用户名: 密码: 验证码:
同塔多回输电线路瞬时性故障的故障分析与故障测距
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同塔多回输电线路可以提高线路单位走廊的输电容量和土地利用率,降低电力建设成本,是我国未来超/特高压骨干网架建设的必然发展方向。输电线路故障分析与故障测距技术是电网安全可靠经济运行的重要基础。由于同塔多回输电线路存在复杂的线间耦合,同塔多回输电线路故障分析与故障测距的难度大增。高压输电线路经常发生故障,其中80%以上都是瞬时性电弧故障,这类故障发生以后,由于故障点损伤不明显,给故障点的寻找和故障隐患的排除带来了极大的困难。针对目前同塔多回输电线路瞬时性故障的故障分析与故障测距存在的问题,本文对同塔多回输电线路的解耦方法、前置低通滤波器、瞬时性故障的故障分析和故障测距原理和方法进行深入的探讨,提出了一些新的理论和方法。
     为了解决多回线之间的复杂耦合,本文对同塔多回输电线路的解耦理论进行了系统的分析论证,给出了多回线适用于频域和时域的相模变换矩阵及其逆矩阵,为同塔多回输电线路的故障分析故障测距奠定理论基础。
     为消除采样过程的高频混叠现象,提高采样精度,设计并联型混合有源前置低通滤波器,采用预测模型预测下一时刻负荷电流的高频分量,并采用滚动式的有限时域优化目标函数,使实际补偿信号始终跟踪参考信号,从而提出一种利用基于灰色预测理论的并联补偿型有源前置低通滤波器,能有效抑制故障暂态电压和电流量中的高频分量。利用EMTDC仿真软件对滤波器的各环节进行建模和仿真。
     为消除同塔四回输电线路线线路参数不确定性对其故障测距的影响,在同塔四回输电线路的相模变换的基础上,建立基于故障前同向量的线路参数自适应的线性化方程,及基于故障环流量的故障测距方程,实现一种同塔四回输电线路参数自适应的双端故障测距频域快速算法。该方法所建立的方程均为线性方程,无需借助优化算法进行求解,具有原理简单、易于实现、计算速度快、精度高等优点。利用ATP/EMTP建立500kV同塔四回输电系统进行全面的仿真验证。
     为挖掘输电线路发生瞬时性故障时的故障特征,本文对现有的几种电弧模型进行分析比较,并基于Mayr电弧模型构建输电线路电弧故障仿真模型,对故障电弧的暂态特性进行分析,指出故障电弧电压的时域电压特征,提出瞬时性故障与永久性故障的判别方法,为输电线路瞬时性故障的故障测距奠定基础。
     为解决输电线路尤其是同塔多回输电线路当发生瞬时性故障时,仅利用单端电气量的故障测距难题,本文基于Mayr电弧模型构建输电线路电弧故障仿真模型,对故障电弧的暂态特性进行分析,指出故障电弧电压的时域电压特征,提出了故障电弧电压方波相似度评价指标,提出了基于故障点电弧电压方波相似度的故障位置判据。在此基础上,基于Bergeron输电线路时域方程,利用测量端的瞬时电气量,推算输电线路沿线各观测点的故障相计算电压波形,并对各观测点计算电压进行方波曲线相似度评价,选取评价值最小的观测点为故障点,从而提出基于方波曲线相似度评价指标的输电线路单端故障测距时域算法。最后,基于ATP/EMTP建立输电线路故障仿真模型,通过大量的仿真分析说明该方法的正确性。
Multi-parallel transmission lines on the same tower can enhance the capability, raise theutilization rate of land and reduce the cost of power construction. Hence it must be thedevelopment trend of the high voltage bulk transmission grid construction in China. Faultanalyses and fault location technique is the basic of the safe, reliable and economic operationof net work. For the complicate coupling of multi-transmission lines, it is more difficult forthe fault analyses and fault location. Because transmission lines are subject to fault, most ofthem are temporary faults. It is more difficult to search for the fault point. In order to solve theproblems of fault analyses and fault location particularly temporary faults ofmulti-transmission lines on the same tower, the decoupling methods, preposing low bandfilter, fault analyses and fault location method for temporary faults are deeply investigated,and a series of noval theories are presented.
     To solve the complicated coupling, this dissertation analysed the decoupling method ofmulti-transmission lines on the same tower. The translation matrix for frequency domain andtime domain is proposed for the theoretical bases of fault analysis of multi-transmission lineson the same tower.
