用户名: 密码: 验证码:
蓄热式铝熔炼炉熔炼过程多场耦合的数值模拟及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝熔炼炉是铝及铝合金熔铸厂的关键设备,其熔炼过程是铝加工过程中能耗较大的工序。近年来,随着我国铝加工材量的不断增加和优质铝合金铸件的需求,对铝熔炼炉热效率、污染物排放和产品质量提出了更高的要求。因此,本文通过数值模拟的方法,全面深入的研究铝熔炼炉熔炼过程,对促进铝熔炼炉的节能研究和优化设计具有重要的理论与实践意义。
     针对现有的蓄热式铝熔炼炉,结合其熔炼过程的运行特点,考虑燃料燃烧,燃烧空间和铝料间换热,铝料的升温熔化,氧化层的生长,蓄热式燃烧器的交替工作,热负荷的变化以及炉壁的热损失,在建立蓄热式铝熔炼炉熔炼过程基本模型的基础上,通过耦合用户白定义熔化模型、氧化烧损模型和燃烧器换向及燃烧量变化模型,运用FLUENT UDF和FLUENT Scheme混合编程,实现了蓄热式铝熔炼炉熔炼过程多场耦合的数值模拟。并以热平衡计算原理和UML(Unified Modeling Language)建模为基础,编写了蓄热式铝熔炼炉热平衡计算软件。结合某厂生产情况进行模拟计算,对数值模拟结果进行验证,同时,提出了提高铝熔炼炉热效率的有效措施。分析结果表明:
     (1)数值模拟结果和测试值的相对误差在5%左右,且它们的变化规律一致,分布类似,验证了蓄热式铝熔炼炉熔炼过程数学模型的可靠性和准确性,该模型能够较好反映铝熔炼炉的熔炼现象,可运用此模型进行铝熔炼炉熔炼过程工艺参数的优化研究。
     (2)铝料温度在固液区上升缓慢,而离开固液相线时铝料温度上升速度加快;炉膛温度随着熔炼时间先呈周期性增加,后又周期性阶梯降低,最后又开始周期性增加;氧化量随着熔炼时间呈抛物线增加;随着氧化层孔隙率的增加,铝料温度增加缓慢。
     (3)铝料温度相对标准差随着熔炼时间先增加,后减小,再增加;炉膛温度相对标准差随着熔炼时间先呈周期性减小,后周期性阶梯增加,又周期性减小;铝液面热流密度随着熔炼时间先增加,后减小。
     (4)熔化前期烟道温度随着液相率增加而减小,而熔化后期又开始增加;炉膛出口氧气浓度在熔化前期则随着液相率增加而增加,而在熔化后期恒定不变。
     结合要因分析图,依据某厂蓄热式铝熔炼炉的实际使用情况,确定燃烧器倾角(A/θ)、燃烧器高度(B/H)、辅助烟道(C)、旋流数(D/S)、燃烧器间水平夹角(E/α)、空气预热温度(F/T)、天然气流量(G/M)、空气消耗系数(H/n)为影响因子,研究其对蓄热式铝熔炼炉熔炼性能的影响。以其规律性分析为根据,选取铝料温度相对标准差(Y1)、熔炼时间(Y2)和炉膛温度相对标准差(Y3)为优化指标,建立了优化指标间的模糊比较判断矩阵,并以此构造线性规划模型,运用MATLAB编程求解权重向量,最后采用基于田口方法对蓄热式铝熔炼炉工艺参数进行多目标优化研究,找出最优的组合参数。最终获得如下结果:
     (1)根据模拟结果的非线性回归得到铝料温度相对标准差(Y1)、熔炼时间(Y2)和炉膛温度相对标准差(Y3)的表达式:
     (2)统计分析得到最优的铝熔炼炉工艺参数组合为A2B1C1D2E1F3G3H1。通过信噪比和均值的综合分析,得到重要因子D、E、F、G,稳健因子A,调节因子H,次要因子B、C。经试验验证模拟是成功的,试验设计所得的结果准确,具有再现性。采用试验设计所得最佳化参数提升了产品质量和熔炼过程的稳健性。
     (3)通过数值分析,获得了工艺参数对蓄热式铝熔炼炉熔炼性能的影响规律。
     为了减少炉衬的热损失和节约投资成本,针对铝熔铸行业广泛使用的反射式铝熔炼炉,以三层平壁炉衬结构为研究对象,计算分析了隔热方式对炉衬传热影响。以经济厚度法为依据,通过编程实现炉衬组合的计算机优化。同时以蓄热式铝熔炼炉热平衡测试为例,建立了包括炉衬的蓄热式铝熔炼炉数学模型,并运用计算流体力学软件FLUENT对炉窑工作制度为40周的优化前后的炉衬组合进行仿真,结果分析表明炉衬组合的计算机优化结果是成功的,可获得比较理想的经济效益。
Aluminum melting furnaces are key equipment in melting and casting factory, and a large amount of energy may be consumed during aluminum and aluminum alloy process procedure. In recent years, along with raised aluminum processing yield and demand of high quality for aluminum alloy castings in our country, high thermal efficiency, less pollutant emission and good product are demanded. Hence, it is important for both theories and practices to comprehensively understand melting process of aluminum melting furnaces by numerical simulation, which will result in great improvement of energy-saving and optimization in aluminum melting furnaces.
