用户名: 密码: 验证码:
储煤场温度监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储煤场的安全监管尤其是露天煤垛的存储安全监管是堆场管理的重要工作,关系着国家能源储备和财产安全。本文针对储煤场安全监管中急需解决的多煤垛在线实时温度监测问题,基于红外成像测温技术,展开了可适用于大型储煤场的露天煤垛温度监测方法的研究。论文所进行的主要研究内容如下:
     根据对储煤场堆垛布局以及煤垛测温方法等实际情况的分析,提出了露天煤垛温度监测方法。该方法通过自行设计研制的无盲区二维转台,由转台搭载可自动调焦的红外热像仪,实现了多煤垛在线温度监测;可通过对影响红外测温的因素进行有效去除,获得较为准确的表面温度;可通过对煤垛表面的实时监测,掌握同一煤垛不同时段的温度变化情况,分析煤垛温度发展趋势,对有自燃隐患煤垛进行预警。根据所提出的露天煤垛温度监测方法,还设计实现了相应的温度监测系统。经实验验证,所提出的方法和系统满足工程实际需求。
     根据露天煤垛成像测温过程,采用对影响煤垛测温精度的主要因素,如成像系统空间效应、大气辐射传输效应和反射辐射效应等进行校正的方法,有效去除了各测温精度影响项,获得了较为准确的煤垛表面实际温度。实验结果表明,该方法对煤垛表面温度的测温误差由校正前的15%减小到校正后的1%。
     通过在露天煤垛中预埋圆形恒温面源,进行了浅层(<1.0m)热源煤垛有源温度场内部分布规律的研究。研究结果表明非稳态情况下,有热源部位煤垛表面温度随圆形面热源加热时间的延长而升高,且热扩散面积逐渐扩大,最终达到稳态。不同深度热源引起的有热源部位与无热源部位平均温度之间的温差均表现出一致的升高规律,先快速上升,再缓慢增加,最后达到稳定。由此提出,对于浅层内热源,可通过对煤垛表面温度的连续监测,分析表面温度的温升程度,制定危险等级,对内热源危险程度进行判决,以对存在自燃隐患的露天煤垛进行预警。
     根据对稳态情况下煤垛有源温度场与表面温度分布规律的实验研究,得出当有源温度场达到稳态时,煤垛表面存在不同面积的等温区,基本与圆形面热源的热扩散规律相符,预埋位置中心温度最高,沿中心向外温度逐渐降低。且距离煤垛表面较浅的位置,煤体温度随外界环境昼夜变化,但当距离表面一定深度后,煤体温度与热源距离之间符合指数增长函数分布。由此,本文提出了露天煤垛有源温度场的温度分层模型,将煤垛从表面向内分为受外界环境影响的表层和不受外界影响的内层,表层与内层的交界为边界层。采用经典的表面热平衡方程计算表层至边界层的温度,再由边界层温度与热源距离的指数增长函数计算浅层热源的温度。为储煤场自燃隐患煤垛的温度分析提供了新的途径。
     本文的研究对于克服传统人工测温的弊端,实现大型储煤场多煤垛在线温度监测,提高储煤场的堆场安全管理水平,保障煤炭输运和存储安全,保护国家煤炭能源安全等具有重要的现实意义和实用价值。
Safety supervision of coal storage yard is an important work of the yard management. In present, the yard intelligent automation management focuses on studying of storage supervision of coal stockpiles, establishing safety supervision network. The online temperature monitoring is a key and important problem in safety supervision of coal storage yard. Based on the infared imaging temperature measurement technique, focusd on the temperature monitory of open coal stockpile, the following contents are the major research works in this thesis:
     Accoring to the analysis of the effective method of temperature measurement and the layout of open coal stockpiles in coal storage yard, an online temperature monitory method of open coal stockpile is proposed. And a temperature monitory system is designed and realized. Two-dimensional turntable is home-made, and tightly fixed upon a high-mast near the monitored coal stockpiles. The horizontal angle of turntable is widely, which guarantees the infrared imager detection around the high-mast in every horizontal angel.The designed online temperature monitoring system is used to automatically and synchronously monitor the surface temperature of one or more coal stockpiles, collect the meteorological data in the time of infrared image acquisition, calculate the atmospheric radiation transmission and the accurate surface temperature.Through the data query functions of database, the open coal stockpile surface temperatures of the same coal in different time or the different coals at the same time can be acquisited and analyzed. According to the comprehensive analysis of temperatures of multi-coal stockpiles, the staff can find the spontaneous combustion coal stockpile and process the dangerous coal stockpile. Through the field test, the proposed temperature monitoring method and designed system can meet the practical requirement.
