用户名: 密码: 验证码:
生物质燃烧及其还原氮氧化物的机理研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着温室效应的加剧,被认为是“CO_2零排放”的生物质燃料越来越受到关注,但由于生物质中碱金属和氯含量过高,严重的结焦问题使得大多数生物质直燃设备无法正常运行,而将生物质与煤混燃则能显著缓解结焦问题;同时由于生物质中挥发份超过70%,将其作为再燃燃料还能对NOx起到显著的还原效果。本文围绕生物质燃烧技术,分别在热重、沉降炉及300MW煤粉炉内,对生物质直燃和混燃的基础燃烧特性及在工程示范应用中涉及到的关键问题进行了研究;并对生物质混燃过程中生物质焦碳和生物质气对NOx的还原机理进行了深入研究。
     首先,利用热重全面系统的研究了生物质的燃烧特性及其与煤混燃的协同效应。研究发现:生物质在富氧条件下的着火相对于空气条件发生了延迟,该延迟在焦碳燃烧阶段尤为显著;氧气浓度的提高显著改善了煤的着火,但对生物质着火的影响较小;秸秆类生物质焦的着火温度显著低于于木质类生物质焦,而木质类焦的着火温度甚至高于煤焦。混燃试验表明,生物质与煤混燃总是存在对总体着火有利的协同效应,秸秆类生物质混燃对着火特性的改善幅度大于木质类生物质,而自身着火特性越恶劣的煤种与同一生物质混燃产生的协同效应则越显著;并且O_2/CO_2气氛下混燃协同效应的显著性小于O_2/N_2环境。
     其次,利用沉降炉试验模拟了实际生物质直燃设备受热面上结焦核心层的形成,并将试验结果与某生物质直燃电厂的焦样数据进行了对比。研究发现:最初在受热面上沉积的是纳米级的含硫碱金属盐的气溶胶颗粒,主要的元素组成为K、S、O和Na,据此提出了以含硫的碱金属盐为核心的生物质结焦形成机理;混燃测试则证明当混燃比例低于0.2时,混燃对结焦特性无显著影响。
     最后,在某300MW燃煤机组上进行了生物质的混燃试验,不需电厂增加设备投资,利用现有的磨煤机对压型生物质进行单独磨制并送入炉内燃烧,使得规模化利用生物质从工程应用的角度实现了生产组织和设备选取的简化;由于该试验的成功实施,该技术已经在某电厂得到连续应用。研究得到了该型机组混燃生物质的上限热量输入比例16.1%,并证明了在本试验范围内混燃生物质不会影响飞灰在建筑行业的应用,同时获得了大型燃煤机组混燃生物质对炉内温度、污染物排放、燃烧效率的影响规律。
     作为研究生物质焦和生物质气对NOx还原的基础,首先对生物质热解过程中气相组份的析出及残余焦碳的特性进行了全面分析,获得了含N、S或Cl组份的析出规律,以及制焦温度对焦碳特性的影响。研究发现:随着热解温度升高至800℃,Cl和K含量已显著降低,当温度进一步升高至1000℃,生物质焦样中的Cl已完全析出;对于秸秆类焦存在一优化的制焦温度800℃,该温度下制得焦碳的比表面积最为发达,着火和燃烧特性最佳。生物质焦对NOx异相还原机理的研究在固定床上进行,研究发现:焦与NO反应从动力学控制到扩散控制的普遍转折区域为800~900℃;制焦温度对焦-NO反应活化能的影响不大,麦秆焦与NO反应的活化能(89.78-95.41kJ.mol~(-1))低于木屑焦(115.22~(-1)22.79kJ.mol~(-1))和烟煤焦(108.59~(-1)17.63kJ.mol~(-1)),三种燃料焦与NO的反应级数约为0.85;麦秆焦、木屑焦和烟煤焦与N_2O反应的活化能则分别为74.64kJ.mol~(-1)、122.06kJ.mol~(-1)和127.01kJ.mol~(-1),三种焦与N_2O的反应级数均约等于1。生物质气均相还原NOx的研究主要通过动力学计算进行,首先建立了能准确预测NO和N_2O还原及SNCR过程的GRI-Miller详细反应机理模型(55组份-382步);然后利用该机理系统的分析了不同生物质气组份再燃还原NO的最佳空气过量系数,以及温度、初始浓度、停留时间、H2O浓度和CO_2浓度等的影响;最后通过对GRI-Miller机理进行简化,发展得到了32组份~(-1)79步的骨架机理和25组份-21步的简化机理,通过与文献中有关数据及详细机理计算结果的对比,本文得到的骨架机理和简化机理可广泛应用于预测生物质气的着火、一维预混火焰特性、含NO和N_2O的再燃过程及SNCR过程。
With the deterioration in the greenhouse effects, more and more attention has been attractedby biomass which is considered as a CO_2-neutral fuel. However, because the content ofalkali and chlorine in biomass is high, combustion of100%biomass will result in severeproblems of slagging and corrosion, and this can be effectively avoided by biomass co-firingwith coal. Meanwhile, due to the high content of volatile, biomass co-firing with coal as acertain method can also achieve a high efficiency in NOx reduction. Aiming at biomasscombustion and biomass co-firing technology, the basic combustion characteristics and thekey problems during the industry application are investigated, and the investigation on thereductions of NOx by biomass char and gas are also presented. The main conclusions aresummerized as follows:
     Firstly, thermogravimetry (TG) is adopted to study the biomass combustion characteristicsand the synergistic effect during biomass co-firing. Results show that the ignition of biomassis delayed under oxygen-combustion conditioin, and the delay effect is more significant forchar combustion. The increasing of oxygen concentration improves the ignition of coalsignificantly but affects the ignition of biomass less. Tests on the combustion of biomasschar show that the iginition temperature of straw char is significantly lower than that ofwood char and coal char, and the ignition temperature of wood char is even much higherthan that of coal. Tests on biomass co-firing show that there is a positive synergistic effect toimprove the general iginition characteristics of biomass and coal, and the synergistic effect ismore significant for biomass of straw, for coal of worse iginition characteristic and for thecondition of O_2/N_2than that of O_2/CO_2.
