用户名: 密码: 验证码:
葡萄孢属植物病原菌真菌病毒研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄孢属真菌(Botrytis spp)是一种广泛分布的植物病原真菌,可引起多种作物的灰霉病,造成严重的经济损失。本研究对源于灰葡萄孢(B. cinerea)、大蒜盲种葡萄孢(B. porri)、葱鳞葡萄孢(B.squamosa)、中国葱葡萄孢(B. sinoallii)及拟蚕豆葡萄孢(B.fabiopsis)中的5类真菌病毒进行了研究,具体包括两种线粒体病毒(Mitovirus)、一种双分病毒(Partitivirus)、一种尚未分类的病毒及一个代表新病毒科的成员。在上述5种病毒中,有两种病毒已被证实与葡萄孢的致病力衰退有密切的关系,其中包括源于灰葡萄孢菌株CanBc-1的线粒体病毒Botrytis cinerea mitovirus1(BcMV1)和源于大蒜盲种葡萄孢菌株GarlicBc-72的真菌病毒Botrytis porri RNA virus1(BpRV1)。
     BcMV1的全长约为2804nt,与OnuMV3b有极高的同源性,可以通过病菌的分生孢子进行垂直传染和通过菌丝的融合进行水平传染。成功传染BcMV1dsRNA的菌株均会在生长速度和致病力上出现明显的衰退。通过透射电镜对病毒感染后菌丝的超薄切片进行观察可以发现,病毒侵染后,菌丝细胞中线粒体会出现肿大、嵴退化和内部纤维化的症状,加之提纯的线粒体中也可检测到BcMV1的dsRNA,因此,BcMV1的攻击位点被认为是线粒体。BcMV1侵染线粒体后,造成线粒体的超微结构出现明显的异常,从而可能造成线粒体功能的紊乱,并最终导致灰葡萄孢致病力的严重衰退。此外,BcMV1在灰葡萄孢分生孢子形成过程中可以产生DIRNA,即BcMV1-S。BcMV1-S可以通过菌丝融合进行水平传染。虽然它可以抑制BcMV1的复制但不会影响BcMV1造成的弱毒特性。
     BpRVl是本研究中另一种可引起葡萄孢致病力衰退的真菌病毒。BpRVl的基因组含有两条dsRNA片段,分别命名为dsRNA-1(6125bp)和dsRNA-2(5879bp)。这两条片段在5’和3’末端分别有95%和62%的相似度,且各编码一个大的开放阅读框(ORF),分别命名为ORFⅠ (dsRNA-1)和ORFⅡ (dsRNA-2)。ORFI所编码的蛋白在靠近N端的区域与Totiviridae、Chrysoviridae和Megabirnaviridae科病毒所编码的依赖于RNA的RNA聚合酶(RdRp)有一定的同源性,且同源性约为19%-23%。ORFⅠ所编码蛋白的其他区域及ORFⅡ所编码蛋白并未在数据库中搜索到与之有明显同源性的蛋白序列。系统进化分析表明,BpRV1属于一个单独的分支,与已报道真菌病毒的亲缘关系均较远。BpRV1的病毒粒体直径约为35nm,里面包含有两条dsRNA链(dsRNA-1和dsRNA-2)和大小分别为70kDa、80kDa及85kDa的三种病毒结构蛋白。蛋白质指纹图谱分析表明80kDa及85kDa的结构蛋白由dsRNA-1编码,而70kDa的结构蛋白由dsRNA-2编码。将BpRV1的病毒粒体导入强毒菌株GarlicBc-38后,会导致其病毒感染后的衍生菌株38T致病力和生长速度的衰退。以上结果都表明,BpRV1是一种新型的真菌病毒,并可能属于一个新的病毒科。此外,在葱鳞葡萄孢菌株LeekBc-10中也检测到了一种真菌病毒,Botrytis squamosa RNA virus1(BsRV1)。BsRV1与BpRV1的两条dsRNA基因组在核酸水平上的同源性为91%-97%,而在蛋白水平上的同源性则高达97%-98%,因此BpRV1与BsRV1被认为是同一种病毒的不同毒株。
     剩余的3种真菌病毒对寄主的影响尚不十分明确,但病毒侵染的菌株都表现出了与正常菌株明显不同的培养形态。其中,已获得了来源于葱鳞葡萄孢菌株GarlicBc-21的Botrytis squamosa RNA virus2(BsRV2/Bc-21)和来源于拟蚕豆葡萄孢菌株BroadbeanBc-41的Botrytis fabiopsis RNA virus1(BfRV1/Bc-41)部分基因组序列。结果显示两者在蛋白水平上有91%以上的相似性,因而BsRV2/Bc-21与BfRV1/Bc-41可能也是同一种病毒。系统进化分析表明这两种病毒与FgV-DK21的亲缘关系最近,且与hypovirus有一定的亲缘关系,但具体的分类地位还尚待确定。另外在菌株BroadbeanBc-41中还发现了一种双分病毒Botrytis fabiopsis partitivirus1(BfPV1)与SsPVS有较近的亲缘关系。此外,BfPV1还与蚕豆上的一种双分病毒VfPV-1有较高的同源性。最后,在中国葱葡萄孢菌株OnionBc-59中发现了一种与SsMV1有较近的亲缘关系的线粒体病毒Botrytis sinoallii mitovirus1(BsMV1)。
Botrytis spp is a widely spread group of plant pathogenic fungi, which causes gray mold disease of many crops and leads serious economic losses. This research focused on the characterization of five mycoviruses originated from B. cinerea, B. porri, B. squamosa, B. sinoallii and B.fabiopsis, of which two belong to Mitovirus, one belongs to Partitivirus, one is from an unassigned viral group and one that may represent a novel viral family. Two mycoviruses from those five viruses were determined to be associated with the hypovirulence of Botrytis spp, including Botrytis cinerea mitovirus1(BcMV1) from strain CanBc-1of B. cinerea and Botrytis porri RNA virus1(BpRV1) from strain GarlicBc-72of B. porri.