     A temperature correction method is proposed for calculating the accurate surface temperature of coal stockpile. The temperature correction algorithm is proposed to reduce the affect of weather condition to temperature measurement accuracy. And the temperature correction algorithms composed of infrared imager spatial effect correction, atmospheric radiation transmission correction, and reflect radiation correction. The surface temperature of the coal stockpile in the infrared image can be acquired by calculated these three correction using parameters such as weather condition, geographic coordinates and infrared imaging acquisition time. Compared to the surface temperature before correcting, the temperature after correcting is basically same as the actual temperature, and the average measurement error is reduced to1%. The experimental results show that the temperature correction method is an effective method to calculate the accurate surface temperature of coal stockpile.In the end, summary of the whole work and the future work are made.
     In order to investigate the inner temperature distribution law, an experimental coal postion with pre-buried artificial heat source was build. The experimental results shown that, as the the heating time prolonged, the surface temperature of coal location with pre-buried circular heating source increased. And the thermal diffusion area enlarged. The average temperature of coal position with pre-buried artificial heat source increased fastly, then the growth rate slowed down, finally, the temperature achieved stable. And the normal coal postion has the same rising laws.According to the experimental results, an internal heat source monitoring method is proposed. Through continuous monitoring surface temperature of open coal stockpile, and the surface temperature rising rate can be calculated. The degree of spontaneous combustion is decied according to the temperature rising rate of coal stockpile. Once the rising rate exceeds the dangerous degree, the high temperature warning can be reported.
     Research results shown that the internal temperatures of coal will rise with the increase of the circular heat source heating time. The temperatures of shallow coal diurnal varied with the external environment, and the temperatures of deep level and distance conform to the exponential growth function distribution. According to the experimental results, an internal heat source temperarture stracification model is proposed. The coal stack was divided into inner layer and outer layer according to the temperature influence by external environment. The bounding surface is defined as the junction between inner and outer layer of coal stack. The outer layer is varied with environment, and then the inner layer is relatively stable. The corrected temperature is used as the true surface temperature to calculate internal temperature by layered algorithm. The temperatures of bounding surface is calculated by the heat balance equation of coal stack, and the temperature of inner layer is calculated through exponential relationship between the temperature of bounding surface and the distance from calculated position to the bounding surface.
     In this thesis, a temperature monitoring method of open coal stockpile is proposed, which can overcome the defects of traditional manual temperature and practical apply in coal storage yard. This research is important to improve the safety management level of coal storage yard and protect the coal energy security.
引文
[1]李金克.我国煤炭战略储备及其沿革.山东工商学院学报.2011,,25(4):37-40.
    [2]张毅.我国中东部地区煤炭中转储运基地建设的几点建议.煤炭经济研究,2010,30(5):42-43.
    [3]王禹.浅谈煤炭企业建造储煤场的意义和必要性.河北煤炭,2011,4:80-82
    [4]王冰凝.煤企主导国储煤场建设引五大电力上书指责垄断.华夏时报:2009.9.19,018版.
    [5]徐炜旋.神华十大储煤场起步.21世纪经济报道:2009.8.14,018版.
    [6]刘仁金,高远飙,郝祥根.船舶吃水线定位分析及算法研究.皖西学院学报,2009,25(5):1-4.
    [7]李济华.发货外轮理货干散货船舶水尺计重的作用.中国港口,2011:28-30.
    [8]焦琦,王厚晏,安建中等.海运内贸煤炭水尺计重问题研究.检验检疫学刊,2011,21(6):56-60.