     Secondly, the ash deposition and slagging on the heating surface are simulated in a drop tubefurnace of laboratory scale, and comapred with the samples from biomass-fired power plant.Results from laboratory investigation show that the initial deposition layer appear asponge-like structure of aerosols with a diameter scale of10~100nm, which should bedeveloped by the accumulation of nano-sulfate particles. There is no chlorine detected in theinitial layer, and the main elements are K, S, O and Na, and the results are correspondingwith that from the samples of biomass-fired power plant. Tests on biomass co-firing showthat biomass co-firing will not affect the slagging characteristics when the co-firing mass ratio is lower than20%. Based on the results of laboratory and industrial furnace, amechanism on the core role of sulfate aerosols in biomass ash deposition is proposed.
     Finally, mold biomass pellets have been utilized on a300MW pulverized coal-fired furnacein China for the first time. Biomass was ground and transported using the existing millsystem without using any additional equipment, which achieves the simplification ofbiomass co-firing in a large scale in the practical engineering application. Experimentalresults show that the upper limit ratio of biomass heat input for this coal-fired unit is16.1%,under which, biomass co-firing will not affect the quality of the fly ash to be used in thecement industry. Meanwhile, it also obtains the effect of biomass co-firing on temperatureprofile in furnace, pollution emission and combustion efficiency. Because of the successfuloperation of this experiment, this biomass co-firing technology has been sustainably appliedin a power plant under the support of Shaanxi Provincial Development and ReformCommission.
     Before the investigation on the reduction of NOx by biomass gas and biomass char, thevolatile emission and residual char properties during biomass pyrolysis are comprehensivelyanalyzed. It demonstrates the transformation rules of nitrogen, sulfur and chlorine, and theeffect of pyrolysis temperature on the properties of biomasss char. Results show that thecontents of chlorine and potassium in biomass char have greatly decreased at the processingtemperature800℃, and there is no chlorine in the residual biomass char when the processingtemperature is higher than1000℃. For biomass char of straw with high content of potassiumand chlorine, there is a optimal pyrolysis temperature800℃, under this temperature, thebiomass char holds the most developed pore structures, the largest surface area and the bestcombustion activity.
     Experiments of NOx reduction by biomass char are conducted in a fixed bed system. Resultsshow that for the reaction between biomass char and NO, there is a general transitiontemperature region (800~900℃) from dynamic-control to diffusion-control, and the effect oftemperature of char preparing on the apparent activation energy is not significant. Theapparent activation energy for the reaction between NO and straw char (89.78~95.41kJ.mol~(-1)) is lower than that for wood char (115.22~122.79kJ.mol~(-1)) and that for coal char(108.59~117.63kJ.mol~(-1)), and the reaction order for all the three kinds of char is around0.85.Meanwhile, for the reaction between char and N_2O, the apparent activation energy is74.64kJ.mol~(-1),122.06kJ.mol~(-1)and127.01kJ.mol~(-1)for straw char, wood char and coal charrespectively, and the reaction order for all the three kinds of char is around1.
     Investigation on the reduction of NOx by biomass gas is performed by dynamic calculation.A detailed mechanism of55species and382steps is constructed to accurately predict thereduction of NO and N_2O by biomass gas, and NH3transformation in SNCR process. Thedetailed mechanism is used to systematically analyze the potential optimal value of excess air coefficient for the maximum NO reduction rate during biomass gas reburning. The effectsof reaction temperature, initial NO concentration, residual time, H2O and CO_2concentrationare also considered. Finally, a skeletal mechanism (32species and179steps) and reducedmechanism (25species and21steps) is developed from the detailed mechanism. Bycomparing the results calculated using skeletal mechanism and reduced mechanism with theresults from experiments and calculation using detailed mechanism, it is verified that boththe skeletal mechanism and reduced mechanism can be used to well predict the iginitiondelay, flame propagation speed, NH3transformation, reduction of NO and N_2O during thecombustion of biomass gas.
引文
[1] Demirbas A. Potential applications of renewable energy sources, biomass combustion problems inboiler power systems and combustion related environmental issues[J]. Progress in Energy andCombustion Science,2005,31(2):171-192.
    [2] Smeets EMW, Faaij APC, Lewandowski IM, Turkenburg WC. A bottom-up assessment and reviewof global bio-energy potentials to2050[J]. Progress in Energy and Combustion Science,2007,33(1):56-106.
    [3] Berggrena M, Ljunggrena E, Johnsson F. Biomass co-firing potentials for electricity generation inPoland--Matching supply and co-firing opportunities[J]. Biomass and Bioenergy,2008,32(9):865-879.
    [4] Hansson J, Berndes G, Johnsson F, Kjaerstad J. Co-firing biomass with coal for electricitygeneration--An assessment of the potential in EU27[J]. Energy Policy,2009,37(4):1444-1455.
    [5] Berndes G, Hansson J, Egeskog A, Johnsson F. Strategies for2nd generation biofuels in EU-Co-firing to stimulate feedstock supply development and process integration to improve energyefficiency and economic competitiveness[J]. Biomass and Bioenergy,2009, In Press.