     The full length sequence of BcMV1is2084nt, which shows high sequence identity to OnuMV3b. BcMV1could be vertically and horizontally transmitted though conidia and by hyphal anastomosis. Infection of BcMV1dsRNA causes the serious debilitation of virulence and growth for virus-infected strains. TEM observation indicates the infection of BcMV1causes the swollen mitochondria, degeneration of cristae and presence of fibrous material in fungal mitochondria. In addition, BcMV1could be detected from purified mitochondria. Therefore, mitochondria are believed to be the target for BcMV1. The infection of mitochondria by BcMV1causes the unusual subcellular structure of mitochondria, which may lead the malfunction of mitochondria and causes the hypovirulence of B. cinerea. Moreover, BcMV1could generate defective interference (DI) RNA during the sporulation process of B. cinerea, designated as BcMV1-S. BcMV1-S could be horizontally transmitted. Although it inhibits the replication of BcMV1, but it does not affect the hypovirulence caused by BcMV1.
     BpRV1is determined to be another mycovirus conferring hypovirulence to Botrytis spp in this study. The BpRV1genome comprises two dsRNAs, dsRNA-1(6,215bp) and dsRNA-2(5,879bp), which share sequence identities of62and95%at the3'-and5'-terminal regions, respectively. Two open reading frames (ORFs), ORF I (dsRNA-1) and ORF Ⅱ (dsRNA-2), were detected. The protein encoded by the3'-proximal coding region of ORF I shows sequence identities of19to23%with RNA-dependent RNA polymerases encoded by viruses in the families Totiviridae, Chrysoviridae, and Megabirnaviridae. However, the proteins encoded by the5'-proximal coding region of ORF I and by the entire ORF II lack sequence similarities to any reported virus proteins. Phylogenetic analysis showed that BpRV1belongs to a separate clade distinct from those of other known RNA mycoviruses. Purified virions of-35nm in diameter encompass dsRNA-1and dsRNA-2, and three structural proteins (SPs) of70,80, and85kDa, respectively. Peptide mass fingerprinting analysis revealed that the80-and85-kDa SPs are encoded by ORF I, while the70-kDa SP is encoded by ORF II. Introducing BpRV1purified virions into the virulent strain GarlicBc-38of B. porri caused derivative38T reduced mycelial growth and hypovirulence. These combined results suggest that BpRV1is a novel bipartite dsRNA virus that possibly belongs to a new virus family. Moreover, Botrytis squamosa RNA virus1(BsRV1) was isolated from strain LeekBc-10of B. squamosa. BsRV1and BpRV1shows highly sequence identity with91%-97%and97%-98%for nucleotide and protein sequence respectively, thus the two viruses is believed to be two strains of one viral species.
     The effects to host fungi were unknown for the rest three mycoviruses, although the virus infected strains showed abnormal cultural morphology. Partial genome sequence of Botrytis squamosa RNA virus2(BsRV2/Bc-21) and Botrytis fabiopsis RNA virus1(BfRV1/Bc-41) were obtained. The two viruses were isolated from strain GarlicBc-21of B. sqaumosa and strain BroadbeanBc-41of B. fabiopsis respectively. BsRV2/Bc-21and BfRV1/Bc-41are believed to be one viral species, as they showed high protein sequence identity (91%) with each other. Phylogenetic analysis indicated the two viruses were close related to FgV-DK21, and grouped with hypo viruses. However, the classification of this virus remains unknown. Moreover, another partitivirus, Botrytis fabiopsis partitivirus1(BfPV1), was also identified from strain BroadbeanBc-41, which is close related to SsPVS. Moreover, BfPV1also showed homology to a plant partitivirus of Vicia faba, VfPV-1. In addition, a mitovirus with close relationship to SsMV1was isolated from strain OnionBc-59of B. sinoallii, and named as Botrytis sinoallii mitovirus1(BsMV1).
引文
1.陈宇飞,文景芝,李立军.葡萄灰霉病研究进展.东北农业大学学报,2006,37:693—699.
    2.樊慕贞,朱杰华,黄天成.草霉灰霉病的发生和防治研究.河北农业大学学报,1995,18:21—29.
    3.方中达.植病研究方法(第三版)中国农业出版社,1998:124—125.
    4.冯翠萍,李艳琼,纳玲洁.安徽农业科学,2006,34:271—272.
    5.甘晓静,黎起秦.作物灰霉病综合防治技术.广西植保,2004,17:13—16.
    6.李保聚,陈立芹,孟伟军.温湿度调控对番茄灰霉病菌产生的细胞壁降解酶的影响.植物病理学报,2003,33:209—212.
    7.李保聚,朱国仁番茄灰霉病发展症状诊断及综合防治植物保护,1998,24:18—20.
    8.李保聚,朱国仁,赵华奎.番茄灰霉病在果实上的侵染部位及防治新技术.植物保护,1999,29:63—67.
    9.李科孝,谢宏伟.大棚韭菜灰霉病的发生规律与防治.植物保护,2001,27:46.
    10.李明远,李兴红.蔬菜灰霉病的发生与防治.植保技术与推广,2002a,22:31—33.
    11.李明远,李兴红.蔬菜灰霉病的发生与防治(续).植保技术与推广,2002b,22:37—39.
    12.刘波,叶钟音,刘经芬.速克灵抗性灰葡萄孢菌菌株性质的研究.植物保护学报,1992,19:297—301.
    13.刘春元,刘建华,刘文原.海棠灰霉病菌生物学特性的研究.河南农业大学学报,2003,1:61—64.
    14.罗军.金华市金东区2种不同品种草莓灰霉病的发生情况调查.安徽农学通 报,2009,15:124-129.
    15.马辉刚,李瑞明.番茄灰霉病菌生物学特性研究.江西农业大学学报,1998a20:207—209.
    16.马辉刚,李瑞明,胡水秀.木霉素防治番茄灰霉病田间药效试验.植物保护,1998b,24:38—39.