    [9]葛圣彦,杜嘉立.水尺计重误差的初步探讨.中国水运,2007,5(9):235-236.
    [10]李洪星,包彦夫,徐兆阳.水尺计重风险评价研究.检验检疫学刊,2012,22(4):4-7.
    [11]王国正.废钢货水尺计重中重量短缺的原因及对策.航海技术,2006,6:31-32.
    [12]杨国利.露天煤矿用皮带运输机智能控制监控系统的研究.企业导报,2012,24:270-271.
    [13]李丹,李世厚.选矿厂皮带运输机监控系统的研究和应用.2003,8:44-46.
    [14]刘勇,韩莹,赵国材.煤矿井下皮带运输机智能火灾监控系统.电气技术,2007,10:70-72.
    [15]卢玉强.矿井皮带运输状态监测与事故预警系统:(硕士学位论文),青岛:青岛科技大学,2012.
    [16]谷红伟.神华煤自燃特性与防治的实验室研究.神华科技,2009,7(6):3-5.
    [17]崔洪义.煤炭自燃早期预测预报与火源探测技术.北京:煤炭工业出版社,2002.
    [18]刘高文.煤自燃特性参数研究及应用[D].西安:西安科技大学,2002.
    [19]王长安.松散煤体温度变化规律的热红外实验研究:(硕士学位论文),西安:西安科技大学,2002.
    [20]卜荣珍.煤自燃性预测数学模型研究[D].西安科技大学,2009.
    [21]王正辉.井下煤自燃高温探测技术现状分析.矿业安全域环保,2011,38(5):71-73.
    [22]陈亚平,徐礼华,吴斌等.储煤场煤垛温度预报的仿真模型与计算.东南大学学报,1997,27(2):107-112.
    [23]李增华.煤炭自燃的自由基反应机理.中国矿业大学学报.1996,25(3):111-114.
    [24]舒新前.煤炭自燃的热分析研究.中国煤田地质,1994,25(2):25-29.
    [25]李树刚等.地面储煤堆自燃规律的实验研究.辽宁工程技术大学学报,2000,3.
    [26]宋娜,高思源,李丹.松散煤体低温比热容测试及分析.能源技术与管理,2011,2,94-96.
    [27]邓军,徐精彩.煤的粒度与好样速度关系实验研究.西安交通大学学报,199912:106-107.
    [28]Xu Jingcai,Deng Jun. Study on rules of spontaneous combustion in the gob of full mechanized long-wall topcoal caving face. Eighth U.S Mine Ventilation symposium,1999,6.
    [29]Olayinka I. Ogunsola, Randy J. Effect of thermal upgrading on spontaneous combustion characteristic of western Canadian low rank coals. Fuel,1992,71(1):3-8.
    [30]张伟.成庄矿9#煤矸石自燃特性及堆放参数研究:(硕士学位论文),太原:太原理工大学,2013.
    [31]徐精彩,张辛亥.程序升温试验中用键能变化量估算煤的氧化放热强度.火灾科学,1999,9.
    [32]张瑞新,谢和平.煤堆自然发火的试验研究.煤炭学报,2001,26(2):168-171.
    [33]周凤增.煤矿井下自燃火源定位技术的研究与应用:(博士学位论文),北京:中国矿业大学,2010.
    [34]马民.煤层隐蔽火源红外成像探测技术的应用研究:(硕士学位论文),西安:西安科技大学,2009.
    [35]王振平,程卫民,辛嵩等.煤巷近距离自燃火源位置的红外探测与反演.煤炭学报,2003,28(6):603-607.
    [36]邓军,文虎,徐精彩.煤自然发火预测理论及技术.西安:陕西科学技术出版社,2001.
    [37]张国枢,戴广龙.煤炭白燃理论与防治实践.北京:煤炭工业出版社,2002.
    [38]彭本信.应用热分析技术研究煤的氧化自燃过程.煤炭工程师,1992(2):1-10.
