用户名: 密码: 验证码:
煤粉锅炉燃烧特性及降低氮氧化物生成的技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火电厂是大气污染物烟尘、SO2和NOx的主要排放源之一。随着《火电厂大气污染物排放标准》(GB13223-2011)的实施,燃煤电厂如何达到排放标准成为克不容缓的问题,其中尤其以氮氧化物的排放标准最为严格。为了满足这一严格的排放标准,大多电站锅炉均采用炉内降低氮氧化物燃烧结合烟气脱硝技术来实现减排。本论文以燃烧神华煤的两个大容量锅炉为研究对象,分别进行了超临界直流锅炉、亚临界控制循环锅炉的低氮燃烧改造研究,利用数值模拟对旋流燃烧器墙式对冲锅炉和四角切圆锅炉的低氮改造方案进行优化,并通过实验研究进行验证与分析。
     首先论文以俄制800MW超临界直流锅炉为研究对象,针对旋流燃烧器两侧墙对冲燃烧的T型直流锅炉进行燃烧及NOx排放的数值模拟研究,分析数值模拟结果并结合锅炉实际运行状况,提出了针对这一特殊形式锅炉的低氮燃烧器加空气分级的改造技术方案。利用数值模拟对改造方案的燃尽风率、燃尽风喷口标高及主燃烧器标高进行优化,综合比较安全性和经济性推荐了改造方案。
     对800MW超临界直流锅炉的数值模拟研究中,着重分析了氮氧化物反应速率这一关键参数,分析了氧浓度、温度、焦炭反应速率与之的关系,揭示了炉膛内氮氧化物生成与还原的规律,找到了主燃区与燃尽区氮氧化物生成的控制因素,主燃区氧浓度是氮氧化物生成的控制因素,燃尽区温度是氮氧化物生成的控制因素。
     其次论文以某600MW亚临界控制循环锅炉为研究对象,针对燃用易结渣神华煤的四角切圆锅炉进行燃烧及低NOx排放的数值模拟研究。分析锅炉实际运行状况并结合数值计算结果,提出沿炉膛高度垂直方向空气分级和主燃烧区域水平方向空气分级的复合空气分级改造方案。
     对复合空气分级技术方案的数值模拟研究中,引入等势特征面分析法,着重分析氮氧化物生成速率这一关键参数,利用主燃区与燃尽区氮氧化物生成的控制因素不同的研究结果,进行复合空气分级技术方案的优化。论文同时分析了复合空气分级低NOx改造方案对四角切圆炉膛出口速度偏差及温度偏差的影响,以及对炉膛出口温度、煤粉燃尽程度的影响。
     上述600MW亚临界控制循环锅炉按照推荐的最佳改造方案进行了复合空气分级低NOx燃烧的改造,最后本文对改造后锅炉燃烧及NOx排放进行实验研究。实验比较改造前后炉膛出口NOx的排放值,同时实验研究了炉膛温度、锅炉效率、近壁区CO/H2S的含量,分析复合空气分级改造后炉膛内的燃烧特性及NOx减排效果,讨论复合空气分级改造对炉膛渣及高温腐蚀的影响。上述实验结果表明,推荐的最佳改造方案有效降低NOx排放的同时,合理配风,充分发挥宽调节比摆动式燃烧器的优势,使得锅炉煤粉燃尽程度虽稍有降低,但锅炉效率并没有降低。
Coal-fired utility boiler is one of major sources of dust, SO2and NOx in china. In order to meet the less and less NOx emission limit of(GB13223-2011), effective NOx control technology would be applied to the pulverized coal boiler. Lower NOx combustion in the furnace and post-combustion removal process such as SCR system have been widely used to control NOx emission for most power plants. In this paper two the utility boilers burning Shenhua coal have been studied on lower-NOx combustion technology. Opposed firing boiler which is supercritical once-through boiler has been numerically simulated to propose air staging modification. And numerical simulation and experiment have been done to present and finish lower-NOx combustion modification for tangential firing boiler which is subcritical controlled circulation boiler.
     Firstly combustion and NOx emission of Russian-made800MWe supercritical once-through boiler have been numerically simulated. It's a T type opposed firing boiler. Based on actural performance, analysing simulating results, lower-NOx combustion technology of air staging have been proposed. Over-fire air rate, over-fire air nozzle elevation and main burner nozzle elevation have been optimized by numerical simulations. And then lower-NOx combustion solution has been recommended for the special kind of boiler.