     In order to eliminate the aliased distortion of high-frequency component, to enhance theprecision of the sampling, the hybrid parallel active filter is considered as an effective methodfor the dynamic suppression of power system harmonic. However, the hybrid active filtersystem is sensitivity to the delay control and difficult to compensate completely the harmoniccurrent of nonlinear load. In this paper, a hybrid active filter with grey prediction controller isproposed for the harmonic compensation. The grey prediction control strategies as well as theharmonic detection are analyzed, and current hysteresis comparison control method isdeveloped. A simulation model of hybrid active filter based on EMTDC is presented. Thesimulation results show that the PHAPF with grey prediction controller gives a satisfactoryperformance in harmonic and reactive power compensation.
     In order to eliminate the effects of transmission line coupling and parameter uncertaintyfor fault location, this paper proposed a decoupling method of four-parallel transmission lineson the same tower, then constructed the parameters self-adaptive uniformity componentequation and fault location circulation component equation. As the established equations arelinear, the proposed method has advantages of high computing speed and high precision.Using ATP-EMTP, the four-parallel transmission lines model is constructed for simulation.And the analysis results demonstrated that the proposed fault location scheme is high efficient and accurate.
     To find out the fault characteristics of temporary faults at the transmission lines, theexisting arc models are analysed in the dissertation. And the Mayr arc model is used toconstruct the arc fault simulation model of transmission lines. Based on the arc fault model,the transient fault characteristics are analysed. Then, the assessment method is proposed todifferentiate the temporary fault and permanent fault, laying foundation for the fault locationof temporary fault of transmission lines.
     To resolve the fault location problems of temporary faults at the transmission lines. Thetransient voltage characteristics of temporary faults provide a new way to deal with the singleterminal fault location method. Based on the Mayr arc model, this paper analyzes the transientcharacteristics of arc grounding fault and proposes the similarity of square wave for arcgrounding fault. Then, based on the Bergeron transmission line time domain equations, thispaper constructs the time domain equations of voltage along a transmission line based onsingle terminal data. Combined with the proposed similarity of square wave method, thesingle terminal time domain fault location method for arc grounding fault is proposed. Finally,based on the ATP/EMTP, the transmission line fault simulation model is constructed. And alarge amount of simulation is used to verify the proposed fault location method.
引文
[1]徐建国.对国外超高压同塔多回送电线路技术的调研分析[J].电力建设,2001,22(7):15-19
    [2]易辉,纪建民.交流架空线路新型输电技术[M]北京:中国电力出版社2006.
    [3]张嘉,葛荣良.同塔多回输电技术特点及其应用分析[J].华东电力200533(7):23-26
    [4]国家电力公司东北电力设计院.电力工程高压输电线路设计手册[M].北京:中国电力出版社2003
