]. Computers in Industry.2004(54):105-113.
    [41]. 刘向杰,周孝信,柴天佑.模糊控制研究的现状与新发展[J].信息与控制.1999,28(4).
    [42]. 楚焱芳.模糊控制理论综述[J].科技信息,2009,(20).
    [43]. B.M. Mohan, Arpita Sinha. Analytical structure and stability analysis of a fuzzy PID controller[J]. Applied Soft Computing.2008(8):749-758.
    [44]. R. Ketata, D. De Geest, A. Titli. Fuzzy controller:design, evaluation, parallel and hierarchical combination with a PID controller[J]. Fuzzy Sets and System. 1995(71):113-129.
    [45]. 强明辉,周学文.模糊PID算法在泡沫玻璃窑炉温度控制中应用[J].工业仪表与自动化装置.2010(5):87-89.
    [46]. 徐晓东,徐晓辉,任安业.基于参数自整定模糊PID控制的大型液压源温控系统设计[J].上海航天.2010(5):60-64.
    [47]. Chin-Teng Lin et al. Neural Network-Based Fuzzy Logic Control and Decision Systems. IEEE Trans on Computer,1991,40(12):1320-1336.
    [48]. Narendre K S, Muldaoppadhyay S. Adaptive control of nonlinear multivariable systems using neural networks [J].Neural Networks.1999,7(5): 737-752.
    [49]. S.A歇雷登.锻造设计手册.北京:国防工业出版社,1977.
    [50]. 杨振恒主编.锻造工艺学.西安:西北工业大学出版社,1986.
    [51]. 航空工艺装备设计手册-锻模设计.北京:国防工业出版社,1986.
    [52]. 陈秀宁,施高义.机械设计课程设计[M].杭州: 浙江大学出版社.2001.10.
    [53]. 赖耿阳.自动机械供输装置图集[M].台南:复汉出版社有限公司,民国八十九年十一月.
    [54]. 曹志文.自动送料式铜阀红冲加热炉设计及控制系统研究[D].杭州:浙江大学,2008.
    [55]. 王少怀等,机械工业材料选用手册[M].北京:机械工业出版社,2009,4.
    [56]. T.Hasegawa. High Temperature Air Combustion as a Core Technology in Developing Advanced Industrial Furnaces. Proceeding of the 2nd International High Temperature Air Combustion Symposium. Taiwan,1999:59-65
    [57]. 贾永康等,热工学基础[M].武汉:武汉理工大学出版社,2008,9.
    [58]. Eva Franke, H. Neumanna. Low-orbit-environment protective coating for all-solid-state electrochromic surface heat radiation control devices. Surface and Coatings Technology.2002(151-152):285-288.
    [59]. David W.Yarbrough. Use of radiation control coating to reduce building air-conditioning loads. Energy Sources,1993(15):59-66
    [60]. http://guangmingyt.cn.makepolo.com/?pid=100003297326.烟台光明保温材料有公司.
    [61]. 莫里京等.绝热工程技术手册[M].北京:中国石油化工出版社,1977,8.
    [62]. 国家标准GB11835-89绝热用岩棉、矿渣棉及其制品[M].北京:中国标准出版社.
    [63]. 南京玻璃纤维工业研究设计院.玻璃棉应用[M].北京:中国建筑工业出版社,1977.
    [64]. 石兴.耐高温、低导热、柔性微孔硅酸钙材料的研究[J].稀有金属材料与工程.2007,36(1):560-563.
    [65]. Paul K.. Mechanism of apatite formation on wollastonite coatings in simulated bodyfluids. Biomaterials.2004(25):1755-1761.
    [66]. 鹿自忠等.硅酸铝纤维炉衬结构的设计与应用[J].工业炉.2005,27(2):48-52.
    [67]. 杨世铭,陶文铨.传热学(第四版).高等教育出版社,2006,8.
    [68]. 蒋晓玲,工业用热电偶的选择与安装[J].品牌与标准化.2009(16):27.
    [69].钱积新,王慧,周立芳.控制系统的数字仿真及计算机辅助设计[M].北京:化学工业出版社,2003.5.
    [70]. ERIC B, ANNE R, AERE. Good practice for energy efficiency in industry[J]. Efficiency & eco-design,2006.
    [71].刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2006.
    [72]. 韩京清.自抗扰控制技术:估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008.
    [73]. CARL J, KEMPF, SEIICHI K. Disturbance observer and feed forward design for a high-speed direct-drive positioning table [J]. IEEE Transactions on control system technology,1999,7(5):513-527.
    [74]. 王维锐,潘双夏,王芳等.磁流变液减振器模拟工况实验台控制策略研究[J].浙江大学学报:工学版,2005,39(12):1915-1919.
    [75]. 邓朝霞,电阻炉炉温模糊控制系统研究[J].广西轻工业.2008(1):65-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700