    [6] Kazagic A, Smajevic I. Synergy effects of co-firing wooden biomass with Bosnian coal[J]. Energy,2009,34(5):699-707.
    [7]吴创之,周肇秋,阴秀丽,易维明.我国生物质能源发展现状与思考[J].农业机械学报,2009,40(1):91-99.
    [8]吴创之.2008中国新能源与可再生能源产业发展报告.中国可再生能源学会,中国科学院广州能源研究所:广州,2008.
    [9]张杰.低碳经济下的可再生能源的发展形势.中国投协会能源发展研究中心:北京,2008.
    [10] Sami M, Annamalai K, Wooldridge M. Co-firing of coal and biomass fuel blends[J]. Progress inEnergy and Combustion Science,2001,27(2):171-214.
    [11] Savolainen K. Co-firing of biomass in coal-fired utility boilers[J]. Applied Energy,2003,74(3-4):369-381.
    [12] Ireland SN, McGrellis B, Harper N. On the technical and economic issues involved in the co-firingof coal and waste in a conventional pf-fired power station[J]. Fuel,2004,83(7-8):905-915.
    [13] Harding NS, Adams BR. Biomass as a reburning fuel: a specialized cofiring application[J]. Biomassand Bioenergy,2000,19(6):429-445.
    [14] Narayanan KV, Natarajan E. Experimental studies on cofiring of coal and biomass blends inIndia[J]. Renewable Energy,2007,32(15):2548-2558.
    [15]雅克.范鲁,耶普.克佩耶.生物质燃烧与混合燃烧技术手册[M].北京:化学工业出版社,2008.
    [16] Glarborg P, Jensen AD, Johnsson FE. Fuel nitrogen conversion in solid fuel fired systems[J].Progress in Energy and Combustion Science,2003,29(2):89-113.
    [17] Hill SC, Smoot LD. Modeling of nitrogen oxides formation and destruction in combustionsystems[J]. Progress in Energy and Combustion Science,2000,26(4-6):417-458.
    [18] Smoot LD, Hill SC, Xu H. NOx control through reburning[J]. Progress in Energy and CombustionScience,1998,24(5):385-408.
    [19]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术[M].北京:化学工业出版社,2005.
    [20] Dandekar A, Vannice MA. Decomposition and reduction of N2O over copper catalysts[J]. AppliedCatalysis B: Environmental,1999,22(3):179-200.
    [21] Stanmore BR, Tschamber V, Brilhac JF. Oxidation of carbon by NOx, with particular reference toNO2and N2O[J]. Fuel,2008,87(2):131-146.
    [22] McAllister S, Chen J-Y, Fernandez-Pello AC. Fundamentals of Combustion Processes. Springer,2011.
    [23]李森.低NOx燃煤技术试验研究与数值模拟[D].西安:西安交通大学,2007.
    [24] Ledesma EB, Li C-Z, Nelson PF, Mackie JC. Release of HCN, NH3, and HNCO from the ThermalGas-Phase Cracking of Coal Pyrolysis Tars[J]. Energy&Fuels,1998,12(3):536-541.
    [25] Nelson PF, Li C-Z, Ledesma E. Formation of HNCO from the Rapid Pyrolysis of Coals[J]. Energy&Fuels,1996,10(1):264-265.
    [26] Miller JA, Bowman CT. Mechanism and modeling of nitrogen chemistry in combustion[J]. Progressin Energy and Combustion Science,1989,15(4):287-338.
    [27] Thomas KM, Grant K, Tate K. Nitrogen-doped carbon-13materials as models for the release ofNOx and N2O during coal char combustion[J]. Fuel,1993,72(7):941-947.
    [28] Brouwer J, Heap MP, E. bF. The Use of Wood as a Reburning Fuel in Combustion Systems[C].Reno-Sparks, Nevada,1994:123-130.
    [29] Abdrew MC, M. LP, A. T. Evaluation of Tire-Derived Fuel for use in Nitrogen Oxide Reduction byReburning[J]. Journal of Air&Waste Management Association,1998,48:729-735.
    [30] Nimmo W, Singh S, Gibbs BM, Williams PT. The evaluation of waste tyre pulverised fuel for NOxreduction by reburning[J]. Fuel,2008,87(13-14):2893-2900.
    [31] Rüdiger H, Greul U, Spliethoff H, Hein KRG. Distribution of fuel nitrogen in pyrolysis productsused for reburning[J]. Fuel,1997,76(3):201-205.
    [32] Ballester J, Ichaso R, Pina A, González MA, Jiménez S. Experimental evaluation and detailedcharacterisation of biomass reburning[J]. Biomass and Bioenergy,2008,32(10):959-970.
    [33] Rudiger H, Greul U, Spliethoff H, Hein KRG. Distribution of fuel nitrogen in pyrolysis productsused for reburning[J]. Fuel,1997,76(3):201-205.
    [34] Guarneri F, Ikeda E, Mackie JC. A Study of Furan as a Model Oxygenated Reburn Fuel for NitricOxide Reduction[J]. Energy Fuels,2001,15(3):743-750.
    [35] Vilas E, Skifter U, Jensen AD, Lopez C, Maier J, Glarborg P. Experimental and Modeling Study ofBiomass Reburning[J]. Energy Fuels,2004,18(5):1442-1450.
    [36] Zhi-lin F, Jun Z, Chang-dong S, Xiao-feng L, Yi-qian X. Experimental Study of NO Reductionthrough Reburning of Biogas[J]. Energy Fuels,2006,20(2):579-582.
    [37]张怡,罗永浩.天然气再燃降低NOx排放的实验研究[J].上海交通大学学报,2006,40(8):1293-1296.