     According to the features of melting process of regenerative aluminum melting furnaces, in the present work, this paper concerns fuel combustion, heat transfer between combustion space and aluminum bath, phase change, oxide growth, burner reversing and varying of heating load, heat loss through furnace walls. A mathematical model with user-developed melting model, oxide loss model, burner reversing and burning capacity model was established. This paper presents numerical simulation of melting process of a regenerative aluminum melting furnace using hybrid programming method of FULENT UDF and FLUENT Scheme. Based on the principle of heat balance calculation and UML (Unified Modeling Language), heat balance calculation software for regenerative aluminum melting furnaces was developed. By employing heat balance test data in a company, heat balance calculation was conducted with the program and numerical results were further verified and effective measures for increasing heat efficiency of regenerative aluminum melting furnaces were put forward. The following conclusions can be derived:
     (1) The numerical results are basically in good agreement with the experiment results. The trend of simulation results is in accordance with that of measured data, they have similar distribution and relative error is less than5%. Thus, the computational models were proven to be reliable and accurate. The results show that melting phenomenon of the furnace may be revealed thoroughly. It is also indicated that optimization of parameters for aluminum melting furnaces may be studied by the above model.
     (2) Aluminum temperature increases slowly with melting time in solid-liquid zone, but rises faster when leaving solid-liquid phase lines. Furnace temperature firstly increases periodically with melting time, then decreases stepwise, lastly increases periodically. Oxide weight parabolically increases with melting time. As oxide porosity increases, the increase of aluminum temperature becomes slow.
     (3) RSD (relative standard deviation) of aluminum temperature firstly increases, then decreases, finally increases. RSD of furnace temperature firstly decreases periodically with melting time, then increases stepwise, finally decreases periodically. The heat flux through aluminum surface firstly increases with melting time, then decreases slowly.
     (4) In early melting stage, flue gas temperature decreases with liquid fraction, then increases in later melting stage. Oxygen concentration in flue gas increases with liquid fraction in early melting stage, then remains constant in later melting stage.
     With cause and effect diagram of performance for aluminum melting furnaces, vertical angle of burner (A/θ), height of burner (B/H), secondary flue (C), swirl number (D/S), horizontal angle between burners (E/α), air preheated temperature (F/T), natural gas mass flow (G/M), and air-fuel ratio (H/n) were selected to investigate their effects on the performance of aluminum melting furnaces. Based on the analysis of preliminary experimental tests, RSD of aluminum temperature (Y1), melting time (Y2) and RSD of furnace temperature (Y3) were selected as evaluation criteria, and this study used fuzzy judgment matrix and created a linear programming model in order to solve the weights for the evaluation criteria by MATLAB. CFD technique, in association with the Taguchi method was employed for parameter optimization of melting process of aluminum melting furnaces. The main conclusions are drawn as follows:
     (1) By non-linear regression on the base of simulation results, the empirical correlations for the RSD of aluminum temperature (Y1), melting time (Y2) and RSD of furnace temperature (Y3) are obtained as follows:
     (2) By statistical analysis of evaluation criteria such as RSD of aluminum temperature (Y1), melting time (Y2) and RSD of furnace temperature (Y3), the optimum condition of aluminum melting furnaces is A2B1C1D2E1F3G3H1. Through ANOVA (Analysis of Variance) and ANOM (Analysis of Means) for S/N ratio (signal-to-noise ratio) and mean value, the factors are classified into four categories as follows: important factors are D, E, F and G, robust factor is A, regulatory factor is H, and secondary factors are B and C. It is indicated that numerical simulation of aluminum melting furnaces is successful through the confirmation experiment. And the results are accurate and reproducible. The product quality and robustness of process development with the optimal parameter may be improved.
     (3) The rules of influence factors on performance of aluminum melting furnaces are achieved by numerical analysis.
     To reduce heat loss and save cost, three-layer slab was simplified for furnace linings of widely-used aluminum reverb furnaces in aluminum casting industry. Heat transfer analysis of different heat-insulating mode on furnace lining was carried out. Based on economic thickness method, furnace linings were optimized by computer programming. On this basis, a three dimensional mathematical model of aluminum melting furnaces including linings was developed. Furnace linings with40-week work system of before and after optimization were simulated by CFD software FLUENT. It is indicated that the results of optimization are successful and ideal economic effect is obtained.
引文
[1]黄素逸,高伟.能源概论[M].北京:高等教育出版社,2004.
    [2]李方运.天然气燃烧及应用技术[M].北京:石油工业出版社,2002.
    [3]中铝网.行业聚焦[DB/OL]. http://www.cnal.com/,2011.04.22.