    [5]袁春峰,蔡钧,钱光中.同塔多回输电技术研究[J]上海电力20092:87-90
    [6]李咏新,王莉.同塔并架多回路输电[J].农村电气化20072:58-61
    [7]张洞明,张国良.同塔多回路输电线路设计研究[R].沈阳:东北电力设计院2001
    [8]邓长征,孟遂民,黄力.等.同塔多回输电线路相导线布置形式研究[J].湖北电力,2009,33(4):50-52
    [9]袁利红,葛栋,李红.等220kV/110kV同塔6回线路耐雷性能研究[J]电力建设20068:21-24
    [10](日)冈村正已,太宏田次著,牟敦庚译.输电线路继电保护[M]北京:水利电力出版社1983
    [11]李永斌.同杆跨线故障的选相及其单回线故障测距的研究[D]北京:华北电力大学,2008
    [12]葛耀中.新型继电保护和故障测距的原理与技术第2版[M].西安西安交通大学出版社.2007
    [13]朱声石.高压电网继电保护原理与技术第三版[M]北京:中国电力出版社1995
    [14]任永军,汪萍,互感线路中继电保护零序补偿系数的整定[J]江苏电机工程200019(1):32-34
    [15]华北电力学院.电力系统故障分析[M]北京:电力工业出版社1980
    [16] Dommel H.W电力系统电磁暂态计算理论[M]李永庄.等译.北京:水利电力出版社,1986:90
    [17]索南,葛耀中,陶惠良.利用六序分量复合序网法分析同杆双回线故障的新方法[J].电力系统及其自动化学报19913(1):92-106
    [18]索南,葛耀中.利用六序分量复合序网法分析同杆双回线断线故障的新方法[J].电力系统自动化.1992.16(3):15-21
    [19]宋国兵,李森,康小宁.等.一种新相模变换矩阵[J].电力系统自动化.2007,34(14):57-60
    [20] Masayuki A., Nobuo O, Tokuo B., et al. Development of a new fault location system formulti-terminal signal transmission lines. IEEE Trans. Power Delivery.1995,10(1):159-168
    [21]全玉生,王晓蓉,杨敏中.等.工频双端故障测距算法的鲁棒性问题和新算法研究[J].电力系统自动化.2000.24(10):28-32
    [22] Gopalakrishnan A., Kezunovic M., Mckenna S. M., et al. Fault location using thedistributed parameter transmission line model[J]. IEEE Trans. On Power Delivery.2000,15(4):1169-1174
    [23]陈朝晖,黄少锋,陶惠良.等.新型阻抗选相方法[J].电力系统自动化.2005.29(3):51-56
    [24]陈福锋,钱国明.基于同杆双回线跨线故障识别的选相方案[J].电力系统自动化.2008,32(6):66-70
    [25] D.W.P.Thomas, M.S.Jones, C.ChristoPoulos, Phase selection based on superimposedcomponents[J].IEE Proc. Generation,Transmission And Distribution,May1996,143(3):295-299
    [26]朱声石.高压电网继电保护原理与技术.第三版[M].北京:中国电力出版社.1995
    [27]钱国明,何奔腾.一种改进的高压线路保护选相元件[J].电力自动化设备.1999,19(4):2-4
    [28]杨世弊,何奔腾.一种基于电压序分量的高压线路保护选相元件[J].中国电力.1999.32(7):25-28
    [29]索南加乐,葛耀中,陶惠良.同杆双回线的六序选相原理[J].中国电机工程学报.1991,11(6):1-9.
    [30]唐宝锋,徐玉琴.基于相关分析的同杆双回线故障序分量选相研究[J].继电器.2005,33(9):39-42
    [31]刘千宽,黄少锋,王兴国.同杆并架双回线基于电流突变量的综合选相[J].电力系统自动化,2007,31(21):53-57
    [32]陈福锋,钱国明.基于同杆双回线跨线故障识别的选相方案[J].电力系统自动化,2008,32(6):66-70
    [33] D.W.P.Thomas, M.S.Jones, C.ChristoPoulos, Phase selection based on superimposedcomponents[J].IEE Proc. Generation,Transmission And Distribution,May1996,143(3):295-299
    [34] W.MAIhawi, N.H.Abbiasi A neural-network-based approach for fault classifieation andfaulted phase selection[C].Conference on Electrical and Computer Engineering,Canadian,1996,vol.l:384-387
    [35] R.K.Aggarwal, Q.Y.Xuan, R.W.Dunn,et al. A novel fault classification technique fordouble-circuit lines based on a combined unsupervised/supervised neuralnetwork[J].IEEE Trans on Power Delivery,1999,14(4):1250-1256
    [36]董新洲,贺家李,葛耀中.基于小波变换的行波故障选相研究第1部分(理论基础)[J].电力系统自动化,1998,22(12):24-27
    [37]何正友,陈小勤,罗国敏.等.基于暂态电流小波变换的输电线路故障选相方法[J].电力系统自动化.2006,30(21):39-44
    [38]邓孟华,范春菊,舒巧俊,等.同杆4回线故障选线方法[J].电力系统自动化.2008.32(15):57-59
    [39]葛耀中.新型继电保护和故障测距的原理与技术[M].第2版.西安:西安交通大学出版社,2007:256-333
    [40] Wiszniewski A.. Accurae fault impedance locating algorithm[J]. IEE Proceedings Pt C.1983,130(6):311~315
    [41]岳嵘.基于工频量的故障测距方法的研究[D].西安:西安交通大学,1997
    [42]陈腊声,孙淑信.探测平行双回线路故障测距的一种计算方法[J].电力系统自动化.1990,14(1):26-38