    [38] Bilbao R, Alzueta MU, Millera A, Prada L. Dilution and Stoichiometry Effects on Gas Reburning:An Experimental Study[J]. Ind Eng Chem Res,1997,36(6):2440-2444.
    [39] Bilbao R, Millera A, Alzueta MU. Influence of the Temperature and Oxygen Concentration on NOxReduction In The Natural Gas Reburning Process[J]. Ind Eng Chem Res,1994,33(11):2846-2852.
    [40] Philippe Dagaut JLMC. Experimental and kinetic modeling of the reduction of NO by isobutane in aJsr at1atm[J]. International Journal of Chemical Kinetics,2000,32(6):365-377.
    [41] Liesa F, Alzueta MU, Millera A, Bilbao R. Influence of Reactant Mixing in a Laminar FlowReactor: The Case of Gas Reburning.1. Experimental Study[J]. Ind Eng Chem Res,2007,46(11):3520-3527.
    [42] Dagaut P, Luche J, Cathonnet M. Reduction of NO by n-Butane in a JSR: Experiments and KineticModeling[J]. Energy Fuels,2000,14(3):712-719.
    [43] Lecomte F, Dagaut P, Chevailler S, a MC. NO-Reduction by Ethane in a JSR at AtmosphericPressure: Experimental and Kinetic Modeling[J]. Combustion Science and Technology,2000,150(1):181-203.
    [44] Wei-Yin C, Long M. Effect of heterogeneous mechanisms during reburning of nitrogen oxide[J].AIChE Journal,1996,42(7):1968-1976.
    [45] Jensen LS, Jannerup HE, Glarborg P, Jensen A, Dam-Johansen K. Experimental investigation of nofrom pulverized char combustion[J]. Proceedings of the Combustion Institute,2000,28(2):2271-2278.
    [46] Zanzi R, Sj str m K, Bj rnbom E. Rapid high-temperature pyrolysis of biomass in a free-fallreactor[J]. Fuel,1996,75(5):545-550.
    [47] Zanzi R, Sj str m K, Bj rnbom E. Rapid pyrolysis of agricultural residues at high temperature[J].Biomass and Bioenergy,2002,23(5):357-366.
    [48] Couhert C, Commandre J-M, Salvador S. Is it possible to predict gas yields of any biomass afterrapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin?[J].Fuel,2009,88(3):408-417.
    [49] Uzun BB, Pütün AE, Pütün E. Rapid Pyrolysis of Olive Residue.1. Effect of Heat and MassTransfer Limitations on Product Yields and Bio-oil Compositions[J]. Energy&Fuels,2007,21(3):1768-1776.
    [50] Sun S, Tian H, Zhao Y, Sun R, Zhou H. Experimental and numerical study of biomass flashpyrolysis in an entrained flow reactor[J]. Bioresource Technology,2010,101(10):3678-3684.
    [51] Zabaniotou AA, Kalogiannis G, Kappas E, Karabelas AJ. Olive residues (cuttings and kernels) rapidpyrolysis product yields and kinetics[J]. Biomass and Bioenergy,2000,18(5):411-420.
    [52] Kilpinen P, Glarborg P, Hupa M. Reburning chemistry: a kinetic modeling study[J]. Ind Eng ChemRes,1992,31(6):1477-1490.
    [53] Garijo EG, Jensen AD, Glarborg P. Kinetic Study of NO Reduction over Biomass Char underDynamic Conditions[J]. Energy&Fuels,2003,17(6):1429-1436.
    [54] Kasuya F, Glarborg P, Johnsson JE, Damjohansen K. The Thermal Deno(X) Process-Influence ofPartial Pressures and Temperature[J]. Chemical Engineering Science,1995,50(9):1455-1466.
    [55] Kjaergaard K, Glarborg P, Dam-Johansen K, Miller JA. Pressure effects on the thermal de-NOxprocess. In: Burgess AR, Dryer FL, editors. Twenty-Sixth Symposium,1996:2067-2074.
    [56] Kristensen PG, Glarborg P, DamJohansen K. Nitrogen chemistry during burnout in fuel-stagedcombustion[J]. Combustion and Flame,1996,107(3):211-222.
    [57] Rutar T, Lee JCY, Dagaut P, Malte PC, Byrne AA. NOx formation pathways inlean-premixed-prevapourized combustion of fuels with carbon-to-hydrogen ratio between0.25and0.88[J]. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy,2007,221(A3):387-398.
    [58] Mendiara T, Alzueta MU, Millera A, Bilbao R. Influence of the NO Concentration and the Presenceof Oxygen in the Acetylene Soot Reaction with NO[J]. Energy&Fuels,2008,22(1):284-290.
    [59] van der Lans RP, Glarborg P, Dam-Johansen K. Influence of process parameters on nitrogen oxideformation in pulverized coal burners[J]. Progress in Energy and Combustion Science,1997,23(4):349-377.
    [60] Bendtsen AB, Glarborg P, Dam-Johansen K. Chemometric analysis of a detailed chemical reactionmechanism for methane oxidation[J]. Chemometrics and Intelligent Laboratory Systems,1998,44(1-2):353-361.
    [61] Pedersen LS, Glarborg P, Dam-Johansen K. A reduced reaction scheme for volatile nitrogenconversion in coal combustion[J]. Combustion Science and Technology,1998,131(1-6):193-223.
    [62] Alzueta MU, Rojel H, Kristensen PG, Glarborg P, Dam-Johansen K. Laboratory Study of theCO/NH3/NO/O2System: Implications for Hybrid Reburn/SNCR Strategies[J]. Energy Fuels,1997,11(3):716-723.