    [4]广西百色招商网.铝产业专题[DB/OL]. http://www.gxbszs.gov.cn/,2007.11.14.
    [5]萧今声.中国铝加工业现状与发展趋势[J].新材料产业,2009,(06):55-60.
    [6]贺慧彤,王祝堂.2009年中国铝加工业在世界经济严寒中前进[J].轻合金加工技术,2010,(07):1-7.
    [7]郎大展.中国铝工业走出2009[J].中国金属通报,2010,(07):14-17.
    [8]郎大展.中国铝工业发展形势[J].中国金属通报,2008,(35):34-37.
    [9]刘蒙,柴西林.中国铝工业炉节能减排分析及展望[J].冶金设备,2010,(03):67-70.
    [10]王祝堂,郑祥健.我国铝加工业冶金炉能耗现状与展望(1)[J].轻合金加工技术,1999,27(05):1-5.
    [11]王祝堂,郑祥健,方明.我国铝加工业冶金炉能耗现状与展望(2)[J].轻合金加工技术,1999,(06):1-4+24.
    [12]田守礼.中小型铝加工厂熔铝炉述评[J].轻合金加工技术,1985,(07):1-7.
    [13]刘荣章,朱彤.影响熔铝炉热效率的因素探讨[C].2008重庆市铸造年会.重庆:中国机械工程学会,2008:290-292.
    [14]陈鸿复.冶金炉热工与构造[M].北京:冶金工业出版社,1990.
    [15]陆钟武.冶金热能工程导论[M].沈阳:东北工学院出版社,1990.
    [16]田红,蔡九菊,赵渭国.蓄热式火焰炉的热工特性[J].东北大学学报:自然科学版,2006,27(05):505-508.
    [17]唐剑,王德满,刘静安,等.铝合金熔炼与铸造技术[M].北京:冶金工业出版社,2009.
    [18]张忠玉.铝及铝合金工艺与设备[M].长沙:中南大学出版社,2006.
    [19]余志华.浅谈熔铝炉优化设计技术[C].LW2004铝型材技术(国际)论坛论文汇编.广州:中国有色金属学会,2004:163-167.
    [20]杨万里.熔铝炉优化设计技术探讨[C].Lw2007铝型材技术(国际)论坛论文汇编.广州:中国有色金属学会,2007:295-300.
    [21]李晓鹏,陈拂晓,周利明.影响再生铝熔炼烧损的因素及控制措施[J].有 色金属再生与利用,2006,(06):28-30.
    [22]潘增源.减少铝合金“熔炼烧损”对策探讨[J].特种铸造及有色合金,1995,02:22-24.
    [23]王震,牛金太.降低反射炉铝合金熔损的措施[J].山东冶金,1999,21(01):26-27.
    [24]苏堪祥.熔炼条件对铝熔体质量的影响[J].轻合金加工技术,2004,32(08):10-13.
    [25]张宇.铝熔体的质量控制[J].中国金属通报,2009,(41):38-39.
    [26]黄国其.提高铝熔体质量的根本措施[J].湖南冶金,1988,(04):26-28.
    [27]吴欣凤.提高铝合金加工材冶金质量途径[J].黑龙江冶金,1997,04:34-36.
    [28]卢焕瑞.熔铝炉节能技术综述[C].全国铜铝加工高新技术发布与研讨会铜加工高新技术文集.北京:中国有色金属加工工业协会,2001:152-155.
    [29]党积囤.现代化熔铝炉的技术发展[J].轻合金加工技术,1988,(03):5-10+23.
    [30]高荫恒.国内外铝合金熔铸技术的现状[J].轻合金加工技术,1994,22(10):7-11.
    [31]饭田弘文,佐藤敏行,李金华,等.节能的铝熔炼法——铝快速熔炼炉的研究[J].轻合金加工技术,1983,(11):1-9.
    [32]Morgenrcth E.铝铸造厂熔炼过程中降低能耗费用的措施[J].轻合金加工技术,1983,(05):8-9+50.
    [33]王祝堂,佘学军,刘海江,等.铝合金熔炼铸造能源与资源节约[J].轻合金加工技术,2005,32(12):1-5.
    [34]Stewart Jr D. L. Aluminum melting technology-current trends and future opportunities [C].131st TMS Annual Meeting. Seattle, WA, USA:TMS, 2002:719-724.
    [35]Beichner F. L. Efficiency evaluation of melting aluminum furnaces [C]. Light Metals 2002. Proceedings of the Technical Sessions presented by the TMS Aluminum Committee at the 131st TMS Annual Meeting,17-21 Feb.2002. Warrendale, PA, USA:TMS,2002:725-9.
    [36]柯东杰,黄双溪,陈群,等.新型泡沫陶瓷的铝熔体净化技术[C].LW2004铝型材技术(国际)论坛论文汇编.广州:中国有色金属学会,2004:195-198.