    [43] Sant M.T., Paithanker Y.G.. Online digital fault location for overhead transmission line[J].IEE Proc.1979,126(11):1181-1185
    [44]李志民,陈学允.基于单侧信息的输电线路故障测距新方法[J].中国电机工程学报,1997,17(6):416-420
    [45]蔡德礼.高压输电线路故障点定位的一种新的计算机算法[J].重庆大学学报,1982,(2):1-14
    [46]叶一麟,蔡德礼.系统参数变化对输电线路故障测距精度的影响[J].重庆大学学报,1984,(12):70-78
    [47]徐启峰,魏孝铭.高压输电线路故障测距的负距问题及修正方法[J].中国电机工程学报,1989,9(3):41-50
    [48]毛小明,刘沛.利用单侧电气量的高压输电线路故障测距算法研究[J].电网技术,1998,22(11):15-17
    [49]刘沛,程实杰.架空输电线路故障测距方法综述[J].电力系统自动化,1993,17(8):46-56
    [50]胡帆,刘沛,程时杰.高压输电线路故障测距算法仿真研究[J].中国电机工程学报,1995,15(1):67-72
    [51] Aggarwal R.K., Aslan Y., Johns A.T.. New concept in fault location for overheaddistribution systems using superimposed components[J]. IEE Proc.-GeneralTransmission. Distribution.1997,144(3):309-316
    [52]张哲,陈德树.高压输电线路故障测距中的伪根问题及其改进方法[J].中国电机工程学报,1992,12(6):11-17
    [53] Lawrence D.J., Waser D.L.. Transmission line fault location using digital recorders[J].IEEE Trans. Power Delivery.1988,5(3):496-502
    [54] Djurie M.B., Radojevic Z.M., Terzija V.V.. Distance protection and fault location utilizingonly phase current phasors[J]. IEEE Trans. Power Delivery.1998,13(4):1214-1223
    [55]周玉江,黄焕琨.探测故障距离的新方法[J].电力系统自动化,1988,12(5):34-39
    [56] Ranjbar A.M., Shirani A.R., Fathi A.F.. A new approach for fault location problem onpower lines[J]. IEEE Trans. On Power Delivery.1992,7(1):146-151
    [57] Ha H.X., Zhang B.H., Lv Z.L.. A novel principle of single-ended fault location techniquefor EHV transmission lines[J]. IEEE Transactions on Power Delivery.2007,18(4):1147-1151
    [58]冯载生.利用零序电流比值分布曲线确定接地故障点的方法[J].电力系统自动化,1988,12(4):3-8
    [59] Nagasawa T., Abe M., Otsuzuki N.,et al. Development of a new fault location algorithmfor multi-terminal two parallel transmission lines[J]. IEEE Trans. Power Delivery.1992,7(3):1516-1532
    [60]董新洲,葛耀中.一种使用两端电气量的高压输电线路故障测距算法[J].电力系统自动化,1997,19(8):47-53
    [61] Jeyasurya B, Rahman M.A.. An accurate algorithm for transmission line fault locationusing digital relay measurements[J]. Electric Machines and Power Systems.1989(16):25-34
    [62] Sachdev M.S., Agarwal R.. A technique for estimation transmission line fault locationsfrom digital impedance relay measurement[J]. IEEE Trans. Power Delivery.1988,3(1):121-129
    [63] Cook V.. Fundamental aspects of fault location algorithms used in distance protection[J].IEE Proc.1986,133(6):359-368
    [64]周大敏.一种输电线路故障测距算法[J].继电器,1944,(3):9-13.
    [65] Girgis A.A., Hart D.G., Peterson W.L.. A new fault location technique for two-andthree-terminal lines[J]. IEEE Trans. Power Delivery.1992,7(1):98-107
    [66] Novosel D., Hart D.G., Udren E., et al. Unsynchronized two-terminal fault locationestimation[J]. IEEE Trans. Power Delivery.1996,11(1):130-138
    [67] Zamora I., Minzmbres J.F., Mazon A.J., et al. Fault location on two-terminal transmissionlines based on voltages[J]. IEE Proc-General. Transmission. Distribution.1996,143(1):1-6
    [68] Minzmbres J.F., Zamora I., Mazon A.J., et al. A new technique based on voltages for faultlocation on three-terminal transmission lines[J]. Electric Power System Research.1996,(37):143-151
    [69]束洪春.基于分布参数线路模型的架空电力线故障测距方法研究[D].哈尔滨:哈尔滨工业大学.1997.