    [63] Dagaut P, Lecomte F, Mieritz J, Glarborg P. Experimental and kinetic modeling study of the effectof NO and SO2on the oxidation of CO-H2mixtures[J]. International Journal of Chemical Kinetics,2003,35(11):564-575.
    [64] Garijo EG, Jensen AD, Glarborg P. Reactivity of coal char in reducing NO[J]. Combustion andFlame,2004,136(1-2):249-253.
    [65] Skreiberg O, Kilpinen P, Glarborg P. Ammonia chemistry below1400K under fuel-rich conditionsin a flow reactor[J]. Combustion and Flame,2004,136(4):501-518.
    [66] Rasmussen I, Clausen JC. ELSAM strategy of firing biosolid in CFB power plants[C]. Orlando, FL,1995.
    [67] Dagaut P, Daly C, Simmie JM, Cathonnet M. The oxidation and ignition of dimethylether from lowto high temperature (500-1600K): Experiments and kinetic modeling. In: Burgess AR, Dryer FL,editors. Twenty-Seventh Symposium,1998:361-369.
    [68] Dagaut P, Cathonnet M. Oxidation of neopentane in a jet-stirred reactor from1to10ATM: Anexperimental and detailed kinetic modeling study[J]. Combustion and Flame,1999,118(1-2):191-203.
    [69] Dagaut P, Lecomte F, Chevailler S, Cathonnet H. The reduction of NO by ethylene in a jet-stirredreactor at1atm: Experimental and kinetic modelling[J]. Combustion and Flame,1999,119(4):494-504.
    [70] Dagaut P, Lecomte F, Chevailler S, Cathonnet M. Experimental and kinetic modeling of nitric oxidereduction by acetylene in an atmospheric pressure jet-stirred reactor[J]. Fuel,1999,78(11):1245-1252.
    [71] Dagaut P, Lecomte F, Chevailler S, Cathonnet M. The oxidation of HCN and reactions with nitricoxide: Experimental and detailed kinetic modeling[J]. Combustion Science and Technology,2000,155:105-127.
    [72] Dagaut P, Luche J, Cathonnet M. Experimental and kinetic modeling of the reduction of NO bypropene at1Atm[J]. Combustion and Flame,2000,121(4):651-661.
    [73] Dagaut P, Luche J, Cathonnet M. Reduction of NO by propane in a JSR at1atm: experimental andkinetic modeling[J]. Fuel,2001,80(7):979-986.
    [74] Dagaut P, Lecomte F. Experimental and kinetic modeling study of the reduction of NO byhydrocarbons and interactions with SO2in a JSR at1atm[J]. Fuel,2003,82(9):1033-1040.
    [75] Dagaut P, Nicolle A. Experimental and kinetic modeling study of the effect of SO2on the reductionof NO by ammonia[J]. Proceedings of the Combustion Institute,2005,30:1211-1218.
    [76] Dagaut P, Nicolle A. Experimental and detailed kinetic modeling study of hydrogen-enrichednatural gas blend oxidation over extended temperature and equivalence ratio ranges[J]. Proceedingsof the Combustion Institute,2005,30:2631-2638.
    [77] Gail S, Dagaut P. Experimental kinetic study of the oxidation of p-xylene in a JSR andcomprehensive detailed chemical kinetic modeling[J]. Combustion and Flame,2005,141(3):281-297.
    [78] Nicolle A, Dagaut P. Occurrence of NO-reburning in MILD combustion evidenced via chemicalkinetic modeling[J]. Fuel,2006,85(17-18):2469-2478.
    [79] Le Cong T, Dagaut P. Kinetics of natural gas, natural gas/syngas mixtures oxidation and effect ofburnt gas recirculation: Experimental and detailed modeling. Proceedings of the Asme Turbo Expo2007, Vol1,2007:387-395.
    [80] Le Cong T, Dagaut P, Dayma G. Oxidation of natural gas, natural gas/syngas mixtures, and effect ofburnt gas recirculation: Experimental and detailed kinetic modeling[J]. Journal of Engineering forGas Turbines and Power-Transactions of the Asme,2008,130(4).
    [81] Dagaut P, Luche J, Cathonnet M. The kinetics of C1to C4hydrocarbons/no interactions in relationwith reburning[J]. Proceedings of the Combustion Institute,2000,28(2):2459-2465.
    [82] Dagaut P, Lecomte F, Chevailler S, Cathonnet M. Experimental and Detailed Kinetic Modeling ofNitric Oxide Reduction by a Natural Gas Blend in Simulated Reburning Conditions[J]. CombustionScience and Technology,1998,139(1):329-363.
    [83] P Dagaut, M Cathonnet, J P Rouan, R Foulatier, A Quilgars, J C Boettner, James FGaH. Ajet-stirred reactor for kinetic studies of homogeneous gas-phase reactions at pressures up to tenatmospheres (-1MPa)[J]. J Phys E: Sci Instrum,1986,19:207-209.
    [84] Le Cong T, Dagaut P. Experimental and Detailed Modeling Study of the Effect of Water Vapor onthe Kinetics of Combustion of Hydrogen and Natural Gas, Impact on NOx[J]. Energy&Fuels,2009,23(1):725-734.
    [85] Wang Q, Wang H, Sun B, Bai J, Guan X. Interactions between oil shale and its semi-coke duringco-combustion[J]. Fuel,2009,88(8):1520-1529.
    [86] Dagaut P, Lecomte F. Experiments and Kinetic Modeling Study of NO-Reburning by Gases fromBiomass Pyrolysis in a JSR[J]. Energy&Fuels,2003,17(3):608-613.
    [87] Duan J, Luo YH, Yan NQ, Chen Y. Effect of Biomass Gasification Tar on NO Reduction by BiogasReburning[J]. Energy Fuels,2007,21(3):1511-1516.