    [39]刘伟,周心权,谭文辉等.用分区法优化布置火源探测传感器的研究.煤炭工程师,1998,4,4-7.
    [40]戴景民.辐射测温的发展现状与展望.自动化技术与应用,2004,23(3):1-6.
    [41]N.Honry. FPA camera stnadadization. Inrfared Physics & Teehnology.2003,44:109-119.
    [42]张国枢.矿井白燃火源分布规律及其定位技术.矿井通风安全理论与技术(全国通风安全学术会议论文集).北京:中国矿业大学出版社,1999.
    [43]罗海珠.我国煤矿火灾预测预报技术的发展和应用.矿井通风安全理论与技术(全国通风安全学术会议论文集).北京:中国矿业大学出版社,1999.
    [44]梅国栋,王云海,刘璐.测氡法在探测浅埋煤层火源范围中的应用.煤炭科学技术,2007,35(10):42-45.
    [45]邬剑明,刘艳,周春山.同位素测氡法在柳湾矿自燃火源位置探测中的应用.中国煤炭,2006,32(9):37-39.
    [46]祁明星,万兆昌.陕北煤田火区磁探工作方法及效果.物探与化探,1987,11(4):291-297.
    [47]祁瑞军,唐海燕,周越.磁法勘探在确定煤田火烧区域的应用.内蒙古煤炭经济,2012,4:19-22.
    [48]程卫民,陈平,崔洪义等.矿井煤炭自燃高温火源点区域的探测实践.煤炭科学技术,1999,27(11):4-7.
    [49]X.Zhang, J. Zhang, C.Kuenzer,et al. Capability evaluation of 3-5um and 8-12.5um airborne thermal data for underground coal fire detection. International Journal of Remote Sensing,2010,25(12):2245-2258.
    [50]C. Kuenzer, J. Zhang, J. Li, et al. Detecting unknown coal fires:synergy of automated coal fire risk area delineation and improved thermal anomaly extraction. International Journal of Remote Sensing, 2007,28(20):4561-4585.
    [51]周小虎.煤田自燃灾害遥感信息与区域地质综合研究:(博士学位论文),西安:西北大学,2008.
    [52]冯小平.采空区高温点位置确定的计算机模拟分析.淮南矿业学院学报,1995,15(1):36-41.
    [53]谢应明,张国枢.基于通风网络理论的采空区白燃过程数值模拟.中国安全科学学报.2003,13(6):12-14.
    [54]张辛亥,席光.用于煤白然发火预测的神经网络模型和实验技术.西安交通大学学报,2006,40(9):1058-1061.
    [55]邓军,徐精彩,文虎.综放采煤法中沿空巷道煤层白然发火预测模型研究.煤炭学报,2001,26(1):62-66.
    [56]李宗翔,许端平.采空区自然发火“三带”划分的数值模拟研究.辽宁工程技术大学学报.2001,21(5):545-548.
    [57]吴迪,周孟然,胡苓苓等.光纤传感器在煤场温度监测系统中的应用.2011,39(1):80-82.
    [58]陈文科,王志,高艳雯.新型地面煤堆温度监测系统的研制.微计算机信息,2007,23(5-1):111-113.
    [59]齐更亮,张德军.分布式光纤测温技术在煤矿防治自燃发火中的应用.山东煤炭科技,2012,6:160-161.
    [60]Schimal Dick, Duyzer Jan H, Jan Willem. Model for the spontaneous heating of coal. Fuel,1985,64(7):963-972.
    [61]Brooks Kevin, Svanas Nicooas, Glasser David. Critical temperature of some Turkin coals due to spontaneous combustion. Journal of Mines, Metals&Fuels,1988,36(9):434-436.
    [62]Sasaki Kyuro, Svanas Nicoloas, Miyakoshi Hiroshi, Ostuka Kazuo. Spontaneous combustion of coal in the low temperature range-application of exposure equivalent-time to numerical analysis. Journal of the mining and metallurgical institute of Japan,1987,103(11):771-775.
    [63]Nordan P. Spontaneous combustion interactive heat and mass transfer driven by a chemical reaction. Third Australasian Conference on Heat&Mass Transfer,1985:363-370.