    [37]柯东杰.铝合金绿色熔炼的最新工艺技术和装备[C].Lw2010第四届铝型 材技术(国际)论坛论文集.广州:中国有色金属学会,2010:238-248.
    [38]柯东杰,路贵民,陈晓,等.低成本无污染的熔炼铝合金新技术[C].2008’全国铝合金熔铸技术交流会论文集.福州:中国有色金属加工工业协会,2008:52-58.
    [39]柯东杰,陈群,路贵民,等.研究铝合金熔体绿色精炼技术[C].中国首届铝加工技术创新论坛论文集.上海:中国有色金属加工工业协会,2007:109-117.
    [40]柯东杰,路贵民,J Richard发展铝合金绿色熔炼技术的探讨[C].全国第十三届轻合金加工学术交流会论文集.杭州:中国有色金属加工工业协会,2005:1-7.
    [41]欧利维,莫什,张克康.铝熔铸厂如何选择液态金属炉[J].资源再生,2008,(05):58-59.
    [42]Migchielsen J., Grab H., Schmidt T. Design considerations for holding and casting furnaces [C]. Light Metals 2008. Warrendale,USA:TMS, 2008:593-596.
    [43]Emes Chris. Furnace design and performance-specific designs for different aluminium scrap remelting [C].9th Australasian Conference and Exhibition 2005. Melbourne, Australia:TMS,2005:185-192.
    [44]熊茹.熔铝炉的炉型与节能[J].轻合金加工技术,2002,30(05):19-21.
    [45]李鹏,王旭辉,郭成刚,等.新型铝合金熔化保温炉[C].全国能源与热工学术年会论文集.昆明:中国金属学会,2004:233-235.
    [46]蔡敬文,周绍芳,孙贤刚.连续式双室铝熔化保温炉的研究设计[J].煤炭技术,2009,28(012):141-143.
    [47]贺永东.低烧损节能深膛铝熔炼炉设想[J].轻合金加工技术,1999,27(06):8-13.
    [48]贺永东.熔铝炉的节油,节料与少无氧化熔炼[J].工业加热,1999,(01):38-43.
    [49]向凌霄,孙辂,耿培久,等.铝熔炼炉能源的合理选择[J].轻金属,2007,31(06):24-27.
    [50]Neff David V., Peel Alan M. Metals refining in aluminium melting and holding furnaces [C].9th Australasian Conference and Exhibition 2005. Melbourne, Australia:TMS,2005:217-227.
    [51]柯东杰.国内现行铝熔体净化技术的生产实践[J].轻合金加工技术,1994,(11):17-19.
    [52]龚荣良.铝熔体熔炼净化技术探讨[J].成飞科技,2004,(01):44-48.
    [53]李杰华,郝启堂.铝合金熔体净化技术的现状及其发展趋势[J].中国铸造装备与技术,2005,(06):1-4.
    [54]乔卫东,王水标.铝合金熔体过滤净化技术[J].轻合金加工技术,2004,32(09):13-14.
    [55]冯光陆.透气砖熔炼技术在铝合金熔炼上的应用[J].内燃机配件,2008,(3):22-24.
    [56]柯东杰,王祝堂.当代铝熔体处理技术[M].北京:冶金工业出版社,2010.
    [57]Sjoden O. Influence of electromagnetic stirring on the melting of aluminium [C]. Minerals, Metals and Materials Society,2001:87-97.
    [58]贵广臣.电磁搅拌装置在熔铝炉中的应用[J].有色金属加工,2004,33(05):13-14.
    [59]赵和恩,赵敏杰.国产60吨铝熔炉感应式电磁搅拌器的应用[J].轻金属,2006,(07):37-41.
    [60]李宝君.电磁搅拌器对提高铝熔体质量的作用[J].轻金属,2004,(09):53-54.
    [61]李同杰.蓄热式高温空气燃烧技术在熔铝炉上的应用[C].Lw2007铝型材技术(国际)论坛论文汇编.广州:中国有色金属学会,2007:291-294.
    [62]曹学军.蓄热式燃烧器及控制技术在熔铝炉改造中的应用[J].铝加工,2002,25(02):41-43.
    [63]国伟.低氮氧化物蓄热式烧嘴的设计应用[J].有色金属加工,2005,34(05):47-48.
    [64]郭志明.铝熔炼炉的蓄热式燃烧装置[J].资源再生,2008,(03):60-61.
    [65]梁志刚.不换向蓄热式燃烧技术在环形熔铝炉上的应用[J].有色冶金节能,2006,23(01):21-23.
    [66]王守权.铝熔炼炉用耐火材料的损毁[J].国外耐火材料,1993,18(03):32-38.
    [67]赵士明,董红芹,蒋明学,等.铝熔炼炉用特种高铝砖的抗侵蚀性研究[J].耐火材料,2006,40(05):392-394.
    [68]王战民,李红霞,张三华,等.大型铝熔炼炉用不定形耐火材料研制与应用[R].洛阳:中钢集团洛阳耐火材料研究院有限公司,2009.