    [88] Lu P, Xu S-R, Zhu X-M. Study on NO heterogeneous reduction with coal in an entrained flowreactor[J]. Fuel,2009,88(1):110-115.
    [89] Yin Y, Zhang J, Sheng C. Effect of pyrolysis temperature on the char micro-structure and reactivityof NO reduction[J]. Korean Journal of Chemical Engineering,2009,26(3):895-901.
    [90] Aarna I, Suuberg EM. A review of the kinetics of the nitric oxide-carbon reaction[J]. Fuel,1997,76(6):475-491.
    [91] Li YH, Lu GQ, Rudolph V. The kinetics of NO and N2O reduction over coal chars in fluidised-bedcombustion[J]. Chemical Engineering Science,1998,53(1):1-26.
    [92] Smith RN, Swinehart J, Lesnini D. Studies on the Reduction of Nitric Oxide by Carbon: TheNO-Carbon Gasification Reaction[J]. Journal of Physical Chemistry,1959,63:544.
    [93] Chan LK, Sarofim AF, Beér JM. Kinetics of the NO-carbon reaction at fluidized bed combustorconditions[J]. Combustion and Flame,1983,52:37-45.
    [94] Chambrion P, Kyotani T, Tomita A. C-NO reaction in the presence of O2[J]. Symposium(International) on Combustion,1998,27(2):3053-3059.
    [95] Chambrion P, Orikasa H, Suzuki T, Kyotani T, Tomita A. A study of the C--NO reaction by usingisotopically labelled C and NO[J]. Fuel,1997,76(6):493-498.
    [96] Orikasa H, Matsuoka K, Kyotani T, Tomita A. HCN and N2formation mechanism during NO/charreaction[J]. Proceedings of the Combustion Institute,2002,29(2):2283-2289.
    [97] Aihara T, Matsuoka K, Kyotani T, Tomita A. Mechanism of N2formation during coal charoxidation[J]. Proceedings of the Combustion Institute,2000,28(2):2189-2195.
    [98] Matsuoka K, Orikasa H, Itoh Y, Chambrion P, Tomita A. Reaction of NO with soot over Pt-loadedcatalyst in the presence of oxygen[J]. Applied Catalysis B: Environmental,2000,26(2):89-99.
    [99] Tomita A. Suppression of nitrogen oxides emission by carbonaceous reductants[J]. Fuel ProcessingTechnology,2001,71(1-3):53-70.
    [100] Aarna I, Suuberg EM. A study of the reaction order of the NO-carbon gasification reaction[J].Symposium (International) on Combustion,1998,27(2):3061-3068.
    [101] Aarna I, Suuberg EM. Changes in reactive surface area and porosity during char oxidation[J].Symposium (International) on Combustion,1998,27(2):2933-2939.
    [102] Kulaots I, Hsu A, Suuberg EM. The role of porosity in char combustion[J]. Proceedings of theCombustion Institute,2007,31(2):1897-1903.
    [103] Suuberg EM, Teng H, Calo JM. Studies on the kinetics and mechanism of the reaction of NO withcarbon[J]. Symposium (International) on Combustion,1991,23(1):1199-1205.
    [104] Teng H, Suuberg EM, Calo JM. Studies on the reduction of nitric oxide by carbon: the nitricoxide-carbon gasification reaction[J]. Energy&Fuels,1992,6(4):398-406.
    [105] Külaots I, Hsu A, Suuberg EM. The role of porosity in char combustion[J]. Proceedings of theCombustion Institute,2007,31(2):1897-1903.
    [106] Pevida C, Arenillas A, Rubiera F, Pis JJ. Heterogeneous reduction of nitric oxide on synthetic coalchars[J]. Fuel,2005,84(17):2275-2279.
    [107] Pevida C, Arenillas A, Rubiera F, Pis JJ. Synthetic coal chars for the elucidation of NOheterogeneous reduction mechanisms[J]. Fuel,2007,86(1-2):41-49.
    [108] Wongtanakitcharoen S, Tatiyakiatisakun T, Rirksomboon T, Long RQ, Osuwan S, Malakul P, YangRT. Kinetics of C-NO and C-N2O Reactions[J]. Energy&Fuels,2001,15(6):1341-1346.
    [109] Li YH, Radovic LR, Lu GQ, Rudolph V. A new kinetic model for the NO-carbon reaction[J].Chemical Engineering Science,1999,54(19):4125-4136.
    [110] Levy JM, Chan LK, Sarofim AF, Beer JM. NO/char reactions at pulverized coal flameconditions[J]. Symposium (International) on Combustion,1981,18(1):111-120.
    [111]张春林,刘德昌.流化床燃烧温度下N2O与石油焦焦炭多相反应动力学的热重研究[J].环境科学学报,2007,27(3):431-436.
    [112] Zhong BJ, Tang H. Catalytic NO reduction at high temperature by de-ashed chars with catalysts[J].Combustion and Flame,2007,149(1-2):234-243.
    [113]王世杰,陆继东,胡芝娟,黄来.煤焦还原NO的实验研究[J].华中科技大学学报(再燃科学版),2006,34(1):21-23.
    [114]温正城,周俊虎,王智化,岑可法.碱金属对煤焦异相还原NO的催化机理:量子化学研究[J].浙江大学学报(工学版),2008,42(8):1452-1457.
    [115] Zhou H, Jensen AD, Glarborg P, Kavaliauskas A. Formation and reduction of nitric oxide infixed-bed combustion of straw[J]. Fuel,2006,85(5-6):705-716.