     Key parameter of rate of NOx, which directly reveal law of NOx generation and reduction in the furnace, has been analyzed particularly, connected with O2concentration, temperature distribution and char burnout rate. Controlling factors have been found in different combustion zones for NOx formation. O2concentration is major control factor in main combustion zone and temperature is key factor in burnout zone.
     Secondly combustion and NOx emission of600MWe subcritical controlled circulation boiler has been numerically studied. Shenhua coal is main fuel. Based on real operating condition, Analyzed slagging character, compound air staging technology solution has been proposed to control NOx emission. The solution is expected to decrease NOx formation by vertical air staging along furnace height and horizontal air staging in main combustion zone.
     In the numerical simulating research of compound air staging, iso characteristics surface has been introduced to analysis important parameters such as rate of NOx etc. Compound air staging technology solution has been optimized considering on the result that O2concentration is major control factor in main combustion zone and temperature is key factor in burnout zone by numerical simulating. Velocity deviation and the temperature deviation at furnace outlet have been discussed for the tangential coal fired boiler before and after modification. Outlet temperature and burnout of pulverized coal have also studied.
     Lastly600MWe subcritical controlled circulation boiler have been transformed with the above compound air staging. Experimental research has been done after modification of lower NOx combustion technology. NOx emission has been measured before and after modification to evaluate NOx reduction. Temperature distribution, boiler efficiency and CO/H2S content nearing water wall have been analyzed to evaluate combustion characteristics, slagging in the furnace and high-temperature corrosion. Experimental data showed compound air staging technology recommended in last chapter decreased NOx emission greatly. After modification burning efficiency of boiler decreased slightly but the boiler thermal efficiency increased.
引文
[1]中电联统计信息部,中电联发布2009年全国电力工业统计快报.http://www.cec.org.cn/nengyuanyudianlitongji/hangyetongji/dianlixingyeshuj u/2010-11-27/29958.html.
    [2]中电联规划与统计信息部,2012年电力统计基本数据一览表.http://www.cec.org.cn/guihuayutongji/tongjxinxi/niandushuju/2013-11-07/11 1737.html
    [3]田贺忠.中国氮氧化物排放现状、趋势及综合控制对策研究[D].清华大学,2003
    [4]环保部,2011年氮氧化物排放量不降反升.http://news.cnfol.com/120605/101,1277,12520033,00.shtml
    [5]郑守忠.煤粉再燃烧技术中煤焦异相还原高温烟气中NO的实验和理论研究[D]:东南大学,1999
    [6]岑可法,姚强,骆仲泱,等编著.燃烧理论与污染控制.北京:机械工业出版社,2004
    [7]环境保护部,国家质量监督检验检疫总局.GB13223-2011.中华人民共和国国家标准—火电厂大气污染物排放标准.北京:中国环境科学出版社,2011-7-29
    [8]S.L.Chen, J.A.C. Advanced NOx reduction processes using -NH and -CN compounds in conjunction with staged air addition [J]. Symposium (International) on Combustion,1989,22(1):1135-1145
    [9]Jamal B. Mereb, J.O.L.W. Air staging and reburning mechanisms for NOx abatement in a laboratory coal combustor [J]. FUEL,1994,73(7):1020-1026
    [10]Kambara S., et al. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion [J]. Fuel,1995,74(9):1247-1253
    [11]Hartmut Spliethoff, U.G.H.R. Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility [J]. Fuel,1996,75(5):560-564
    [12]Lyngfelt A., L. Amand, B. Leckner. Reversed air staging-- a method for reduction of N2O emissions from fluidized bed combustion of coal [J]. Fuel,1998. 77(9-10):953-959
    [13]B. Staiger, S. Unterberger, R. Berger, et al. Development of an air staging technology to reduce NOx emissions in grate fired boilers [J]. Energy,2005.30(8): 1429-1438
    [14]Ribeirete A., M. Costa. Impact of the air staging on the performance of a pulverized coal fired furnace [J]. Proceedings of the Combustion Institute,2009. 32(2):2667-2673
    [15]Stewart Michael C Symonds, Robert T Manovic, et al. Effects of steam on the sulfation of limestone and NOx formation in an air- and oxy-fired pilot-scale circulating fluidized bed combustor [J]. Fuel,2012.92(1):107-115
    [16]Li, Jun Yang, Weihong Blasiak, Wlodzimierz Ponzio, et al. Volumetric combustion of biomass for CO2 and NOx reduction in coal-fired boilers[J]. Fuel, 2012.102:624-633
    [17]Ehsan Houshfar,(?)yvind Skreiberg Dusan Todorovic. NOx emission reduction by staged combustion in grate combustion of biomass fuels and fuel mixtures [J]. Fuel,2012.98:29-40.