    [64]文虎.煤自燃过程的实验及数值模拟研究:(博士学位论文),西安:西安科技大学.
    [65]陈清华.松散煤体热物性测试及其温度场分布规律研究:(博士学位论文),安徽:安徽理工大学.2009.
    [66]冯小平.采空区高温点位置确定的计算机模拟分析.淮南矿业学院学报,1995,15(1):36-41.
    [67]卞晓锴,包宗宏,史美仁.采空区温度场模拟及煤自燃状态预测.南京化工大学学报,2000,22(2):43-47.
    [68]张瑞林,杨运良,史本林等.综放采空区自燃带的三维数值模拟研究.煤矿安全,2000,10:33-35.
    [69]张瑞林,杨运良,马哲伦等.自燃采空区风流场、温度场及热力风压场的计算机模拟.焦作矿业学院学报,1998,17(4):253-257.
    [70]陈亚平,徐礼华.储煤场煤垛温度预报仿真模型与计算.东南大学学报,1997,27(2):107-112.
    [71]J.T.Riley. Establishment of Data Bank on the Self-Heating of Coal. U.S.Department of Transportation. University Research Program,Western Kentucky University,1986.
    [72]J.T.Riley. Observed Changes in the Quality of Coals During Barging. Journal of Coal Quality,1986,4.
    [73]李树刚,徐精彩.地面储煤堆自燃规律的实验研究.辽宁工程技术大学学报,2000,3(19):229-231.
    [74]张瑞新,谢和平,谢之康.露天煤体自然发火的试验研究.中国矿业大学学报,2000,29(3):235-238.
    [75]王刚,程为民,周刚等.煤巷近距离高温点位置的红外探测技术.煤矿安全,2009,9:36-39.
    [76]Huihua,Kenny Chiang, Chih Yen Chen,et al. Development of infrared thermal imager for dry eye diagnosis. Proceedings of SPIE-The International Society for Optica Engineering, Infrared and Photoelectronic Imagers and Detector Devices Ⅱ.2006,6294,629406.
    [77]Bai,Lianfa,Chen,Qian,Lei,Chun.et al.New technique for infrared thermal image processing combined time domain with space domain.Proceedings of SPIE-The International Society for Optical Engineering,2000,4130:21-27
    [78]Zhang,Y.H. Tan,G.Y.Liu,G.J.Thermal imaging experimental research on temperature field for milling insert.Key Engineering Materials,2009,392-394:924-928
    [79]Cui,Longlian,An,Liqian;Mao,Lingtao,et al.Application of infrared thermal testing and mathematical models for studying the temperature distributions of the high-speed waterjet.Journal of Materials Processing Technology,2009,209(9):4360-4365.
    [80]Moropoulou A, Koui M, Avdelidis N P. Infrared thermograohy as an NDT tool in the evaluation of materials and techniques for the protection of historic monuments methods in the assessment of concrete and masonry structures. Insight,2000,42(6):379-383.
    [81]杨红,何建宏,喻娅君.红外热像仪及其在建筑节能检测中的应用.保温材料与建筑节能,2003,4:50-51.
    [82]刘新业,常大定,欧阳伦多.红外热成像在电气设备维护中的应用.红外与激光工程,2002,31(3):220-224.
    [83]丘必养.红外成像测温技术在变电站设备巡视中的应用.农村电工,2004,6:26.
    [84]Hideyuki Uemura. Measurement of thermal distribution for electronic devices using infrared camera. 2001,50(5):302-305.
    [85]Mushkin Amit, Balick Lee K, Gillespie Alan R. Extending surface temperature and emissivity retrieval to the mid-infrared(3-5um) using the Multispectra Thermal Imager(MTI1). Remote Sensing of Environment,205,98(2-3):141-151.
    [86]J.A.Sobrino, M. Romaguera. Land surface temperature retrieval from MSG1-SEVIRI data. Remote Sensing of Environment,2004,92(2):247-254.