    17.屈立峰.黄瓜灰霉病的发生与综合防治.农业科技通讯,1996,3:27.
    18.任秀云,吕德国,安志强.草莓灰霉病及其生理特性的研究.北方果树,1993,3:18—20.
    19.邵小花.草莓灰霉病的发生规律与防治.上海农业科技,1990,2:23—24.
    20.王春艳.草莓灰霉病发生危害及防治研究初报.植物保护,1997,23:32—33.
    21.杨燕涛.国内保护地蔬菜灰霉病侵染规律及防治技术研究进展.农药,2003,42:6—10.
    22.易齐.蔬菜灰霉病的发生与防治.病虫测报,1992,4:13.
    23.张从宇,高智谋.番茄灰霉病菌生物学性状研究,安徽技术师范学院学报,2002,16:10—14.
    24.张建人.南方草莓灰霉病的发生与综合防治.植物保护,1991,17:32—33.33.
    25.张树学.防治保护地蔬菜灰霉病.西北园艺,2001,6:38—39.
    26.张玉勋,王翠花,陈发炜,公维新.保护地蔬菜灰霉病发生规律及防治.山东35.张志元,官春云.油菜对菌核病抗(耐)病性鉴定与抗病育种研究进展.湖北农业科学,2003,3:38—43.
    27.张中义.中国真菌志(第二十六卷).北京:科学出版社,2006,1—27.
    28.赵海棠,胡芝莲,安学君.春大棚茄瓜类蔬菜灰霉病等病害的发生与防治.植保技术与推广,2000,20:17—18.
    29.赵蕾,杨合同.蔬菜灰霉病生防菌的筛选与防效试验初报.应用与环境生物学报,1999,5:85—8.
    30.周明国,叶钟音,刘经芬,等.南京市郊灰霉病菌对苯骈咪唑类菌剂田间抗性的监测[J].南京农业大学学报,1987,2:53—58.
    31.朱建兰.番茄灰霉病菌的生物学特研究.甘肃农业大学学报,1995,30:73—78.农业科学,1995,6:42—43.
    32. Adams MJ, Candresse T, Hammond J, Kreuze JF, Martelli GP, Namba S, Pearson MN, Ryu KH, and Vaira AM. Alphaflexiviridae. In:Fauquet CM, Mayo MA, Maniloff J, Desselberger U, and Ball LA, eds. Virus Taxonomy, ninth Report of the International Committee on Taxonomy of Viruses. London, UK:Elsevier press, 2011a.904-919.
    33. Adams MJ, Kreuze JF, and Pearson MN. Gammaflexiviridae. In:Fauquet CM, Mayo MA, Maniloff J, Desselberger U, and Ball LA, eds. Virus Taxonomy, ninth Report of the International Committee on Taxonomy of Viruses. London, UK:Elsevier press,2011b.942-943.
    34. Al Rwahnih M, Daubert S, Urbez-Torres JR, Cordero F, and Rowhani A. Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses. Arch Vrol,2007,
    35. Anagnostakis SL. Biological control of chestnut blight. Science,1982,215:466-471.
    36. Asiedu SK, Raghavan GSV, Gariepy Y, and Reeleder R. Botrytis porri on leek in Canada. Plant Dis,1986,70:259.
    37. Attoui H, Mertens PPC, Becnel J, Belaganahalli S, Bergoin M, Brussaard CP, Chappell JD, Ciarlet M, del Vas M, Dermody TS, Dormitzer PR, Duncan R, Fang Q, Graham R, Guglielmi KM, Harding RM, Hillman B, Makkay A, Marzachi C, Matthijnssens J, et al. Reoviridae. In:Fauquet CM, Mayo MA, Maniloff J, Desselberger U, and Ball LA, eds. Virus Taxonomy, ninth Report of the International Committee on Taxonomy of Viruses. London, UK:Elsevier press, 2011.541-637.
    38. Barr JN and Fearns R. How RNA viruses maintain their genome integrity. J Gen Virol,2010,91:1373-1387.
    39. Beever RE and Parkes SL. Use of nitrate non-utilising (Nit) mutants to determine vegetative compatibility in Botryotinia fuckeliana(Botrytis cinerea). Eur J Plant Pathol,2003,109:607-613.
    40. Beever RE and Weeds PL. Taxonomy and genetic variation of Botrytis and Botryotinia. In:Elad Y, Williamson B, Tudzynski P, and Delen N, eds. Botrytis: Biology, Pathology and Control. Dordrecht, The Netherlands:Springer press,2007. 29-52.
    41. Blawid R, Stephan E, and Maiss E. Molecular characterization and detection of Vicia cryptic virus in different Vicia faba cultivars. Arich Virol,2007,152:1477-1488.
    42. Biella S, Smith ML, Aist JR, Cortesi P, and Milgroom MG. Programmed cell death correlates with virus transmission in a filamentous fungus. Proc R Soc Lond B,2002, 269:2269-2276.
    43. Boeke JD, Eickbush T, Sandmeyer SB, and Voytas DF. Pseudoviridae. In:Fauquet CM, Mayo MA, Maniloff J, Desselberger U, and Ball LA, eds. Virus Taxonomy, ninth Report of the International Committee on Taxonomy of Viruses. London, UK: Elsevier press,2011.639-650.
    44. Boland GJ. Hypovirulence and double-stranded RNA in Sclerotinia sclerotiorum. Can J Plant Pathol,1992,14:10-17.
    45. Brasier CM.. A cytoplasmically transmitted disease of Ceratocystis ulmi. Nature, 1983,305:220-223.
    46. Cai G, Myers K, Fry WE, and Hillman BI. A member of the virus family Narnaviridae from the plant pathogenic oomycete Phytophthora infestans. Arch Virol,2012,157:165-169.
    47. Castanho B, Butler EE, and Shepherd RJ. The association of double-stranded RNA with rhizoctonia decline. Phytopathology,1978,68:1515-1519.
