用户名: 密码: 验证码:
光声光谱微量气体检测技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种类繁多的气体不仅在工农业生产中扮演着重要角色,更关系到人类自身的健康和生命安全,对气体的定量分析技术已成为现代分析测量技术的一个重要分支。光声光谱技术具有检测灵敏度高、选择性好、响应速度快等特点,是实现多种气体实时监测的理想方法。本文针对火灾预警和现场检测的需要研制了紧凑结构光声光谱仪,针对血液透析过程中利用呼气监测疗效的需要研制了高灵敏度光声光谱仪,并提出了氢气的光声光谱间接测量方法,其主要内容包括以下几个方面:
     通过分析光声信号产生机理深入讨论了经典理论在光声光谱仪设计中的指导意义,详细论述了辐射源选择、光声池设计、传声器匹配等系统设计的核心问题。获得热辐射光源激发非共振光声池并匹配大尺寸传声器构成紧凑结构光声光谱仪的方案,以及激光光源驱动共振式光声池并匹配小尺寸传声器构成高灵敏度光声光谱仪的方案,并指出利用光声信号相位、频率等信息实现氢气间接测量的可能性。
     在研制基于热辐射光源和非共振光声池的紧凑结构光声光谱仪过程中,根据光源辐射谱和滤光片透过特性对多组分气体的吸收谱进行了综合数值分析。依此确定CO、NO和H2S检测所需带通滤光片的中心波长分别为4650nm、5350nm和3700nm,实现了气体吸收效率和抗交叉干扰性的兼顾。
     通过实验测定了非共振光声池和传声器相配合的工作频率曲线,得到其在35Hz的光源调制频率下能够获得光声信号激发效率和拾取效率的最佳匹配。进而对仪器性能的评定结果表明,其对CO、NO和H2S三种气体的循环检测时间小于60s,极限检测灵敏度分别达到1.5ppm、4.5ppm和400ppm,且表现出良好的线性度。
     在研制基于CO2激光器和共振光声池的高灵敏度光声光谱仪过程中,对气体分子与固体材料表面间的微观作用机理和NH。分子在光声池内壁上吸附解吸附过程的宏观表现进行了深入分析。依此选取低表面能Teflon材料设计加工了以共振管中央切线方向进气结构为典型特征的低流量快速响应一阶纵向共振式光声池,其在100SCCM的流量下对低浓度NH3标准气响应时间且极限检测灵敏度达0.86ppb。
     设计了能够有效降低混合气体中CO2含量的深冷分离方法,使得光声光谱仪在N2、O2、CO2和H2O占绝对优势的多组分呼出气中实现对微量NH3的高灵敏度检测成为可能。实测血液净化中心两名志愿者HD治疗前呼出气中NH3含量分别为4.73ppm和3.54ppm,与其他学者的前期实验结果基本一致。
     为克服光声光谱技术应用于变压器油溶解气检测的局限性,提出了利用共振频率变化来检测H2含量的方法,并通过在原系统中增加光源调制频率扫描功能实现了对共振频率的精确测量。实验测得共振频率变化量与H2含量的变化关系与理论预期相同,极限检测灵敏度约为220ppm,且经温度补偿后可获得进一步提高。
     利用LabVIEW软件平台所提供的虚拟仪器技术和多线程技术对系统软件和硬件进行了全面优化。虚拟仪器技术的应用使仪器硬件的控制、测量能力和计算机的数据处理能力得以紧密结合,简化了硬件构成并增强了智能控制、信号分析、显示储存等方面的功能,同时多线程技术的应用使复杂的仪器控制和数据采集任务得以简化,降低了编程难度并有效提高了系统的运行效率。
     本论文研制的基于红外热辐射光源的紧凑结构光声光谱仪和基于CO2激光器的高灵敏度、快速响应微量气体光声光谱仪在火灾气体探测、电力系统大型变压器运行状态监测和故障诊断以及医学领域的临床呼吸气体监测方面具有广阔应用前景。
There is a wide range of gases not only playing important role in agriculture and industry, but also relating to public health and safety. The trace gases detection techniques have become an impotant branch of the modern analysis technologies. Trace gas measurements with photoacoustic spectroscopy (PAS) provide highly sensitive and selective detection in continuous-flow mode, suitable for online multicomponent trace gas analysis. In this dissertation, photoacoustic spectrometers for fire detection and for exhalation diagnosis are developed respectively, also a method for hydrogen detection is proposed. The main research works are outlined as follows:
     The guide for photoacoustic spectrometer design including IR sources, photoacoustic cells and microphones is discussed in detail by analyzing the photoacoustic signal generation process. Photoacoustic spectrometers based on thermal emitter, nonresonant PA cell and large microphone are compact and suitable for multicomponent gas detection, while photoacoustic spectrometers based on laser, resonant PA cell and small microphone are rather sensitve and suitable for trace gas detection. The phase and frequency information make it possible to detect gases without light absorption in IR band.
     In the development process of compact photoacoustic spectrometer, the integrated absorption coefficients of absorption gases at different absorption band are compared, thus the optimum parameters of the IR filters are determined:center wavelength of 4650nm,5350nm and 3700nm for CO, NO and H2S respectively. The light absorption efficiency and the cross interference are both considered.