    [69]洪成文,刘显滨,郑力,等.控制熔铝炉燃烧过程主要参数与节约能源[J].有色冶金节能,2007,24(04):27-28.
    [70]徐卫国.熔铝炉燃烧控制系统新技术[J].有色金属加工,2005,33(06):42-44.
    [71]王洪军,赫欣宅,张智敏.25t熔铝炉工作原理和常见问题及串级控温系统设想[C].中国有色金属加工工业协会轻金属分会工业铝型材技术专集.广州:中国有色金属加工工业协会,2006:162-164.
    [72]高振中,白文昌,王祝堂.开创铝熔炼技术新时代的等温熔炼炉[J].轻合金加工技术,2007,35(12):1-6.
    [73]Tianxiang Li, King P., Hassan M., et al. An analytical furnace model for optimizing aluminum melting furnaces [C]. Light Metals 2005. Warrendale, PA, USA:TMS,2005:875-9.
    [74]Tianxiang Li, Hassan M., Kuwana K., et al. Performance of secondary aluminum melting:Thermodynamic analysis and plant-site experiments [J]. Energy,2006,31:1433-43.
    [75]Tianxiang Li, Hassan M., Kuwana K., et al. Thermodynamic analyses of energy utilization and pollutant formation control in secondary aluminum melting furnaces [C]. Proceedings of the Technical Sessions. Warrendale, PA, USA:TMS,2003:43-51.
    [76]Penmetsa Srr S., Tianxiang Li, King P., et al. Scale modeling of aluminum melting furnaces [C]. Light Metals 2005. Warrendale, PA, USA:TMS, 2005:881-6.
    [77]Williams E. M., Stewart D. L., Overfield K. Evaluating aluminum melting furnace transient energy efficiency [C]. Energy Technology Perspectives: Conservation, Carbon Dioxide Reduction and Production from Alternative Sources. Warrendale, PA, USA:TMS,2009:181-5.
    [78]Lazic L., Varga A., Kizek J. Analysis of combustion characteristics in a aluminium melting furnace [J]. Metalurgija,2005,44(03):195-199.
    [79]Stevens W., Fortin J. Y. Development of a pilot "Top-charge" Melt furnace to examine the fundamental melting phenomena in aluminum [C]. Light Metals 2002. Warrendale, PA, USA:TMS,2002:747-50.
    [80]Golchert B. M., Zhou C. Q., Quenette A., et al. Combustion space modeling of an aluminum furnace [C]. Light Metals 2005. Warrendale, PA, USA:TMS, 2005:887-92.
    [81]King P. E., Hayes M. C., Li T., et al. Design and operation of an experimental reverberatory aluminum furnace [C]. Light Metals 2005. Warrendale, PA, USA:TMS,2005:899-904.
    [82]Belt C. K., Golchert B. M., King P. E., et al. Industrial application of doe energy savings technologies to aluminum melting [C]. Light Metals 2006. Warrendale, PA, USA:TMS 2006:881-5.
    [83]King P. E., Hatem J. J., Golchert B. M. Energy efficient operation of secondary aluminum melting furnaces [C].9th Annual Electric Utilities Environmental Conference. Tucson, AZ, USA:Electric Utilities Environmental Conference,2006:9-14.
    [84]Nieckele A. O., Naccache M. F., Gomes M. S. P. Numerical modeling of an industrial aluminum melting furnace [J]. Transactions of the ASME. Journal of Energy Resources Technology,2004,126:72-81.
    [85]Nieckele Angela O., Naccache Monica F., Gomes Marcos S. P., et al. Performance of the combustion process inside an aluminum melting furnace with natural gas and liquid fuel [C]. IMECE 2005. Orlando, FL, USA:ASME, 2005:275-283.
    [86]Nieckele Angela O., Gomes Marcos S. P., Naccache Monica F., et al. Influence of the type of oxidant in the combustion of natural gas inside an aluminum melting furnace [C]. IMECE2006. Chicago, IL, USA:ASME,2006:
    [87]Nieckele A.O., Gomes MS, Naccache M.F., et al. The influence of oxygen injection configuration in the performance of an aluminum melting furnace [C]. ASME-PUBLICATIONS-HTD. Fairfield,USA:ASME,1999:405-412.
    [88]Nieckele A.O., Naccache M.F., Gomes M.S.P., et al. Numerical investigation of the staged versus non-staged combustion process in an aluminum melting furnace [C]. ASME-PUBLICATIONS-HTD. Fairfield,USA:ASME,1998:253-260.
    [89]Golchert Brian, Kumar Ashwini, Venuturumilli Raj, et al. How flames/loads interaction affects furnace efficiency in round top furnace operation [C].136th TMS Annual Meeting. Orlando, FL, USA:TMS,2007:61-66.
    [90]Golchert Brian, Ridenour Paul, Walker William, et al. Effects of nitrogen and oxygen concentration on nox emissions in an alumunium furnace [C]. IMECE2006. Chicago, IL, USA:ASME,2006:
    [91]Solovjov V. P., Webb B. W. Prediction of radiative transfer in an aluminium-recycling furnace [J]. Journal of the Energy Institute,2005,78(01): 18-26.