    [70]束洪春,邬大明,陈学云.等.基于模式分析的对称和非对称三相不接地系统故障测距算法研究[J].自动化学报,1997,23(5):703-707
    [71] Kezunovic M., Mrkic J.. An accurate fault location algorithm using synchronizedsampling[J]. Electric Power Systems Research.1994,29:161-169
    [72]王绪昭, Gale P. F..利用测量电阻分量实现高阻接地短路的准确测距法[J].继电器,1988,(3):13-20
    [73] Fikri M., El-sayed M.A.H.. New algorithm for distance protection of high voltagetransmission lines[J]. IEE Proc.1988,135(5):436-440
    [74] Masayuki A., Nobuo O., Tokuo B., et al. Development of a new fault location system formulti-terminal signal transmission lines. IEEE Trans. Power Delivery.1995,10(1):159-168
    [75] Johns A.T., Jamali S.. Accurate fault location technique for power transmission lines[J].IEE Proc1990.137(6):395-402
    [76] Aggarwal R.K., Coury D.V., Johns A.T., et al. A practical approach to accurate faultlocation on extra high voltage teed feeders[J]. IEEE Trans. Power Delivery.1993,8(3):874-883
    [77] Lawrence D.J., Cabeza L.Z., Hochberg L.T.. Development of an advanced transmissionline fault location system, Part I: Input transducer analysis and requirements[J]. IEEETrans. On Power Delivery.1992,7(4):1963-1971
    [78] Lawrence D.J., Cabeza L.Z., Hochberg L.T.. Development of an advanced transmissionline fault location system, Part II: Algorithm development and simulation[J]. IEEE Trans.On Power Delivery.1992,7(4):1972-1981
    [79] Abe M., Otsuzuki N.. Development of a new fault location system for multi-terminalsingle transmission lines[J]. IEEE Trans. On Power Delivery.1995,10(1):159-168
    [80]索南加乐,葛耀中,陶惠良.用六序分量补偿过渡电阻的双回线准确故障定位新方法[J].西安交通大学学报.1992,3(1):107-112
    [81]陈琨薇,黄守盟,宋丽群.输电线路分布参数的故障分析与继电保护动作特性[J].电力系统及其自动化学报.1995,7(1):38-47
    [82]梁军,孟昭勇,车仁飞,等.精确双端测距新算法[J].电力系统自动化,1997,21(9):24-27
    [83]束洪春,高峰,陈学允,等. T型输电系统故障测距算法研究[J].中国电机工程学报,1998,18(6):416-420
    [84]全玉生,杨敏中,王晓蓉,等.双端测距中的自适应线路参数在线估计[J].电力系统自动化,2000,24(7):26-30
    [85]全玉生,王晓蓉,杨敏中,等.工频双端故障测距算法的鲁棒性问题和新算法研究[J].电力系统自动化.2000,24(10):28-32
    [86] Gopalakrishnan A., Kezunovic M., Mckenna S. M., et al. Fault location using thedistributed parameter transmission line model[J]. IEEE Trans. On Power Delivery.2000,15(4):1169-1174
    [87]傅周兴,郭颖娜,何文林.基于GPS同步时钟的相量测量在电力系统中的应用研究[J].继电器,2001,29(7):31-34
    [88] Chen Z., Lou C.M., Su J.X., et al. A fault location algorithm for transmission line basedon distributed parameter[A]. Seventh International Conference on developments inPower System Protection[C]. Conference Publication IEE.2001:411-413
    [89]袁宇春,刘晓川.工频量双端测距综述[J].继电器,2006,34(23):74-77.
    [90]赵永娴,曹小拐,刘万顺.同杆并架双回线准确参数未知时的故障测距新算法[J].电力系统自动化.2005,29(4):72-76
    [91]车仁飞,梁军,孟昭勇.一种考虑线路参数变化的输电线路双端测距算法[J].中国电力.2004,37(2):45-49
    [92]梁军,麻常辉,贠志皓.基于线路参数估计的高压架空输电线路故障测距新算法[J].电工技术,2004,28(4):60-63
    [93]腾林,刘万顺,李营,等.一种实用的新型高压输电线路故障双端测距精确算法[J].电力系统自动化,2001,25(9):24-27
    [94]毛鹏,张兆宁,苗友忠.基于双端电气量的输电线路故障测距的新方法[J].继电器,2000,28(5):24-27
    [95]徐鹏,王钢,张尧,等.双端非同步数据故障测距的非线性估计算法[J].继电器,2005,33(1):16-20
    [96]梁远升,王钢,李海锋.消除暂态过程影响的滤波算法及其在故障测距中的应用[J].电力系统自动化.2007.32(22):77-82
    [97]索南加乐,张怿宁,齐军,等.基于参数识别的时域法双端故障测距原理[J].电网技术,2007,30(8):65-70.