    48. Caston JR, Ghabrial SA, Jiang D, Rivas G, Alfonso C, Roca R, Luque D, and Carrascosa JL. Three-dimensional structure of Penicillium chrysogenum virus:a double-stranded RNA virus with a genuine T=1 capsid. J Mol Biol,2003,331:417-431.
    49. Castro M, Kramer K, Valdivia L, Ortiz S, Benavente J, and Castillo A. A new double-stranded RNA mycovirus from Botrytis cinerea. FEMS Microbiol Lett,1999, 175:95-99.
    50. Castro M, Kramer K, Valdivia L, Ortiz S, and Castillo A. A double-stranded RNA mycovirus confers hypovirulence-associated traits to Botrytis cinerea. FEMS Microbiol Lett,2003,228:87-91.
    51. Chen B, Choi G, and Nuss DL. Attenuation of fungal virulence by synthetic infectious hypovirus transcripts. Science,1994,264:1762-1764.
    52. Chen B and Nuss DL. Infectious cDNA clone of hypovirus CHV1-Euro7:A comparative virology approach to investigate virus-mediated hypovirulence of the chestnut blight fungus Cryphonectria parasitica. J Virol,1999,73:985-992.
    53. Chen B, Geletka LM, and Nuss DL. Using chimeric hypo viruses to fine-tune the interaction between a pathogenic fungus and its plant host. J Virol,2000,74:7562-7567.
    54. Chen BJ and Lamb RA. Mechanisms for enveloped virus budding:can some viruses do without an ESCRT? Virology,2008,372:221-232.
    55. Chiba S, Salaipeth L, Lin YH, Sasaki A, Kanematsu S, and Suzuki N. A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix:molecular and biological characterization, taxonomic considerations, and potential for biological control. J Virol,2009,83:12801-12812.
    56. Chiba S, Kondo H, Tani A, Saisho D, Sakamoto W, Kanematsu S, and Suzuki N. Widespread endogenization of genome sequences of non-retro viral RNA viruses into plant genomes. PLoS Pathog,2011,7:e1002146.
    57. Choi GH, Pawlyk DM, and Nuss DL. The autocatalytic protease p29 encoded by a hypovirulence-associated virus of the chestnut blight fungus resembles the potyvirus-encoded protease HC-Pro. Virology,1991a,183:747-752.
    58. Choi GH, Shapira R, and Nuss DL. Co-translational autoproteolysis involved in gene expression from a double-stranded RNA genetic element associated with hypovirulence of the chestnut blight fungus. Proc Natl Acad Sci USA,1991b, 88:1167-1171.
    59. Choi GH and Nuss DL. Hypovirulence of chestnut blight fungus conferred by an infectious cDNA. Science,1992a,257:800-803.
    60. Choi GH, and Nuss DL. A viral gene confers hypovirulence-associated traits to the chestnut blight fungus. EMBO J,1992b,11:473-477.
    61. Choi GH, Dawe AL, Churbanov A, Smith ML, Milgroom MG, and Nuss DL. Molecular characterization of vegetative incompatibility genes that restrict hypo virus transmission in the chestnut blight fungus Cryphonectria parasitica. Genetics,2012, 190:113-127
    62. Chu YM, Jeon JJ, Yea SJ, Kim YH, Yun SH, Lee YW, and Kim KH. Double-stranded RNA mycovirus from Fusarium graminearum. Appl Environ Microbiol, 2002,68:2529-2534.
    63. Coenen A, Kevei F, and Hoekstra RF. Factors affecting the spread of double-stranded RNA viruses in Aspergillus nidulans. Genet Res Camb,1997,69:1-10.
    64. Cole TE, Muller B, Hong Y, Brasier CM, and Buck KW. Complexity of virus-like double-stranded RNA elements in a diseased isolate of the Dutch elm disease fungus, Ophiostoma novo-ulmi. J Phytopathol,1998,146:593-598.
    65. Cortesi P and Milgroom MG. Genetics of vegetative incompatibility in Cryphonectria parasitica. Appl Environ Microbiol,1998,64:2988-2994.
    66. Cortesi P, McCulloch CE, Song H, Lin H, and Milgroom MG. Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica. Genetics,2001,159:107-118.
    67. Craven MG, Pawlyk DM, Choi GH, and Nuss DL. Papain-like protease p29 as a symptom determinant encoded by a hypovirulence-associated virus of the chestnut blight fungus. J Virol,1993,67:6513-6521.
    68. Dalzoto PR, Glienke-Blanco C, Kava-Cordeiro V, Ribeiro JZ, Kitajima EW, and Azevedo JL.. Horizontal transfer and hypovirulence associated with double-stranded RNA in Beauveria bassiana. Mycol Res,2006,110:1475-1481.
    69. Dawe VH and Kuhn CW. Virus-like particles in the aquatic fungus, Rhizidiomyces. Virology,1983a,130:10-20
    70. Dawe VH and Kuhn CW. Isolation and characterization of a double-stranded DNA mycovirus infecting the aquatic fungus, Rhizidiomyces. Virology,1983b,130:21-28
    71. Dayaram A, Opong A, Jaschke A, Hadfield J, Baschiera M, Dobson RC, Offei SK, Shepherd DN, Martin DP, and Varsani A. Molecular characterisation of a novel cassava associated circular ssDNA virus. Virus Res,2012,166:130-135
    72. Dean R, VAN Kan JA, Pretorius ZA, Hammond-Kosack KE, DI Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, and Foster GD. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol,2012,13:414-430
    73. Deng F, Xu R, and Boland GJ. Hypovirulence-associated double-stranded RNA from Sclerotinia homoeocarpa is conspecific with Ophiostoma novo-ulmi mitovirus 3a-Ld. Phytopathology,2003,93:1407-1414.
    74. Deng F and Nuss DL. Hypovirus papain-like protease p48 is required for initiation but not for maintenance of virus RNA propagation in the chestnut blight fungus Cryphonectria parasitica.J Virol,2008,82:6369-6378.