    [18]文军,许传凯.分级燃烧对NOx生成及燃烧经济性的影响[J].中国电力,1997(4):8-12
    [19]闫志勇,张慧娟,邱广明等.锅炉分级燃烧降低NOx排放的技术改造及分析[J].动力工程,2000(4):764-769
    [20]肖理生,曾汉才,金峰等,分级燃烧最佳一次风空气系数的实验研究[J].动力工程,2001(1):1042-1045
    [21]唐志国等,朱全利,唐必光等.空气分级燃烧降低NOx排放的实验研究[J].电站系统工程,2003(3):7-9
    [22]李瑞扬,董利.空气分级燃烧技术在六角切圆燃烧锅炉中的应用研究[J].洁净煤技术,2005(2):33-35
    [23]郝雪梅.空气分级燃烧技术中两级燃尽风技术试验研究[J].洁净煤技术,2007(2):70-72+54
    [24]陆杰等,谢建文,范卫东等.神华煤粒径在分级燃烧中对NOx排放的影响[J].动力工程,2007(6):949-953
    [25]汪华剑,方庆艳,周怀春等.空气深度分级对低挥发分煤燃烧过程影响的研究[J].热能动力工程,2009(6):777-781+820
    [26]阎维平,米翠丽,李皓宇.初始氧浓度对锅炉富氧燃烧和NOx排放的影响[J].热能动力工程,2010(2):216-220+246-247
    [27]陈孙航,周志军,张秀霞等.基于BFA和OFA的燃煤锅炉降低NOx排放数值模拟研究[J].热力发电,2011(8):12-16
    [28]刘建全,孙保民,白涛等.稳燃特性对1000MW超超临界锅炉NOx排放特性影响的数值模拟[J].机械工程学报,2011(22):132-139
    [29]张秀霞.焦炭燃烧过程中氮转化机理与低NOx燃烧技术的开发[D].浙江大学,2012
    [30]曾汉才.我国电站锅炉低NOx燃烧技术的研究与进展[J].电站系统工程,1994,10(1):43-45
    [31]戴俊良.浅述国外火电厂NOx排放及控制[J].电力环境保护,1989,5(2):6-7
    [32]郑友取,樊建人,查旭东,等.切向燃烧锅炉炉内NOx生成的数值模拟[J].动力工程,2000(3):689-692
    [33]周昊,童汇源,孙平,等.600MW锅炉偏转二次风系统炉内流动和NOx排放特性[J].中国电机工程学报,2000(11):69-72.
    [34]周月桂,章明川,徐通模,等.四角切向燃烧锅炉烟道烟速偏差的实验研究与数值模拟[J].中国电机工程学报,2001,21(1):68-72.
    [35]姜秀民,崔志刚,马玉峰,等.670t/h四角切圆锅炉反切消旋的数值模拟和工程实践[J].中国电机工程学报,2005,25(18):109-115.
    [36]申春梅,孙锐,吴少华.1GW单炉膛双切圆炉内煤粉燃烧过程的数值模拟[J].中国电机工程学报,2006(15):51-57.
    [37]苟湘,周俊虎,周志军,等.三次风对四角切圆锅炉燃烧和NOx排放的影响[J].中国电机工程学报,2008,31(8):13-17.
    [38]李彦鹏,王金枝,许晋源.切向燃烧锅炉燃烧器区流场及壁面负压的试验与数值研究[J].中国电机工程学报,2000(1):66-70.
    [39]郭永红.超细粉再燃低NOx燃烧技术的数值模拟与实验研究[D].华北电力大学,2006
    [40]陈汉平.计算流体力学[M].北京:水利电力出版社,1995
    [41]岑可法.燃烧理论与污染控制[M].北京:机械工业出版社,2004
    [42]贾艳艳.四角切圆燃煤锅炉超细煤粉再燃技术数值试验研究[D].大连理工大学,2008.
    [43]岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2001.
    [44]康志忠.基于高温空气点火煤粉炉全负荷稳定洁净燃烧技术研究[D].华北电力大学(北京),2009
    [45]马云东,贾惠艳.带式输送机输煤系统转载点粉尘控制技术研究[M].北京:煤炭工业出版社,2008
    [46]Corporation E. A. E. R. Evaluation of gas reburning and low-NOx burners on a wall-field boiler [C]. Iravine:1990
    [47]周力行,徐旭常.燃烧技术手册[M].北京:化学工业出版社,2008
    [48]Inc F. Fluent 6.3 user's guide [M]. Ann Arbor:Fluent Inc,2006:2210-2212.