    [92]De A.K., Mukhopadhyay A., Sen S., et al. Numerical simulation of early stages of oxide formation in molten aluminium-magnesium alloys in a reverberatory furnace [J]. Modelling and Simulation in Materials Science and Engineering,2004,12(03):389.
    [93]Rydholm B., Sjoden O. Optimized furnace design with electromagnetic stirring [C]. Ninth Australasian Conference and Exhibition Aluminium Cast House Technology 2005. Warrendale, PA, USA:TMS,2006:201-8.
    [94]黄军,王宝峰,赵莉萍,等.铝熔炉电磁搅拌磁场与流场的数值模拟[J].特种铸造及有色合金,2008,28(02):119-121.
    [95]Takahashi Koichi, Maruyama Makoto, Ishikawa Nobuhito, et al. Simulation for loss of electromagnetic stirring force due to the penetrated aluminum into the furnace lining [C].2007 TMS Annual Meeeting. Orlando, FL, USA:TMS, 2007:49-58.
    [96]Alchalabi Rifat, Meng Fanli, Peel Alan. Furnace operation optimization via enhanced bath circulation:Technologies for production increase and dross reduction [C].131st TMS Annual Meeting. Seattle, WA, USA:TMS, 2002:739-746.
    [97]Zhou N.J., Zhou S.H., Zhang J.Q., et al. Numerical simulation of aluminum holding furnace with fluid-solid coupled heat transfer [J]. Journal of Central South University of Technology,2010,17(06):1389-1394.
    [98]周乃君,周善红.铝液反射保温炉燃烧与流固耦合传热数值模拟[J].工业加热,2010,(01):9-12.
    [99]郭臣,龙思远,徐绍勇,等.燃气镁合金熔化炉内气相燃烧过程的三维数值模拟[J].工业加热,2008,37(01):10-14.
    [100]Abbassi A., Khoshmanesh K. Numerical simulation and experimental analysis of an industrial glass melting furnace [J]. Applied Thermal Engineering,2008, 28(05):450-459.
    [101]Zhou B., Yang Y., Reuter MA, et al. Modelling of aluminium scrap melting in a rotary furnace [J]. Minerals engineering,2006,19(3):299-308.
    [102]Golchert B. M., Metwally H., Kumar A. Computational analysis of the conversion of a generic aluminum holding furnace from air-fired to oxy-fired burners [C]. Light Metals 2006. Warrendale, PA, USA:TMS,2006:733-6.
    [103]袁锋.燃天然气单元玻璃熔窑火焰空间的三维数值模拟[D].杭州:浙江大学,2005.
    [104]吴武辉.陶瓷辊道窑温度场数值模拟与分析研究[D].武汉:武汉理工大学,2008.
    [105]Zhou Bo, Yang Yongxiang, Reuter Markus A., et al. Cfd-based process modelling of a rotary furnace for aluminium scrap melting [C]. Progress in Computational Fluid Dynamics. Geneve, Switzerland:Inderscience Enterprises Ltd,2007:195-208.
    [106]Zhou Bo, Yang Yongxiang, Reuter Markus A. Process modeling of aluminum scraps melting in molten salt and metal bath in a rotary furnace [C]. Light Metals 2004. Carlotte, NC, United states:Minerals, Metals and Materials Society,2004:919-924.
    [107]谭易君.圆形蓄热式熔铝炉内多场耦合数值模拟及优化[D].长沙:中南大学,2011.
    [108]闫红杰.铝酸钠溶液晶种分解过程中多相流动的数值模拟研究[D].长沙:中南大学,2005.
    [109]王福军.计算流体动力学分析——CFD软件原理应用[M].北京:清华大学出版社,2004.
    [110]Fluent Inc. Fluent 6.3 user's guide [M]. Pennsylvania:ANSYS Inc.,2006.
    [111]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.
    [112]张仁元.相变材料与相变储能技术[M].北京:科学出版社,2009.
    [113]荆涛.凝固过程数值模拟[M].北京:电子工业出版社,2002.
    [114]陈海清.铸件凝固过程数值模拟[M].重庆:重庆大学出版社,1991.
    [115]杨全.金属凝固与铸造过程数值模拟[M].杭州:浙江大学出版社,1998.
    [116]左海滨,张建良,杨天钧.考虑相变传热的炉缸传热模型的研究与应用[J].过程工程学报,2008,08(S1):123-129.
    [117]赵迪.CSP均热过程钢坯氧化烧损的数值模拟研究[D].长沙:中南大学,2009.
    [118]张正言.宝钢热轧加热炉氧化烧损计算数模的建立和实施[J].宝钢技术,2003,(04):30-32.
    [119]于洋,李庆亮,刘振宇.热轧带钢氧化铁皮生长过程数值模拟[J].钢铁,2008,43(01):55-57.