    75. Ding SW. RNA-based antiviral immunity. Nat Rev Immunol,2010,10:632-644.
    76. Dodds JA. Association of type 1 viral-like double stranded RNA with club shaped particles in hypovirulent strains of Endothia parasitica. Virology,1980,107:1-12.
    77. Doherty M, Coutts RHA, Brasier CM, and Buck KW. Sequence of RNA-dependent RNA polymerase genes provides evidence for three more distinct mitoviruses in Ophiostoma novo-ulmi isolate Ld. Virus Genes,2006,33:41-44.
    78. Dugan FM, Hellier BC, and Lupien L. Pathogenic fungi in garlic seed cloves from the United States and China, and efficacy of fungicides against pathogens in garlic germplasm in Washington State. J Phytopathol,2007,155:437-445.
    79. Eickbush T, Boeke JD, Sandmeyer SB, and Voytas DF. Metaviridae. In:Fauquet CM, Mayo MA, Maniloff J, Desselberger U, and Ball LA, eds. Virus Taxonomy, ninth Report of the International Committee on Taxonomy of Viruses. London, UK: Elsevier press,2011.467-476.
    80. Elad Y, Williamson B, Tudzynski P, and Delen N. Botrytis spp. and disease they cause in agricultural systems□an introduction. In:Elad Y, Williamson B, Tudzynski P, and Delen N, eds. Botrytis:Biology, Pathology and Control. Dordrecht, The Netherlands:Springer press,2007.1-7.
    81. Elad Y and Stewart A. Microbial Control of Botrytis spp. In:Elad Y, Williamson B, Tudzynski P, and Delen N, eds. Botrytis:Biology, Pathology and Control. Dordrecht, The Netherlands:Springer press,2007.223-241.
    82. Eltsov M, and Zuber B. Transmission electron microscopy of the bacterial nucleoid. J Struct Biol,2006,156:246-254.
    83. Fahima T, Kazmierczak P, Hansen DR, Pfeiffer P, and van Alfen NK. Membrane-associated replication of an unencapsidated double-strand RNA of the fungus, Cryphonectria parasitica. Virology,1993,195:81-89.
    84. Fahima T, Wu Y, Zhang L, and van Alfen NK. Identification of the putative RNA polymerase of Cryphonectria hypovirus in a solubilized replication complex. J Virol, 1994,68:6116-6119.
    85. Finn RD, Tate J, Mistry J, Coggill PC, Sammut JS, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, and Bateman A. The Pfam protein families database. Nucleic Acids Res,2008,36:D281-D288.
    86. Ghabrial SA, and Nibert ML. Victorivirus, a new genus of fungal viruses in the family Totiviridae. Arch Virol,2009,154:373-379.
    87. Ghabrial SA, and Suzuki N. Viruses of plant pathogenic fungi. Annual Review of Phytopathology,2009,47:353-384.
    88. Ghabrial SA and Caston JR. Chrysoviridae. In:Fauquet CM, Mayo MA, Maniloff J, Desselberger U, and Ball LA, eds. Virus Taxonomy, ninth Report of the International Committee on Taxonomy of Viruses. London, UK:Elsevier press, 2011.509-513.
    89. Ghabrial SA, Nibert ML, Maiss E, Lesker T, Baker TS and Tao YJ. Partitiviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, and Ball LA, eds. Virus Taxonomy, ninth Report of the International Committee on Taxonomy of Viruses. London, UK:Elsevier press,2011,523-534.
    90. Guo L, Sun L, Chiba S, Araki H, and Suzuki N. Coupled termination/reinitiation for translation of the downstream open reading frame B of the prototypic hypovirus CHV1-EP713. Nucleic Acids Res,2009,37:3645-3659
    91. Hansen EM, Stenlid J, and Johansson M. Somatic incompatibility and nuclear reassortment in Heterobasidion annosum. Mycol Res,1993,97:1223-1228.
    92. Harmmar S, Fulbright DW, and Adarms GC. Association of double-stranded RNA low virulence in an isolate of Leucostoma Persoonii. Phytopathology,1989,79:568-569.
    93. Hillman BI, Supyani S, Kondo H, and Suzuki N. A reovirus of the fungus Cryphonectria parasitica that is infectious as particles and related to the coltivirus genus of animal pathogens. J Virol,2004,78:892-898.
    94. Hillman BI, and Esteban R. Narnaviridae. In:Fauquet CM, Mayo MA, Maniloff J, Desselberger U, and Ball LA, eds. Virus Taxonomy, ninth Report of the International Committee on Taxonomy of Viruses. London, UK:Elsevier press, 2011.1055-1060.
    95. Holz G, Coertze S, and Williamson B. The Ecology of Botrytis on Plant Surfaces. In: Elad Y, Williamson B, Tudzynski P, and Delen N, eds. Botrytis:Biology, Pathology and Control. Dordrecht, The Netherlands:Springer press,2007.9-27.
    96. Hong Y, Dover SL, Cole TE, Brasier CM, and Buck KW. Multiple mitochondrial viruses in an isolate of the Dutch elm disease fungus Ophiostoma novo-ulmi. Virology,1999,258:118-127.
    97. Howitt RLJ, Beever RE, Pearson MN, and Forster RLS. Presence of double-stranded RNA and virus-like particles in Botrytis cinerea. Mycol Res,1995,99:1472-1478.
    98. Howitt RLJ, Beever RE, Pearson MN, Forster RLS. Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant 'potex-like' viruses. J Gen Virol,2001,82:67-78
    99. Howitt RLJ, Beever RE, Pearson MN, and Forster RLS. Genome characterization of a flexuous rod-shaped mycovirus, Botrytis virus X, reveals high amino acid identity to genes from plant 'potex-like' viruses. Arch Virol,2006,151:563-579
    100. Huang S, and Ghabrial SA. Organization and expression of the double-stranded RNA genome of Helminthosporium victoriae 190S virus, a totivirus infecting a plant pathogenic filamentous fungus. Proc Natl Acad Sci USA,1996,93:12541-12546.