    [87]Lee K. Balick, Andrew P. Rodger, William B. Clodius. Multispectral Thermal Imager Land Surface Temperature Retrieval Framework. Proc. of SPIE,2004,5232:409-509.
    [88]程卫民,王振平,辛嵩等.煤巷煤自燃火源红外探测的影响因素及判别方法.煤炭科学技术,2003,31(8):37-40.
    [89]文虎,马民,费金彪.基于红外成像技术的煤矿火灾治理.煤炭科学技术,2010,38(1):28-30.
    [90]刘晨瑶.乌兰煤矿煤层露头及渣台火区红外探测和治理技术研究:(硕士学位论文),西安:西安科技大学,2010.
    [91]V.Fierro,J.L.Miranda,C.Romero,et,al. Use of infrared thermography for the evaluation of heat losses during coal storage[J]. Fuel Processing Technology,1999,60:213-229.
    [92]Shanjun Liu,Zhongyin Xu,Lixin Wu,et,al. Infrared imaging detection of hideden danger in mine engineering. Progress in electromagnetcs research symposium proceedings, Suzhou,2011:125-129.
    [93]Hongwei Gu, Wang Zhang, Wenhai Xu, et al. Digital Measurement System for Ship Draft Survey[J]. Applied Mechanics and Materials.2013,333-335:312-316.
    [94]王长安,王勃,李夏青等.松散煤体表面温度与热源温度对应关系的热红外实验研究.中国安全生产科学技术,2011,7(8):38-41.
    [95]Bogdan Marian Diaconu, Mihai Cruceru, Luminita Georgeta Popescu. Mathematical modeling of the coal stockpile self-heating process. A case study. Resent Researches in Energy, Environment, Devices, Systems, Communicaitons and Computer.2011,118-123.
    [96]李云红.基于红外成像仪的温度测量技术及其应用研究:(博士学位论文),哈尔滨:哈尔滨工业大学,2010:35-38.
    [97]李操.测温红外热像仪测温精度与外界环境影响的关系研究:(硕士学位论文),长春:长春理工大学,2008,9-14.
    [98]N.Horny. FPA camera standardization. Infrared Physics &Technology,2003,44:109-119.
    [99]张亚琴,郁标.红外成像无损检测技术基本原理及其应用范围.上海地质,2002,4:49-50.
    [100]杨立,寇蔚,刘慧开等.热像仪测量物体表面辐射率及误差分析.激光与红外,2002,32(1):43-45.
    [101]寇蔚,杨立.热测量中误差的影响因素分析.红外技术,2001,23(3):32-34.
    [102]杨立.红外热像仪测温计算与误差分析.红外技术,1999,21(4):20-24.
    [103]孙丽.距离对红外热像仪测温精度的影响研究:(硕士学位论文),长春:长春理工大学,2008.
    [104]张健,杨立,刘慧开.环境高温物体对红外热像仪测温误差的影响.红外技术,2005,27(5):419-422.
    [105]刘慧开,杨立.太阳辐射对红外热像仪测温误差的影响.红外技术,2002,24(1):34-37.
    [106]孙恋君,张俊举,王世允等.非制冷微测辐射热计探测器工作温度特性研究.红外与毫米波学报,2007,26(3):232-236.
    [107]张晓龙,刘英,孙强.高精度非制冷长波红外热像仪的辐射定标.中国光学,2012,5(3):235-241.
    [108]陆子风.红外热像仪的辐射定标和测温误差分析:(博士学位论文),长春:长春光学精密机械与物理研究所,2009:18-19.
    [109]李栩辉,丁贤澄,赵同森.红外辐射计的辐射定标.电光与控制,1993,4:31-37.
    [110]崔敦杰.成像光谱仪的定标.遥感技术与应用,1996,11(3):56-64.
    [111]刘亚侠TD1 CCD相机实验室辐射定标的研究.光电工程,2007,34(5):71-74.
    [112]朱建.红外图像校正及处理算法研究:(硕士学位论文),西安:西安科技大学,2007.
    [113]杨鹤猛.远红外实时成像样机系统关键技术研究:(硕士学位论文),天津:天津大学,2012.