    [98]宋国兵,索南加乐,许庆强,等.基于双回线环流的时域法故障定位[J].中国电机工程学报.2004,24(3):24-29
    [99] Eriksson L., Saha M. M., Rockefeller G. D.. An accurate fault locator with compensationfor apparent reactance in the fault resistance resulting from remote end infeed[J]. IEEETrans on PAS.1985,104(2):424~436
    [100] Yang Q.S., Morison I.F.. Microprocessor based algorithm for high resistance earth-faultdistance protection[J]. IEE Proceeding. Generation, Transmission and Distribution.1983,130(11):306~310
    [101]刘劲,孙扬生,罗毅.一种基于时间域的实用单侧电量故障测距方法[J].电力系统自动化,1994,18(5):52~56
    [102]蓝先明.电力电缆行波故障测距方法综述[J].青岛理工大学.2005,26(6):131-133
    [103]李友军,王俊生,郑玉平,等.几种行波测距算法的比较[J].电力系统自动化.2001.25(14):36-39
    [104]李红巍.一种实用的双回线测距算法[J].电力系统自动化,1995,19(9):30-33
    [105] Zhang Qingchao,Zhang Yao,Song Wennan,etal.Fault location of two-parallel transmissionline for non-earth fault using one-terminal data[J].IEEE Trans.on PowerDelivery,1999,14(3):863-866
    [106] Zhang Qingchao,Zhang Yao,Song Wennan,etal.Transmission line fault location forphase-to-earth using one-terminal data[J].IEE proceedings Generation, Transmission andDistribution,1999,146(2):121-125
    [107]李艳,李志民,陆振,等.利用单端信息的双回线跨非线故障的测距算法[J].电站系统工程,2000,16(5):301-304
    [108]栗小华.基于平行双回线单端实时数据的准确故障测距实用新算法[J].继电器,2001,29(5):5-7
    [109]束洪春,高峰,李卫东.利用单端工频量的高压输电线路故障测距实用方法研究[J].电工技术学报,1998,13(5):9-15
    [110]索南加乐,吴亚萍,宋国兵,等.基于分布参数的同杆双回线单线故障准确测距原理[J].中国电机工程学报.2003,23(5):39-43
    [111]宋国兵,索南加乐,等.基于单端电流量的同杆双回线故障定位方法[J].继电器.2004.32(7):1-6
    [112]李胜芳,范春菊,郁惟镛.基于相量测量的输电线路故障测距算法[J].电网技术.2004,28(17):28-32
    [113] Mazon A J, Minambres J F, Zorrozua M A, etal. New method of fault location ondouble-circuit two-terminal transmission lines[J].Electric Power SystemResearch,1995,35(3):213-219
    [114]赵永娴,曹小拐,刘万顺.同杆并架双回线准确参数未知时的故障测距新算法[J].电力系统自动化,2005,29(4):72-76
    [115]杨博,卫志农,王华芳,等.基于不对称分布参数的同杆双回线双端故障测距算法[J].继电器,2005,33(5):8-11
    [116]孙立山,张晓友,陈学允.平行双回线故障测距算法的研究[J].电力系统自动化,1999,23(5):28-30
    [117]索南加乐,吴亚萍,宋国兵,等.基于分布参数的同杆双回线单线故障准确测距原理[J].中国电机工程学报.2003,23(5):39-43
    [118]龚震东,范春菊,田羽.一种适合于同杆4回线的故障测距方法[J].电力系统自动化,2007,31(23):70-73
    [119]任明珠,邰能灵,袁成,等.基于单端量的同塔并架4回线路故障测距方法[J].上海交通大学学报.2009.43(1):1228-1232
    [120] Zoran, M. Radojevic, Vladimir V.Terzija, Numerical algorithm for overhead lines arcingfault detection and distance and directional protection, IEEE Transaction on powerdelivery, January2000,.15(1):31~37
    [121]束洪春,司大军,葛耀中,陈学允.高压输电线路电弧故障单端定位时域法新解.中国电机工程学报.2000,20(11):25~35
    [122]徐亮,李超,顾岩.输电线路故障定位中电弧特性的应用分析.山东电力技术.2002.5(163):9-13
    [123]王其平.电器电弧理论[M].北京:机械工业出版社.1982
    [124]徐国政,张节荣,钱家骊,等.高压断路器原理与应用[M].北京:清华大学出版社.2000
    [125] Dommel H.W..电力系统电磁暂态计算理论[M].李永庄等译.北京:水利电力出版社.1986:90
    [126] Rziha E.V., Starkstromtechnik-Tashchenbuch fuer Elektrotechniker[M]. Vol. II. Berlin:Wilhelm Ernst u. Sohn,1960:555
    [127]何仰赞,温增银.电力系统分析(上册).第三版)[M].华中科技大学出版社.2006:166-
    [128]束洪春,刘振松,彭仕欣.耦合双回线路电弧故障测距的新相模变换方法.高电压技术.2009.35(3):480-486
    [129] Grega Bizjak, Peter Zunko, Dusan Povh. Circuit breaker model for digital simulationbased on Mayr’s and Cassie’s differential arc equations [J].IEEE Transactions on PowerDelivery,1995,10(3):13101315