    101. Huang R, Li GQ, Zhang J, Yang L, Che HJ, Jiang DH, and Huang HC. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology,2011,101:859-869.
    102. Ihrmark K, Johannesson H, Stenstrom E, and Stenlid J. Transmission of double-stranded RNA in Heterobasidion annosum. Fungal Genet Biol,2002,36:147-154
    103. Jian JH, Lakshman DK, and Tavantzis SM. Association of distinct double-stranded RNAs with enhanced or diminished virulence in Rhizoctonia solani infecting potato. Mol Microbe-Plant Interac,1997,10:1002-1009.
    104. Jiang DH and Ghabrial SA. Molecular characterization of Penicillium chrysogenum virus:reconsideration of the taxonomy of the genus Chrysovirus. J Gen Virol,2004, 85:2111-2121.
    105. Kanematsu S, Arakawa M, Oikawa Y, Onoue M, Osaki H, Nakamura H, Ikeda K, Kuga-Uetake Y, Nitta H, Sasaki A, Suzaki K, Yoshida K, and Matsumoto N. A Reovirus Causes Hypovirulence of Rosellinia necatrix. Phytopathology,2004, 94:561-568
    106. Kang J, Wu J, Bruenn JA, and Park C. The H1 double-stranded RNA genome of Ustilago maydis virus-H1 encodes a polyprotein that contains structural motifs for capsid polypeptide, papain-like protease, and RNA-dependent RNA polymerase. Virus Res,2001,76:183-189.
    107. Kellenberger E, Ryter A, and Sechaud J. Electronmicroscope study of DNA-containing plasms Ⅱ. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol,1958, 4:671-678.
    108. Kohn LM, Carbone I, and Anderson JB. Mycelial interactions in Sclerotinia sclerotiorum. Exp Mycol,1990,14:255-267.
    109. Lakshman DK and Tavantzis SM. Spontaneous appearance of genetically distinct double-stranded RNA elements in Rhizoctonia solani. Phytopathology,1994, 84:633-639.
    110. Leroux P. Chemical control of Botrytis and its resistance to chemical fungicides. In: Elad Y, Williamson B, Tudzynski P, and Delen N, eds. Botrytis:Biology, Pathology and Control. Dordrecht, The Netherlands:Springer press,2007.195-222.
    111. Li GQ, Huang HC, Laroche A, and Achaya SN. Occurrence and characterization of the hypo virulence in the tan-sclerotial isolate of Sclerotinia sclerotiorum. My col Res, 2003,107:1350-1360.
    112. Li H, Havens WM, Nibert ML, and Ghabrial SA. RNA sequence determinants of a coupled termination-reinitiation strategy for downstream open reading frame translation in Helminthosporium victoriae virus 190S and other victoriviruses (family Totiviridae). J Virol,2011,85:7343-7352
    113. Lin HY, Lan XW, Liao H, Parsley TB, Nuss DL, and Chen BS. Genome sequence, full-length infectious cDNA clone, and mapping of viral double-stranded RNA accumulation determinant of hypovirus CHV1-EP721. J Virol,2007,81:1813-1820.
    114. Li Q, Ning P, Zheng L, Huang JB, Li GQ, and Hsiang T. Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol Control,2012,61:113-120.
    115. Li X, Kerrigan J, Chai W, and Schnabel G. Botrytis caroliniana, a new species isolated from blackberry in South Carolina. Mycologia,2012, In press.
    116. Lin Y-H, Chiba S, Tani A, Kondo H, Sasaki A, Kanematsu S, and Suzuki N. A novel quadripartite dsRNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix. Virology,2012,426:42-50
    117. Lindberg GD. Reduction in pathogenicity and toxin production in diseased Helminthosporium victoriae. Phytopathology,1960,50:457-460.
    118. Liu HQ, Fu YP, Jiang DH, Li GQ, Xie JT, Cheng JS, Peng YL, Ghabrial SA, and Yi XH. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. J Virol,2010,84:11876-11887.
    119. Liu Y and Milgroom MG. Correlation between hypovirus transmission and the number of vegetative incompatibility (vic) genes different among isolates from a natural population of Cryphonectria parasitica. Phytopathology,1996,86:79-86.
    120. Mackenzie J. Wrapping things up about virus RNA replication. Traffic,2005,6:967-977.
    121. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, and Turner DH. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA,2004, 101:7287-7292.
    122. McCabe PM, Pfeiffer P, and van Alfen NK. The influence of dsRNA viruses on the biology of plant pathogenic fungi. Trends Microbiol,1999,7:377-381.
    123. MacDonald WL and Fulbright DW. Biological control of chestnut blight:use and limitation of transmissible hypovirulence. Plant Dis,1991,75:656-661.
    124. McDonald MR, Jaime MDLA, and Hovius MHY. Management of diseases of onions and garlic. In Naqvi SAMH, eds. Diseases of Fruits and Vegetables (Vol. Ⅱ). Dordrecht, the Netherlands:Kluwer press,2004.149-200
    125. Melzer MS, and Boland GJ. Transmissible hypovirulence in Sclerotinia minor. Can J Plant Pathol,1996,18:19-28
    126. Melzer MS, Deng F, and Boland GJ. Asymptomatic infection, and distribution of Ophiostoma mitovirus 3a (OMV3a), in populations of Sclerotinia homoeocarpa. Can J Plant Pathol,2005,27:610-615.
    127. Milgroom MG and Cortesi P. Biological control of chestnut blight with hypovirulence:A critical analysis. Annu Rev Phytopathol,2004,42:311-338.
    128. Milgroom MG and Hillman BI. The ecology and evolution of fungal viruses. In: Hurst CJ, eds. Studies in Viral Ecology. New York, USA:John Wiley & Sons, Inc press,2011.221-257
    129. Newhouse JR, Hoch HC, and MacDonald WL. The ultrastructure of Endothia parasitica comparison of a virulent with a hypovirulent isolate. Can J Bot,1983, 61:389-399.