    [120]周萍,周乃君,蒋爱华,等.传递过程原理及其数值仿真[M].长沙:中南大学出版社,2006.
    [121]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [122]Pantankar S.V.. Numerical heat transfer and fluid flow [M]. New Yorks: Taylor & France Publisher,1980.
    [123]Fluent Inc. Fluent user defined function manual [M]. Pennsylvania: ANSYS-Inc,2006.
    [124]大中逸雄.计算机传热凝固解析入门:铸造过程中的应用[M].北京:机械工业出版社,1988.
    [125]付允,马永欢,刘怡君,等.低碳经济的发展模式研究[J].中国人口·资源与环境,2008,18(03):14-19.
    [126]Flavin C., Chiu A., Mastny L., et al. Low-carbon energy:A roadmap [J]. World Watch Report,2008,178(120):1-52.
    [127]代朝红,刘洪.高温空气燃烧技术的研究现状及发展趋势(上)[J].工业加热,2002,31(03):14-18.
    [128]代朝红,刘洪.高温空气燃烧技术的研究现状及发展趋势(下)[J].工业加热,2002,31(04):11-15.
    [129]周厅琳HTAC燃烧技术研究及其数值模拟[D].南京:南京理工大学,2010.
    [130]周暐,王浩,朱宗铭,等.蓄热式加热炉热平衡计算及节能技术的研究[J].冶金能源,2008,27(06):22-26.
    [131]姚成军,徐明厚.阳极焙烧炉热平衡分析[J].工业加热,2007,36(04):29-31.
    [132]李军,金永龙,关志刚.宝钢高炉热风炉热平衡计算与分析[J].冶金能源,2009,28(04):29-32.
    [133]李世轩,李浩.铝熔炼炉热平衡测试及节能分析[J].有色冶金节能,2009,24(03):40-42.
    [134]王新志,刘海强,王三忠,等.安钢150t转炉物料及热平衡计算分析与应用[J].冶金能源,2010,(03):61-64.
    [135]刘志成.UML建模实例教程[M].北京:电子工业出版社,2009.
    [136]王少峰.面向对象技术UML教程[M].北京:清华大学出版社,2004.
    [137]蔡敏,徐慧慧,黄炳强.UML基础和ROSE建模教程[M].北京:邮电出版社,2006.
    [138]田荣璋.铸造铝合金[M].长沙:中南大学出版社,2006.
    [139]傅志华.铝熔炼炉热工过程与节能[J].冶金能源,1987,5:30-33.
    [140]周家荣.铝合金熔铸生产技术问答[M].北京:冶金工业出版社,2008.
    [141]陆岩,刘援朝.美国提高铝熔炼炉,热处理炉加热效率降低能耗的方法[J].世界有色金属,2006,(05):16-19.
    [142]翁银发.国外大型熔铝炉,保温炉的结构性能及其特点[J].轻合金加工技术,1989,11:1-6.
    [143]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学出版社,2000.
    [144]雷永泉.铸造过程物理化学[M].北京:新时代出版社,1982.
    [145]J.M.比埃尔,N.A.切给尔.燃烧空气动力学[M].北京:科学出版社,1984.
    [146]何佩鏊,赵仲琥,秦裕琨.煤粉燃烧器设计及运行[M].北京:机械工业出版社,1987.
    [147]Ranjit K.R. A primer on the taguchi method [M]. New Yorks:Van Nostrand Reinhold,1990.
    [148]Taguchi G, Chowdhury S., Wu Y. Taguchi's quality engineering handbook [M]. Hoboken:John Wiley & Sons Inc.,2004.
    [149]王毓芳,肖诗唐.质量改进的策划与实施[M].北京:中国经济出版社,2005.
    [150]张忠朴,实验设计速学活用法[M].广州:广东经济出版社,2005.
    [151]Singaravelu J., Jeyakumar D., Nageswara Rao B. Taguchi's approach for reliability and safety assessments in the stage separation process of a multistage launch vehicle [J]. Reliability Engineering & System Safety,2009, 94(10):1526-1541.
    [152]Oztop M.H., Sahin S., Sumnu G. Optimization of microwave frying of potato slices by using taguchi technique [J]. Journal of food engineering,2007, 79(01):83-91.
    [153]Burton M., Subic A., Mazur M., et al. Systematic design customization of sport wheelchairs using the taguchi method [J]. Procedia Engineering,2010, 02(02):2659-2665.
    [154]Al-Darrab LA., Khan Z.A., Zytoon M.A., et al. Application of the taguchi method for optimization of parameters to maximize text message entering performance of mobile phone users [J]. International Journal of Quality & Reliability Management,2009,26(05):469-479.
    [155]Aber S., Salari D., Parsa MR. Employing the taguchi method to obtain the optimum conditions of coagulation-flocculation process in tannery wastewater treatment [J]. Chemical Engineering Journal,2010,162(01):127-134.