    [114]K.N.Liou, An Introduction to Atmospheric Radiation (Second Edition), Academic Press, New York, 2002.
    [115]顾吉林.典型天气大气辐射传输特性研究:(博士学位论文),大连:大连海事大学,2012.
    [116]文军,王介民,何淑杰.辐射传输PCModWin程序及应用前景评述.遥感技术与应用,1997,12(4):46-52.
    [117]王迪,李承芳,熊飞.大气红外辐射传输的简便算法与MODTRAN的比较.光学技术,2006,32(8):446-450.
    [118]毛克彪,覃志豪.大气辐射传输模型及MODTRAN中透过率计算.测绘与空间地理信息.2004,27(4):1-3.
    [119]邱荣.大气中的辐射传输及应用:(硕士学位论文).成都:电子科技大学,2006.
    [120]Kneizys F X, Shettle E P, Abreu L W, etal.User guide to LOWT RAN 7.Air Force Geophysics Laboratory,Hanscom, AFB, MA 01731,1988.
    [121]吴北婴等编著.大气辐射传输实用算法.气象出版社,1999.
    [122]张建强.松散煤体升温过程中红外辐射特性的实验研究:(硕士学位论文),西安:西安科技大学,2010.
    [123]李明明.嵩山煤体有源温度场实验和数值模拟研究:(硕士学位论文),西安:西安科技大学,2009.
    [124]目洪清.运用红外热像技术探测采掘面周围小煤窑火源:(硕士学位论文),安徽:安徽理工大学,2011.
    [125]Frank P Incropera, David P Dewitt. Introduction to Heat Transfer. New York:School of Mechanical Engineering Purdue University.1985:508-511.
    [126]文虎,徐精彩,李莉等.煤自燃的热量积聚过程及影响因素分析.煤炭学报,2003,28(4):370-374.
    [127]邓军.煤自燃性参数的测试与应用.燃烧化学学报,2001,23(6):533-536.
    [128]陆伟,王德明,周福宝等.绝热氧化法研究煤的自燃特性.中国矿业大学学报,2005,34(2):213-217.
    [129]徐朝芬,张鹏宇,夏明等.实验条件对煤燃烧特性影响的分析.华中科技大学学报,2005,33(5):73-78.
    [130]PT. ADARO INDONESIA. A guide to stockpiling and storage. Envirocoal,2003.
    [131]B. Das and V.J.Hucka. Control of spontaneous combustion of coal through an analysis of its mechanism and the affecting factors. Society of Mining Engineers of AIME, Preprint #86-62, Pres ented at the SME Annual Meeting, New Orians, LA, March,1986.
    [132]Carras, J.N.,& Young, B. C. Spontaneous heating of coal and related materials:models, ap plicaition and test methods. Progress in Engergy and Combustion Science,1994,20,1-15.
    [133]肖旸,徐精彩,李树刚等.近距离煤层采空区自然发火预测模型研究.湖南科技大学学报(自然科学版),2006,21(2):5-8.
    [134]王振平,文虎,黄福昌.松散煤体中的氧气扩散模型及数值分析团.煤炭学报,2002,27(3):229-233.
    [135]张辛亥,席光.用于确定煤实验自然发火期的神经网络模型及实验技术.西安交通大学学报.2006,40(9):1058-1061.
    [136]文虎,徐精彩,葛岭梅等.煤自燃性测试技术及数值分析.北京科技大学学报,2001,23(6):499-501.
    [137]邓军,徐精彩,张迎弟.煤最短自然发火期实验及数值分析.煤炭学报.1999,24(3):274-278.
    [138]邓军,徐精彩,文虎等.综放采煤法中沿空巷道煤层自然发火预测模型研究.煤炭学报,2001,26(1):62-66.
    [139]路远,吴丹,金伟等.地表红外辐射建模研究.红外技术,2008,30(2):75-78.
    [140]柳茜,朱枫,郝颍明等.土壤-植被混合地表红外辐射温度场的耦合建模方法.计算机应用研究,2011,28(12):4589-4592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700