    [116] GR S, AP R, GA B, AF G. Cofiring of wood chips with coal in interior Alaska[J]. Forest ProductsJournal,1991,41(5):53-56.
    [117] Alstom to work on UK's first biomass co-firing plant[J]. Pump Industry Analyst,2005,2005(7):4-4.
    [118] Hughes EE, Tillman DA. Biomass cofiring: status and prospects1996[J]. Fuel ProcessingTechnology,1998,54(1-3):127-142.
    [119] Hein KRG, Bemtgen JM. EU clean coal technology--co-combustion of coal and biomass[J]. FuelProcessing Technology,1998,54(1-3):159-169.
    [120]阎维平,安敬学,鲁许鳌.300MW燃煤锅炉掺烧稻壳对锅炉效率影响的计算分析[J].能源工程,2009,4:8-12.
    [121] Moghtaderi B. A study on the char burnout characteristics of coal and biomass blends[J]. Fuel,2007,86(15):2431-2438.
    [122] Gold BA, Tillman DA. Wood cofiring evaluation at TVA power plants[J]. Biomass and Bioenergy,1996,10(2-3):71-78.
    [123] Khan AA, de Jong W, Jansens PJ, Spliethoff H. Biomass combustion in fluidized bed boilers:Potential problems and remedies[J]. Fuel Processing Technology,2009,90(1):21-50.
    [124] Effort AJ. Results of combustion and emissions testing when co-firing blends of binder-enhanceddensified refuse-derived fuel (b-dRDF) pellets and coal in a440MWe cyclone fired combustor, vol.1, test methodology and results. Subcontract report. Argonne National Laboratory: Argonne, IL,1994:60.
    [125] Molcan P, Lu G, Bris TL, Yan Y, Taupin B, Caillat S. Characterisation of biomass and coalco-firing on a3MWth Combustion Test Facility using flame imaging and gas/ash samplingtechniques[J]. Fuel,2009,88(12):2328-2334.
    [126] Wang S, Baxter L. Comprehensive study of biomass fly ash in concrete: Strength, microscopy,kinetics and durability[J]. Fuel Processing Technology,2007,88(11-12):1165-1170.
    [127] Tkaczewska E, Ma olepszy J. Hydration of coal–biomass fly ash cement[J]. Construction andBuilding Materials,2009,23(7):2694-2700.
    [128] Wei X, Schnell U, Hein KRG. Behaviour of gaseous chlorine and alkali metals during biomassthermal utilisation[J]. Fuel,2005,84(7-8):841-848.
    [129] Molina A, Shaddix CR. Ignition and devolatilization of pulverized bituminous coal particles duringoxygen/carbon dioxide coal combustion[J]. Proceedings of the Combustion Institute,2007,31(2):1905-1912.
    [130] Shaddix CR, Molina A. Particle imaging of ignition and devolatilization of pulverized coal duringoxy-fuel combustion[J]. Proceedings of the Combustion Institute,2009,32(2):2091-2098.
    [131] Rodriguez M, Raiko R. Effect of O2and CO2content on particle surface temperature and size ofcoal char during combustion[C]. Naantali, Finland,2009.
    [132] Vlaev LT, Markovska IG, Lyubchev LA. Non-isothermal kinetics of pyrolysis of rice husk[J].Thermochimica Acta,2003,406(1-2):1-7.
    [133] Noda K, Chambrion P, Kyotani T, Tomita A. A Study of the N2Formation Mechanism inCarbon N2O Reaction by Using Isotope Gases[J]. Energy&Fuels,1999,13(4):941-946.
    [134] Yamashita H, Tomita A, Yamada H, Kyotani T, Radovic LR. Influence of char surface chemistry onthe reduction of nitric oxide with chars[J]. Energy&Fuels,1993,7(1):85-89.
    [135] López D, Calo J. The N2O-carbon reaction: The influence of CO and potassium on reactivity andpopulations of oxygen surface complexes[J]. Fuel,2007,86(12-13):1900-1907.
    [136] Madley DG, Strickland-Constable RF. The kinetics of the oxidation of charcoal with nitrousoxide[J]. Transactions of the Faraday Society,1953,49:1312-1324.
    [137] Takehiko F, Daizo K, Akio O, Nobuyuki Y. Rate of reduction of nitric oxide by char[J].International chemical engineering,1980,20(2):239-244.
    [138] Teng H, Lin H-C, Hsieh Y-S. Thermogravimetric Studies on the Global Kinetics of CarbonGasification in Nitrous Oxide[J]. Industrial&Engineering Chemistry Research,1997,36(3):523-529.
    [139] Chu X, Schmidt LD. Intrinsic rates of nitrogen oxide (NOx)-carbon reactions[J]. Industrial&Engineering Chemistry Research,1993,32(7):1359-1366.
    [140] Rodriguez m, J., Ooms AC, Pels JR, Kapteijn F, Moulijn JA. NO and N2O decomposition over coalchar at fluidized-bed combustion conditions [J]. Combustion and Flame,1994,99(3-4):499-507.
    [141] Zhu ZH, Finnerty J, Lu GQ, Yang RT. Opposite Roles of O2in NO-and N2O-Carbon Reactions:An Ab Initio Study[J]. The Journal of Physical Chemistry B,2001,105(4):821-830.
    [142] Zhu ZH, Radovic LR, Lu GQ. Effects of acid treatments of carbon on N2O and NO reduction bycarbon-supported copper catalysts[J]. Carbon,2000,38(3):451-464.
    [143] Dagaut P, Cathonnet M, Rouan JP, Foulatier R, Quilgars A. A jet-stirred reactor for kinetic studiesof homogeneous gas-phase reactions at pressures up to ten atmospheres (≈1MPa)[J]. J Phys E: SciInstrum,1986,19:207-209.