    130. Newhouse JR, MacDonald WL, and Hoch HC. Virus-like particles in hyphae and conidia of european hypovirulent dsRNA-containing strains of Cryphonectria parasitica. Can J Bot,1990a,68:90-101.
    131. Newhouse JR and MacDonald WL. The ultrastructure of hyphal anastomoses between vegetative compatible and incompatible virulent and hypovirulent strains of Cryphonectria parasitica. Can J Bot,1990b,69:602-614.
    132. Nuss DL, and Koltin Y. Significance of dsRNA genetic elements in plant pathogenic fungi. Annu Rev Phytopathol,1990,28:37-58.
    133. Nuss DL. Hypo virulence:mycoviruses at the fungal-plant interface. Nature Reviews Microbiol,2005,3:632-642.
    134. Nuss DL, and Hillman BI. Hypoviridae. In:Fauquet CM, Mayo MA, Maniloff J, Desselberger U, and Ball LA, eds. Virus Taxonomy, ninth Report of the International Committee on Taxonomy of Viruses. London, UK:Elsevier press, 2011.1029-1033.
    135. Nuss DL. Mycoviruses, RNA silencing, and viral RNA recombination. In: Maramorosch K, Murphy F, and Shatkin A. eds. Advances in Virus Research. London, UK:Elsevier press,2011.25-48.
    136. Ochoa WF, Havens WM, Sinkovits RS, Nibert ML, Ghabrial SA, and Baker TS. Partitivirus structure reveals a 120-subunit, helix-rich capsid with distinctive surface arches formed by quasisymmetric coat-protein dimers. Structure,2008,16:776-786.
    137. O'Gorman DT, Sholberg PL, Stokes SC, and Ginns J. DNA sequence analysis of herbarium specimens facilitates the revival of Botrytis mali, a postharvest pathogen of apple. Mycologia,2008,100:227-235.
    138. Oh C-S, and Hillman BI. Genome organization of a partitivirus from the filamentous ascomycete Atkinsonella hypoxylon. J Gen Virol,1995,76:1461-1470.
    139. Park Y, Chen X, and Punja ZK.. Molecular and biological characterization of a mitovirus in Chalara elegans (Thielaviopsis basicola). Phytopathology,2006, 96:468-479.
    140. Parameswaran P, Sklan E, Wilkins C, Burgon T, Samuel MA, Lu R, Ansel KM, Heissmeyer V, Einav S, Jackson W, Doukas T, Paranjape S, et al. Six RNA viruses and forty-one hosts:Viral small RNAs and modulation of small RNA repertories in vertebrate and invertebrate systems. PLoS Pathog,2010,6:e1000764.
    141. Pearson MN, Beever RE, Boine B, and Arthur K. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol Plant Pathol,2009,10:115-128.
    142. Polashock JJ and Hillman BI. A small mitochondrial double-stranded (ds) RNA element associated with a hypovirulent strain of the chestnut blight fungus and ancestrally related to yeast cytoplasmic T and W dsRNAs. Proc Natl Acad Sci USA, 1994,91:8680-8684.
    143. Polashock JJ, Bedker PJ and Hillman BI. Movement of a small mitochondrial double-stranded RNA element of Cryphonectria parasitica:ascospore inheritance and implications for mitochondrial recombination. Mol Gen Genet,1997,256:566-571.
    144. Prospero S, Conedera M, Heiniger U, and Rigling D. Saprophytic activity and sporulation of Cryphonectria parasitica on dead chestnut wood in forests with naturally established hypovirulence. Phytopathology,2006,96:1337-1344.
    145. Rawlings ND, Morton FR, and Barrett AJ. MEROPS:the peptidase database. Nucleic Acids Res,2006,34:270-272.
    146. Revill PA, Davidson AD and Wright PJ. The nucleotide sequence and genome organization of mushroom bacilliform virus:a single-stranded RNA virus of Agaricus bisporus (Lange) Imbach.1994, Virology,202:904-911.
    147. Revill PA. Barnaviridae. In:Fauquet CM, Mayo MA, Maniloff J, Desselberger U, and Ball LA, eds. Virus Taxonomy, ninth Report of the International Committee on Taxonomy of Viruses. London, UK:Elsevier press,2011.961-964.
    148. Rogers HJ, Buck KW, and Brasier CM. Transmission of double-stranded RNA and a disease factor in Ophiostoma ulmi. Plant Pathol,1986,35:277-287.
    149. Rogers HJ, Buck KW, and Brasier CM. A mitochondrial target for double-stranded RNA in diseased isolates of the fungus that causes Dutch elm disease. Nature,1987, 329:558-560.
    150. Sanderlin RS and Ghabrial SA. Physicochemical properties of two distinct types of virus-like particles from Helminthosporium victoriae. Virology,1978,87:142-151.
    151. Sasaki A, Kanematsu S, Onoue M, Oyama Y, and Yoshida K. Infection of Rosellinia necatrix with purified viral particles of a member of Partitiviridae (RnPV1-W8). Arch Virol,2006,151:697-707.
    152. Sasaki A, Kanematsu S, Onoue M, Oikawa Y, Nakamura H, and Yoshida K. Artificial infection of Rosellinia necatrix with purified viral particles of a member of the genus mycoreovirus reveals its uneven distribution in single colonies. Phytopathology,2007,97:278-286.
    153. Saup SJ. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev,2000,64:489-502.
    154. Segers GC, van Wezel R, Zhang X, Hong Y, and Nuss DL. Hypovirus papain-like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system. Eukaryot Cells,2006,5:896-904.
    155. Segers GC, Zhang X, Deng F, Sun Q, and Nuss DL. Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad Sci USA,2007, 104:12902-12906.