    [130]王仁甫.电弧现象模型的发展.高压电器.1991.(4):39-45
    [131] A.T.Johns, R.K.Aggarwal, Y.H.Song. Improved techniques for modeling fault arcs onfaulted EHV transmission systems; IEE Proc-Gener Trans on Distrib. March1994, l41(2):148~154
    [132] Pramod Agrawal. Performance of the Pramod John scheme for UHS protection of EHVtransmission lines under arcing fault conditions. IEEE Trans on power delivery, January1991,6(1):127~134
    [133] R.K.Aggarwal, A.T.John. A new approach for discriminating between switching and faultgenerated broadband noise on EHV transmission lines. IEEE TENCON,1993:489~494
    [134] T.Funabashi, H.Otoguro, L.Dube, M.Kizilcay, A.Ametani, A study on fault arc and itsinfluence on digital fault locator performance. IEE Developments in power systemprotection, Conference Publication,No.479,2001:418~421
    [135]荣陞.交流电弧的外回路对弧柱特性的影响.力学学报.1982.9(5):461~468
    [136]荣陞.轴向热传导对交流电弧性质的影响.力学学报.1981.11(6):592~599
    [137] Zoran, M. Radojevic, Vladimir V.Terzija, Numerical algorithm for overhead lines arcingfault detection and distance and directional protection, IEEE Transaction on powerdelivery, January2000,.15(1):31~37
    [138] M.B.Djuric, V.V.Terzija. A new Approach to the arcing faults detection for fastautoreclosure in transmission systems. IEEE Trans on power delivery October1995,10(4):1793~1797
    [139] Z.M.Radojevic, V.V.Terzija, M.B.Djuric. Numerical algorithm for blocking autoreclosureduring permanent fault on overhead lines. Electric Power Systems Research. January1998,46:51~58
    [140] M.B.Djuric, Z.M.Radojevic. Time domain solution of fault distance estimation and arcingfaults detection on overhead lines IEEE Transactions on Power Delivery,1999,14(1):60~67
    [141] V.V.Terzija, Z.M.Radojevic, H-J.Koglin. Novel numerical algorithm for overhead linesprotection and adaptive autoreclosure. IEE development in power systems protection.Conference publication. No.479:387~390
    [142]束洪春,司大军,葛耀中,陈学允.长输电线路电弧故障定位方法研究.电力系统自动化.000,11:27~30
    [143]束洪春,司大军,葛耀中.高压输电线路电弧故障检测与定位最小二乘法新解.电工技术学报.2000,15(5):63~68
    [144] Xu Peng, Wang Gang, Li Haifeng, Zhang Pu. A New Phase-mode TransformationMethod for Fault Analysis of Four-parallel Transmission Lines. AsiaPES2009
    [145]邓孟华,范春菊,舒巧俊,刘玲,龚震东,涂崎.同杆4回线故障选线方法A.电力系统自动化[J].2008.32(15):57-59
    [146]朱声石.高压电网继电保护原理与技术.第三版[M].北京:中国电力出版社,1995
    [147]徐鹏,梁远升,王钢.同塔四回线参数自适应双端故障测距频域算法[J].电力系统自动化.2010.34(9):59-64
    [148] Bianchini M., Fanelli S., Gori M.. Optimal algorithms for well-conditioned nonlinearsystems of equations[J]. IEEE Trans on Computers.2001,50(7):689-698
    [149] Eberhart R.C., Shi Y.. Comparing inertia weights and constriction factors in particleswarm optimization[A]. In: Piscataway ed. Proc Congress on Evolutionary Computation
    [C]. San Diego, CA, NJ: IEEE Press,2000,84-88
    [150]陈铮.高压输电线路故障定位完整解决方案的研究[D].北京:清华大学电机工程系博士论文,2002
    [151]古金国,徐国政,钱家骊.故障电弧特性及在线故障定位中的应用.高电压技术.1998.24(6):73-75