    [144] L ffler G, Wargadalam VJ, Winter F, Hofbauer H. Decomposition of nitrous oxide at mediumtemperatures[J]. Combustion and Flame,2000,120(4):427-438.
    [145] Meeks E, Moffat HK, Grcar JF. AURORA: A FORTRAN Program for Modeling Well StirredPlasma and Thermal Reactors with Gas and Surface Reactions. Sandia National Laboratories:Livermore,1996.
    [146] Larson RS. PLUG: A FORTRAN PROGRAM FOR THE ANALYSIS OF PLUG FLOWREACTORS WITH GAS-PHASE AND SURFACE CHEMISTRY. Sandia National Laboratories:Livermore,1996.
    [147] Reaction-Design. Theory Manual of CHEMKIN-PRO. San Diego,2008.
    [148] Cremer MA, Montgomery CJ, Wang DH, Heap MP, Chen JY. Development and implementation ofreduced chemistry for computional fluid dynamics modeling of selective non-catalytic reduction[J].Proceedings of the Combustion Institute,2000,28(2):2427-2434.
    [149] Sung CJ, Law CK, Chen JY. Augmented reduced mechanisms for NO emission in methaneoxidation[J]. Combustion and Flame,2001,125(1-2):906-919.
    [150]徐晓光,徐明厚,乔瑜.反应动力学机理简化的研究现状及进展[J].煤炭转化,2004,27(4):1-6.
    [151] Tham YF, Bisetti F, Chen JY. Development of a Highly Reduced Mechanism for Iso-Octane HCCICombustion With Targeted Search Algorithm[J]. Journal of Engineering for Gas Turbines andPower,2008,130(4):042804-042807.
    [152] Dagaut P, Nicolle A. Experimental and kinetic modeling study of the effect of SO2on the reductionof NO by ammonia[J]. Proceedings of the Combustion Institute,2005,30(1):1211-1218.
    [153] Jiménez S, Ballester J. Formation and Emission of Submicron Particles in Pulverized Olive Residue(Orujillo) Combustion[J]. Aerosol Science and Technology,2004,38(7):707-723.
    [154] Jiménez S, Ballester J. A Comparative Study of Different Methods for the Sampling of HighTemperature Combustion Aerosols[J]. Aerosol Science and Technology,2005,39(9):811-821.
    [155] Jiménez S, Ballester J. Influence of operating conditions and the role of sulfur in the formation ofaerosols from biomass combustion[J]. Combustion and Flame,2005,140(4):346-358.
    [156] Jiménez S, Ballester J. Effect of co-firing on the properties of submicron aerosols from biomasscombustion[J]. Proceedings of the Combustion Institute,2005,30(2):2965-2972.
    [157] Jiménez S, Ballester J. Particulate matter formation and emission in the combustion of differentpulverized biomass fuels[J]. Combustion Science and Technology,2006,178(4):655-683.
    [158] Jiménez S, Ballester J. Formation of alkali sulphate aerosols in biomass combustion[J]. Fuel,2007,86(4):486-493.
    [159] Dayton DC, Belle-Oudry D, Nordin A. Effect of Coal Minerals on Chlorine and Alkali MetalsReleased during Biomass/Coal Cofiring[J]. Energy&Fuels,1999,13(6):1203-1211.
    [160] Dayton DC, French RJ, Milne TA. Direct Observation of Alkali Vapor Release during BiomassCombustion and Gasification.1. Application of Molecular Beam/Mass Spectrometry to SwitchgrassCombustion[J]. Energy&Fuels,1995,9(5):855-865.
    [161] Dayton DC, Jenkins BM, Turn SQ, Bakker RR, Williams RB, Belle-Oudry D, Hill LM. Release ofInorganic Constituents from Leached Biomass during Thermal Conversion[J]. Energy&Fuels,1999,13(4):860-870.
    [162] Lind T, Kauppinen EI, Hokkinen J, Jokiniemi JK, Orjala M, Aurela M, Hillamo R. Effect ofChlorine and Sulfur on Fine Particle Formation in Pilot-Scale CFBC of Biomass[J]. Energy&Fuels,2005,20(1):61-68.
    [163] Johansson LS, Tullin C, Leckner B, Sj vall P. Particle emissions from biomass combustion in smallcombustors[J]. Biomass and Bioenergy,2003,25(4):435-446.
    [164] Sheth AC, Wang SH, Holt JK. Potassium-chlorine interactions in a coal-firedmagnetohydrodynamics system[J]. Environmental Science&Technology,1993,27(8):1532-1541.
    [165] Hansen PFB, Andersen KH, Wieck-Hansen K, Overgaard P, Rasmussen I, Frandsen FJ, Hansen LA,Dam-Johansen K. Co-firing straw and coal in a150-MWe utility boiler: in situ measurements[J].Fuel Processing Technology,1998,54(1-3):207-225.
    [166] Nielsen HP, Baxter LL, Sclippab G, Morey C, Frandsen FJ, Dam-Johansen K. Deposition ofpotassium salts on heat transfer surfaces in straw-fired boilers: a pilot-scale study[J]. Fuel,2000,79(2):131-139.
    [167] Iisa K, Lu Y, Salmenoja K. Sulfation of Potassium Chloride at Combustion Conditions[J]. Energy&Fuels,1999,13(6):1184-1190.
    [168] Glarborg P, Marshall P. Mechanism and modeling of the formation of gaseous alkali sulfates[J].Combustion and Flame,2005,141(1-2):22-39.
    [169] Kati S. Co-firing of biomass in coal-fired utility boilers[J]. Applied Energy,2003,74(3-4):369-381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700