    [49]聂宇宏,陈海耿,姚寿广.用不同模型研究炉壁黑度对炉膛内热交换的影响[J].动力工程,2005,25(4):500-502,516
    [50]傅维镳.煤燃烧理论及其宏观通用规律[M].北京:清华大学出版社,2003
    [51]惠世恩.煤的清洁利用与污染防治》[M].北京:中国电力出版社,2008
    [52]常丽萍.煤热解、气化过程中含氮化合物的生成与释放研究[D].太原理工大学,2004
    [53]Fenimore C P. Formation of nitric oxide from fuel nitrogen in ethylent flames. Combustion and Flames,1972,19:289-302
    [54]C P Fenimore. Formation of Nitric Oxide in Premixed Hydrocarbon Flames. In: 13th Symp. (Int'1.) on Combustion. The Combustion Institute,1971,373
    [55]Fenimore C P. Reactions of fuel-nitrogen in rich flame gases. Combustion and Flames,1976,26:249-256
    [56]Zeldovich Y B. The oxidation of nitrogen in combustion and explosions. Acta Physicochim, URSS,1946,21:577-583
    [57]Bowman C T. Kinetics of nitric oxide formation in combustion processes. In: Proceedings of the Fourteenth Symposium (International) on combustion. Pittsburgh, PA, The Combustion Institute,1973,270
    [58]Stanmore B. R., Visona S. P. Prediction of NO emissions from a number of coal-fired power station boilers [J]. Fuel Processing Technology,2000,64(1-3): 25-46.
    [59]潘维.超细煤粉再燃机理及改造方案的数值模拟研究[D].浙江大学,2005
    [60]冯志华,常丽萍,任军,等.煤热解过程中氮的分配及存在形态的研究进展[J].煤炭转化,2000(3):6-12
    [61]赵宗彬,陈皓侃,李保庆.煤燃烧过程中NOx的生成和还原[J].煤炭转化,1999(4):10-15.
    [62]L X. Z. Formation of NOx and SOx precursors during the Pyrolysis and gasifieation of coal [D]. Australia:Monash University,2001.
    [63]Glarborg P., Jensen A. D., Johnsson J. E. Fuel nitrogen conversion in solid fuel fired systems [J]. Progress In Energy And Combustion Science,2003,29(2): 89-113
    [64]Mori H., Asami K., Ohtsuka Y. Role of Iron Catalyst in Fate of Fuel Nitrogen during Coal Pyrolysis [J]. Energy & Fuels,1996,10(4):1022-1027
    [65]Ohtsuka Y., Wu Z. Nitrogen release during fixed-bed gasification of several coals with CO2:factors controlling formation of N2 [J]. Fuel,1999,78(5): 521-527
    [66]Friebel J., Kopsel R. F. W. The fate of nitrogen during pyrolysis of German low rank coals—a parameter study [J]. Fuel,1999,78(8):923-932
    [67]Kelemen S. R., Gorbaty M. L., Kwiatek P. J., et al. Nitrogen Transformations in Coal during Pyrolysis [J]. Energy & Fuels,1998,12(1):159-173
    [68]赵科,谭厚章,周屈兰,等.煤的模型化合物热解过程中HCN、NH_3的逸出规律[J].热能动力工程,2004(3):246-248
    [69]Thomas K. M. The release of nitrogen oxides during char combustion [J]. Fuel, 1997,76(6):457-473
    [70]R S. P., B C. M. Evolution of Fuel Nitrogen in Coal Devolatilization [J]. Fuel, 1978(57):549-755
    [71]Johnsson J. E. Formation and reduction of nitrogen oxides in fluidized-bed combustion [J]. Fuel,1994,73(9):1398-1415
    [72]Laughlin K. M., Gavin D. G., Reed G. P. Coal and char nitrogen chemistry during pressurized fluidized bed combustion [J]. FuelCoal Utilization and the Environment,1994,73(7):1027-1033.