    156. Shapira R, Choi GH, and Nuss DL. Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. EMBO J,1991a,10:731-739.
    157. Shapira R and Nuss DL. Gene expression by a hypovirulence-associated virus of the chestnut blight fungus involves two papain-like protease activities. J Biol Chem, 1991b,266:19419-19425.
    158. Simon AE, Roossinck MJ, and Havelda Z. Plant virus satellite and defective interfering RNAs:new paradigms for a new century. Annu Rev Phytopathol,2004, 42:415-437.
    159. Spear A, Sisterson MS, Yokomi R, and Stenger DC. Plant-feeding insects harbor double-stranded RNA viruses encoding a novel prolinealanine rich protein and a polymerase distantly related to that of fungal viruses. Virology,2010,404:304-311.
    160. Sun Q, Choi GH, and Nuss DL. A single Argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination. Proc Natl Acad Sci USA,2009 106:17927-17932.
    161. Suzuki N, Maruyama K, Moriyama M, and Nuss DL. Hypovirus papain-like protease p29 is an enhancer of viral dsRNA accumulation and vertical transmission. J Virol,2003,77:11697-11707.
    162. Suzuki N and Nuss DL. The contribution of p40 to hypovirus-mediated modulation of fungal host phenotype and viral RNA accumulation. J Virol,2002,144:260-267.
    163. Suzuki N, Maruyama K, Moriyama M, and Nuss DL. Hypovirus papain-like protease p29 functions in trans to enhance viral double-stranded RNA accumulation and virus transmission. J Virol,2003,77:11697-11707
    164. Szittya G, Molnar A, Silhavy D, Hornyik C, and Burgyan J. Short defective interfering RNAs of Tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell,2002,14:359-372
    165. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol,2011, 28:2731-2739.
    166. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, and Higgins DG. The CLUSTAL_X Windows interface:flexible strategies for multiple sequence alignment aids by quality analysis tools. Nucleic Acids Res,1997,25:4876-4882.
    167. Urayama S, Kato S, Suzuki Y, Aoki N, Le MT, Arie T, Teraoka T, Fukuhara T, and Moriyama H.. Mycoviruses related to chrysovirus affect vegetative growth in the rice blast fungus Magnaporthe oryzae. J Gen Virol,2010,91:3085-3094.
    168. van Kan JAL. Licensed to kill:the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci,2006,11:247-253.
    169. Vilches S, and Castillo A. A double-stranded RNA mycovirus in Botrytis cinerea. FEMS Microbiol Lett,1997,155:125-130.
    170. Vivier MA and Pretorious IS. Genetically tailored grapevines for the wine industry. Trends in Biotechnology,2002,20:472-478
    171. Wan MG, Li GQ, Zhang JB, Jiang DH, and Huang HC. Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control,2008, 46:552-559.
    172. Whon TW, Kim MS, Roh SW, Shin NR, Lee HW, and Bae JW. Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere. J Virol,2012, in press.
    173. Wickner RB. Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol Rev,1996,60:250-265.
    174. Wickner RB, Ghabrial SA, Nibert ML, Patterson JL, and Wang CC. Totiviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, and Ball LA, eds. Virus Taxonomy, ninth Report of the International Committee on Taxonomy of Viruses. London, UK:Elsevier press,2011.639-650.
    175. Wu MD, Zhang L, Li G, Jiang D, and Ghabrial SA. Genome characterization of a debilitation-associated mitovirus infecting the phytopathogenic fungus Botrytis cinerea. Virology,2010,406:117-126.
    176. Xie J, Wei D, Jiang D, Fu Y, Li G, Ghabrial S, and Peng Y. Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. J Gen Virol,2006,87:241-249.
    177. Xie J, Xiao X, Fu Y, Liu H, Cheng J, Ghabrial SA, Li G, and Jiang D. A novel mycovirus closely related to hypoviruses that infects the plant pathogenic fungus Sclerotinia sclerotiorum. Virology,2011,418:49-56.
    178. Xie J and Ghabrial SA. Molecular characterizations of two mitoviruses co-infecting a hyovirulent isolate of the plant pathogenic fungus Sclerotinia sclerotiorum.2012, Virology,428:77-85
    179. Yaegashi H., Kanematsu S., and Ito T. Molecular characterization of a new hypovirus infecting a phytopathogenic fungus, Valsa ceratosperma. Virus Res,2012, 165:143-150
    180. Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, Li G, Peng Y, Xie J, Cheng J, Huang J, and Yi X. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci USA,2010,107:8387-8392.
    181. Zhang X and Nuss DL. A host dicer is required for defective viral RNA production and recombinant virus vector RNA instability for a positive sense RNA virus. Proc Natl Acad Sci USA,2008,105:16749-16754.
    182. Zhang XM, Segers GC, Sun QH, Deng FY, and Nuss DL. Characterization of hypovirus-derived small RNAs generated in the chestnut blight fungus by an inducible DCL-2-dependent pathway. J Virol,2008,82:2613-2619.
    183. Zhang J, Li GQ, and Jiang DH. First report of garlic leaf blight caused by Botrytis porri in China. Plant Dis,2009,93:1216.
    184. Zhang J, Zhang L, Li GQ, Yang L, Jiang DH, Zhuang WY, and Huang HC. Botrytis sinoallii:a new species of the grey mould pathogen on Allium crops in China. Mycoscience,2010,51:421-431.
    185. Zhang J, Wu MD, Li GQ, Yang L, Yu L, Jiang DH, Huang HC, and Zhuang WY. Botrytis fabiopsis, a new species causing chocolate spot of broad bean in central China. Mycologia,2010a,102:1114-1126.
    186. Zhang L, Wu MD, Li GQ, Jiang DH, and Huang H-C. Effect of Mitovirus on formation of infection cushions and production of some virulence factors by Botrytis cinerea. Physiol Mol Plant Pathol,2010,75:71-80
    187. Zhou T, and Boland GJ. Hypovirulence and double-stranded RNA in Sclerotinia homoeocarpa. Phytopathology,1997,87:147-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700