    [156]Turkmen I., Gul R., Celik C. A taguchi approach for investigation of some physical properties of concrete produced from mineral admixtures [J]. Building and environment,2008,43(06):1127-1137.
    [157]Zeng M., Tang LH, Lin M., et al. Optimization of heat exchangers with vortex-generator fin by taguchi method [J]. Applied Thermal Engineering, 2010,30(13):1775-1783.
    [158]Dingal S., Pradhan TR, Sundar J.K.S., et al. The application of taguchi's method in the experimental investigation of the laser sintering process [J]. The International Journal of Advanced Manufacturing Technology,2008,38(09): 904-914.
    [159]Chen D.C., Huang J.Y. Design of brass alloy drawing process using taguchi method [J]. Materials Science and Engineering:A,2007,464(1-2):135-140.
    [160]Zhang J.Z., Chen J.C., Kirby E.D. Surface roughness optimization in an end-milling operation using the taguchi design method [J]. Journal of Materials Processing Technology,2007,184(01):233-239.
    [161]Lakshminarayanan AK, Balasubramanian V. Process parameters optimization for friction stir welding of rde-40 aluminium alloy using taguchi technique [J]. Transactions of Nonferrous Metals Society of China,2008,18(03):548-554.
    [162]Liao H.T., Shie J.R., Yang Y.K. Applications of taguchi and design of experiments methods in optimization of chemical mechanical polishing process parameters [J]. The International Journal of Advanced Manufacturing Technology,2008,38(07):674-682.
    [163]Kumar S., Satsangi PS, Prajapati DR. Optimization of green sand casting process parameters of a foundry by using taguchi's method [J]. The International Journal of Advanced Manufacturing Technology,2011,55(01): 23-34.
    [164]黄振东.铝合金压铸件浇注系统与生产工艺参数优化设计[D].厦门:厦门大学,2006.
    [165]李志西,杜双奎.试验优化设计与统计分析[M].北京:科学出版社,2010.
    [166]唐启义.DPS数据处理系统——实验设计、统计分析及数据挖掘[M].北京:科学出版社,2010.
    [167]张军.基于田口方法的多质量特性稳健设计研究[D].上海:上海交通大学,2005.
    [168]王寿增,顾静,苗蔚,等.工业窑炉中几种炉衬耐火材料结构的传热分析[J].稀有金属材料与工程,2009,02(S2):1259-1262.
    [169]张卫军,吴雪琦,陈海耿,等.宝钢4号高炉炉衬温度场数学模型及分析[J].东北大学学报:自然科学版,2006,27(10):1122-1125.
    [170]关丽坤,王春香.转炉炉衬温度场的有限元分析[J].工业加热,2004,33(06):14-16.
    [171]姚俊峰,江金宏.卧式转炉炉衬温度场的数值模拟[J].中国有色金属学报,2000,10(04):546-550.
    [172]赵荣新.熔铝炉设计和炉衬材料的改进[J].轻合金加工技术,1999,04:14-18.
    [173]杨尚宝,杨天钧,窦庆和,等.高炉炉衬破损调查与炉体状态模型的建立[J].钢铁,1998,06(01):9-12.
    [174]Parra R., Verdeja L. F., Barbes M. F., et al. Furnace lining analysis and design by mathematical and physicochemical modeling [C]. International Symposium on Sulfide Smelting 2006. Warrendale, PA, USA:TMS,2006:561-75.
    [175]Gruber D., Andreev K., Harmuth H. Fern simulation of the thermomechanical behaviour of the refractory lining of a blast furnace [J]. Journal of Materials Processing Technology,2004,155:1539-1543.
    [176]华泽錞,张德信,高捷.工业炉耐热炉衬[M].北京:化学工业出版社,2007.
    [177]韩小良.炉衬耐火材料经济厚度计算[J].工业加热,2000,(01):43-46.
    [178]吴德荣,杨泽耒,周家骅.工业炉及其节能[M].北京:机械工业出版社,1990.
    [179]梅炽.有色冶金炉设计手册[M].北京:冶金工业出版社,2000.
    [180]王秉铨.工业炉设计手册[M].北京:机械工业出版社,1996.
    [181]李红霞.耐火材料手册[M].北京:冶金工业出版社,2007.
    [182]刘麟瑞,林彬荫.工业窑炉用耐火材料手册[M].北京:冶金工业出版社,2001.
    [183]中国建材在线.材料市场价[DB/OL]. http://www.jc.net.cn/,2010.11.29.
    [184]中国预算网.炉窑砌筑工程定额[DB/OL]. http://www.yusuan.com/, 2010.11.29.
    [185]陈福有,李广志.工业炉炉墙经济厚度的确定[J].本钢技术,2001,(07):8-10.
    [186]胡景川.炉衬材料合理组合的研究[J].能源工程,1983,(01):33-37.
    [187]刘宝庆,陈磊,于江美.铝合金熔炼热工学分析及能耗效益对比[J].节能,2006,25(04):17-18.
    [188]卢开澄,卢华明.组合数学[M].北京:清华大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700