    [73]Maltea P. C., Pratta D. T. The Role of Energy-Releasing Kinetics in NOx Formation:Fuel-Lean, Jet-Stirred CO-Air Combustion [J]. Combustion Science and Technology,1974,9(5-6):221-231
    [74]宋国良,吕清刚,周俊虎,等.煤粉浓度对HCN与NH_3析出特性的影响[J].中国电机工程学报,2008(17):49-54
    [75]Nelson P. F., Kelly M. D., Wornat M. J. Conversion of fuel nitrogen in coal volatiles to NOx precursors under rapid heating conditions [J]. FuelInternational Conference on Coal Structure and Reactivity chemical physical and petrographic aspects,1991,70(3):403-407
    [76]刘生玉,田亚峻,尤先峰,等.高挥发分烟煤的热解、燃烧特性研究[J].燃料化学学报,2002,30(1):41-44
    [77]Bassilakis R., Zhao Y., Solomon P. R., et al. Sulfur and nitrogen evolution in the Argonne coals. Experiment and modeling [J]. Energy & Fuels,1993,7(6): 710-720
    [78]周昊.大型电站锅炉氮氧化物控制和燃烧优化中若干关键性问题的研究[D].浙江大学,2004
    [79]He B., Chen M., Yu Q., et al. Numerical study of the optimum counter-flow mode of air jets in a large utility furnace [J]. Computers& Fluids,2004, 33(9):1201-1223
    [80]Wu Z., Ohtsuka Y. Nitrogen Distribution in a Fixed Bed Pyrolysis of Coals with Different Ranks:□ Formation and Source of N2 [J]. Energy & Fuels,1997,11(2): 477-482
    [81]刘美蓉,张永生,谢克昌.中澳几种煤热解过程中HCN和NH_3的形成[J].淮海工学院学报(自然科学版),2002(4):38-41
    [82]Wojtowicz M. A., Pels J. R., Moulijn J. A. The fate of nitrogen functionalities in coal during pyrolysis and combustion [J]. Fuel,1995,74(4):507-516
    [83]谢克昌.煤的结构与反应性[M].科学出版社,2002
    [84]Hill S. C., Douglas Smoot L. Modeling of nitrogen oxides formation and destruction in combustion systems [J]. Progress In Energy And Combustion Science,2000,26(4-6):417-458
    [85]Tan L. L., Li C. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part I. Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis [J]. Fuel,2000,79(15):1883-1889
    [86]Tan L. L., Li C. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part II. Effects of experimental conditions on the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal [J]. Fuel,2000, 79(15):1891-1897
    [87]Li C., Tan L. L. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NH3 during pyrolysis [J]. Fuel,2000,79(15):1899-1906
    [88]赵炜,常丽萍,冯志华,等.煤热解过程中生成氮化物的研究[J].燃料化学学报,2002(5):408-412
    [89]Kambara S., Takarada T., Yamamoto H., et al. Relation between functional forms of coal nitrogen and NOx emissions from coal combustion [J]. Fuel,1993, 72(5):695
    [90]Chunzhu L., Yanyuan P., Xiguang L. Formation of NH3 During the Pyrolysis of a Brown Coal [Z]. Taiwan:1998
    [91]刘银河,车得福,徐通模.煤质特性对快速热解中HCN释放的影响[J].燃烧科学与技术,2004(6):539-543
    [92]Rudiger H., Greul U., Spliethoff H., et al. Distribution of fuel nitrogen in pyrolysis products used for reburning [J]. Fuel,1997,76(3):201-205
    [93]赵宗彬,管仁贵,李保庆.CO和O2气氛下煤中矿物质对NO-半焦还原反应的影响[J].燃料化学学报,2001,29(3):232-237
    [94]赵宗彬,李文,等.半焦制备条件对其还原NO反应性的影响[J].煤炭学报,2002,27(2):179-183
    [95]赵宗彬,李文,李保庆,等.钠、钙、铁对模型化合物热解及燃烧过程中氮逸出规律的影响[J].燃料化学学报,2002,30(4):294-299
    [96]闫晓,车得福,徐通模.煤热解过程中焦炭氮变化规律的试验研究[J].西安交通大学学报,2004(9):980-984
    [97]Li C., Buckley A. N., Nelson P. F. Effects of temperature and molecular mass on the nitrogen functionality of tars produced under high heating rate conditions [J]. Fuel,1998,77(3):157-164
    [98]R K. S., L G. M., J K. P. Quantifieation of nitrogen forms in argonne premium coal [J]. Energy & Fuels,1994,8:896-906
    [99]W W., P J., van Heek K H. Tokyo:1989
    [100]Kambara S., Takarada T., Toyoshima M., et al. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion [J]. Fuel,1995,74(9):1247-1253
    [101]郭永红,孙保民,康志忠.超细粉再燃技术中HCN对NOx的生成和还原的影响[J].电站系统工程,2005(2):15-17
    [102]刘银河,刘艳华,车得福,等.煤中灰分和钠添加剂对煤燃烧中氮释放的影响[J].中国电机工程学报,2005,25(4):136-141
    [103]Fan W., Lin Z., Kuang J. Impact of air staging along furnace height on NOx emissions from pulverized coal combustion [J]. Fuel Processing Technology, 2010,91(3):625-634.