    [152]古金国,徐国政,钱家骊.应用电弧特性的单端线路故障定位算法.高压电器.2000.1:3-7
    [153]徐鹏,王钢.架空线路电弧故障的非线性估计单端测距方法.电网技术.2007.31(11):82-87
    [154]束洪春,刘振松,彭仕欣.同塔双回线电弧故障单端测距算法.电力自动化设备.2008.28(12):11-14
    [155]宋国兵等.输电线路永久性故障判别方法综述[J].电网技术,2006,30(18):75-80
    [156]康健.接地故障电弧的精确数字仿真及其计算.继电器.2002.30(5):14-16
    [157]李博通.同塔多回线智能跳合闸方案的研究天津大学博士论文).2009.12
    [158] Cassie A M, A new theory of rupture and circuit severity. CIGRE1939Paper:102
    [159]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998
    [160]姜齐荣,赵东元,陈建业.有源滤波器--结构2原理2控制[M].北京:科学出版社,2005
    [161] Hirofumi Akagi,Yukifu mi Tsukamoto,Akira Nabae. Analysis and Design of an ActivePower Filter Using Quad-Series Voltage Source PWM Convers[J]. IEEE Trans onIndustry Application,1990,26(1)
    [162]孙浩,周雒维.并联混合型有源电力滤波器滤波特性分析[J].电力系统保护与控制,2007,35(8):61-65
    [163]李江,孙海顺,等.基于灰色系统理论的有源滤波器的预测控制[J].中国电机工程学报,2002,22(2)
    [164] Malesani L, Tenti P. A Novel Hysteresis Control Method for Current Controlled VoltageSource PWM Inverters with Constant Modulation Frequency[J]. IEEE Trans IndustryApplications,1990,26(1):88-92
    [165]束洪春,刘振松,彭仕欣.耦合双回线路电弧故障测距的新相模变换方法.高电压技术.2009.35(3):480-486
    [166] Cassie A M, A new theory of rupture and circuit severity. CIGRE1939:102
    [167] Pramod Agrawal. Performance of the Pramod John scheme for UHS protection of EHVtransmission lines under arcing fault conditions. IEEE Trans on power delivery, January1991,6(1):127-134
    [168]荣陞,交流电弧的外回路对弧柱特性的影响,力学学报,1982.9(5):461-468
    [169] Zoran, M. Radojevic, Vladimir V.Terzija, Numerical algorithm for overhead lines arcingfault detection and distance and directional protection, IEEE Transaction on powerdelivery, January2000.15(1):31-37
    [170]束洪春,司大军,葛耀中.高压输电线路电弧故障检测与定位最小二乘法新解[J].电工技术学报,2000,15(5):63-68
    [171]古金国,徐国政,钱家骊.故障电弧特性及在线故障定位中的应用.高电压技术.1998.24(6):73-75
    [172]徐鹏,王钢,李晓华.应用于架空线路故障的并行退火单端测距算法.电力系统及其自动化学报.2007.19(5):119-124
    [173]胡少鹏,徐鹏.利用电弧特性的并行退火单端测距算法.继电器.2006.34(13):5-12
    [174]范李平,袁兆强,张凯.基于小波变换的单相接地故障电弧模型及其PSCAD/EMTDC仿真研究.电力系统保护与控制.2011.39(5):51-56
    [175]任龙霞,吴为麟.虚拟仪器在低压电弧故障断路器研制中的应用.电力系统保护与控制.2011.39(5):134-138
    [176]姜斌峰,王莉.低压交流电线故障电弧模型研究.电力系统及其自动化学报.2009.21(4):20-24
    [177]蓝会立;张认成.基于小波分析的故障电弧伴生弧声特征提取.电力系统及其自动化学报.2008.20(4):57-62
    [178] Zoran,Radojevic M,Terzija V V.Numerical algorithm for overhead lines arcing faultdetection and distance and directional protection[J].IEEE Trans on Power Delivery,2000,15(1):31-37
    [179] Zoric K J,Djuric M B.Arcing fault detection on overhead lines fromthe voltagesignals[J].Electrical Power&Energy Systems,1997,19(5):299-303
    [180] Djuric M B,Terzija V V.A new approach to the arcing faults detection for fastauto-reclosure in transmission systems[J].IEEE Trans on Power Delivery,1995,10(4):1793-1797
    [181] Djuric M B,Radojevic Z M.Time domain solution of fault distance estimation and arcingfaults detection on overhead lines[J].IEEE Trans on Power Delivery,1999,14(1):60-67
    [182]束洪春,司大军,葛耀中.等.高压输电线路电弧故障单端定位时域法新解[J].中国电机工程学报,2000,20(11):25-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700