    [104]刘汉涛,李慧,李英杰,等.煤粉燃烧燃料氮析出研究进展[J].山东建筑工程学院学报,2004,19(4):69-72,80
    [105]Diez L. I., Cortes C., Pallares J. Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and overfire air operation [J]. Fuel,2008,87(7):1259-1269
    [106]Li Y. H., Lu G. Q., Rudolph V. The kinetics of NO and N2O reduction over coal chars in fluidised-bed combustion [J]. Chemical Engineering Science,1998,53(1): 1-26
    [107]Yamashita H., Tomita A., Yamada H., et al. Influence of char surface chemistry on the reduction of nitric oxide with chars [J]. Energy & Fuels,1993,7(1):85-89
    [108]苟湘,周俊虎,周志军,等.烟煤煤粉及热解产物对NO的还原特性实验研究[J].中国电机工程学报,2007,27(23):12-17
    [109]周志军,陈瑶姬,杨卫娟,等.无烟煤焦炭对NO的还原率[J].燃烧科学与技术,2011,17(6):477-482
    [110]陈瑶姬,周志军,周宁,等.贵州无烟煤的燃烧动力学特性和NOx生成机制试验研究[J].中国电机工程学报,2011,31(20):52-59
    [111]Schonenbeck C, Gadiou R., Schwartz D. A kinetic study of the high temperature NO-char reaction [J]. Fuel,2004,83(4-5):443-450
    [112]王恩禄,彭玲,罗永浩,等.燃煤电站锅炉NOx排放的控制措施[J].锅炉技术,2003,34(5):48-52
    [113]夏小霞,王志奇,徐顺生.煤粉锅炉氮氧化物排放影响因素的数值模拟[J].中南大学学报(自然科学版),2010,41(5):2046-2052.
    [114]刘忠,阎维平,高正阳,等.超细煤粉的细度对再燃还原NO的影响[J].中国电机工程学报,2003,23(10):204-208.
    [115]斯东波,周昊,岑可法.不同带粉量的三次风再燃试验与数值模拟[J].浙江大学学报(工学版),2010(3):482-488.
    [116]吕学敏.煤粉锅炉两段式空气分级低NOx燃烧技术的实验研究与数值模拟[D].上海交通大学,2009
    [117]孟凡敬.350MW四角切圆煤粉炉燃烧及NOX排放的数值模拟[D].大连理工大学,2009
    [118]高小涛,黄磊,张恩先,等.600MW前后墙布置燃烧器锅炉的NOx排放特性及其影响因素的分析[J].动力工程,2009(9):806-812
    [119]陈跃华.直流双分级再还原低NOx反应协同[D].同济大学机械工程学院同济大学,2008
    [120]顾明言.煤粉燃烧空气动力学特性与燃烧过程的数值模拟及其应用[D].上海交通大学,2008
    [121]金晶,张忠孝,李瑞阳.煤粉燃烧炉膛沿程NOx释放规律的研究[J].中国电机工程学报,2006(1):35-39
    [122]Xu M., J. L. T. A., M. G. C. Modelling of the combustion process and NOx emission in a utility boiler [J]. Fuel,2000,79(13):1611-1619
    [123]李永华,陈鸿伟,刘吉臻,等.煤粉燃烧排放特性数值模拟[J].中国电机工程学报,2003,23(3):166-169
    [124]王福军.计算流体动力学分析[M].北京:清华大学出版社,2005
    [125]潘维,池作和,斯东波,等.200MW四角切圆燃烧锅炉改造工况数值模拟[J].中国电机工程学报,2005,25(8):110-115
    [126]马风哪,程伟琴.国内火电厂氮氧化物排放现状及控制技术探讨[J].广州化工,2011,39(15):57-59
    [127]李永光,李岸然,白宏刚,等.用扭曲分隔屏消除锅炉水平烟道的烟速偏差[J].中国电机工程学报,2007(17):34-38
    [128]李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:[M].北京:人民邮电出版社,2011
    [129]刘建全.超(超)临界机组锅炉燃烧性能实验与优化研究[D].华北电力大学,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700