     The operating frequency of 35Hz is determined based on the measured frequency curve, that ensures the PA signal excitation and detection most effective. Experimental results show that the detection limits of 1.6ppm,4.5ppm and 400ppm for CO, NO and H2S can be obtained respectively in less than 60s. The repeatability and linearity tested for CO in the concentration range of 0-987ppm are also fairly satisfactory.
     In the development process of highly sensitive photoacoustic spectrometer, the adsorption-desorption process caused by ammonia exchange between the cell surface and the gas phase is deeply analyzed, thus an H-type first longitudinal resonant PA cell made of Teflon is proposed. The sample gas is directed at tangent into the inlet located at center of the resonant cell and forced flowing in spiral along the surface. Experimental results show that the response time ofτPTFE 90%≈5 min and detection limit of 0.86ppb is achieved at 100SCCM sample flow rate.
     The method of cryogenic separation is used to separate CO2 in exhalation, which ensure the CO2 laser based photoacoustic spectrometer achieve high sensitivity for ammonia measurement. Experimental results of two volunteers before HD show that the exhaled ammonia concentrations are 4.73ppm and 3.54ppm respectively, which are in agreement with the results obtained in previous experiments by other scholars.
     A method for hydrogen detection is proposed, that makes it possible to measure all the seven types of gas in dissolved gas analysis by PAS. Experimental results show that the relation between resonant frequency change and hydrogen concentration in binary gas mixture is consistent with the theoretical expectation. The detection limit is about 200ppm, which can be further improved through temperature compensation.
     The hardware and software of the photoacoustic spectrometers are fully optimized based on virtual instrument technique combined with multitasking program provided by LabVIEW platform. The control and measurement ability of hardware is closely combined with the computer data processing, and complex tasks are organized efficiently.
     In summary, the capability to monitor multicomponent trace gas is provided by the IR rhermal emitter based compact photoacoustic spectrometerfor and the CO2 laser based sensitive photoacoustic spectrometer developed in this dissertation. The potential applications as fire gas detection, condition measurement of power transformers and breath gas analysis in medicine are also discussed.
引文
[1]D. Davis. The Great Smog [J]. History Today,2002,52:2.
    [2]陈正刚.红外线气体分析仪在合成氨装置中的应用和改造[J].化肥工业,2003,30:33-34.
    [3]V. G. Arakelian. The long way to the automatic chromatographic analysis of gases dissolved in insulating oil [J]. Electrical Insulation Magazine, IEEE,2004,20:8-25.
    [4]A. K. Kanellis, C.Chang, H. Kende, D. Grierson. Proceedings of the NATO Advanced Research Workshop on Biology and Biotechnology of the Plant Hormone Ethylene Chania, Crete, Greece, 9-13 June 1996 [M]:Springer,1997.
    [5]M. Webber, T. MacDonald, M. Pushkarsky, C. Patel, Y. Zhao, N. Marcillac, F. Mitloehner. Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy [J]. Measurement Science and Technology,2005,16:1547-1553.
    [6]D. Kenney. The Greenhouse Effect [J]. American Nurseryman,2005,201:36-39.
    [7]K. Sakai, D. Norback, Y. Mi, E. Shibata, M. Kamijima, T. Yamada, Y. Takeuchi. A comparison of indoor air pollutants in Japan and Sweden:formaldehyde, nitrogen dioxide, and chlorinated volatile organic compounds [J]. Environmental Research,2004,94:75-85.
    [8]A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, S. Mechtcheriakov. Applications of breath gas analysis in medicine [J]. International Journal of Mass Spectrometry,2004,239:227-233.
    [9]G. Sberveglieri. Gas sensors:principles, operation, and development [M]:Springer, 1992.
    [10]Maskell. Gas Sensors [M]:Chapman & Hall,1997.
    [11]钱显毅.传感器原理与应用[M]:东南大学出版社,2008.
    [12]K. Potje-Kamloth. Semiconductor Junction Gas Sensors [J]. Chemical Reviews,2008, 108:367-399.
    [13]CH Han, DW Hong, SD Han, J Gwak, K. C. Singh. Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED [J]. Sensors and Actuators B:Chemical,2007,125:224-228.
    [14]P. Tardy, JR Coulon, C. Lucat, F. Menil. Dynamic thermal conductivity sensor for gas detection [J]. Sensors and Actuators B:Chemical,2004,98:63-68.
    [15]E. Bakker, M. Telting-Diaz. Electrochemical Sensors [J]. Analytical Chemistry,2002, 74:2781-2800.
    [16]ZB. Zhou, LD. Feng, WJ. Liu, ZG. Wu. New approaches for developing transient electrochemical multi-component gas sensors [J]. Sensors and Actuators B:Chemical,2001, 76:605-609.
    [17]K. Okamura, T. Ishiji, M. Iwaki, Y. Suzuki, K. Takahashi. Electrochemical gas sensor using a novel gas permeable electrode modified by ion implantation [J]. Surface and Coatings Technology,2007,201:8116-8119.
    [18]郑龙江,李鹏,秦瑞峰,杨俊明.气体浓度检测光学技术的研究现状和发展趋势[J].激光与光电子学进展,2008,45:24-32.
    [19]L. Persson, H.Gao, M. Sjoholm, S. Svanberg. Diode laser absorption spectroscopy for studies of gas exchange in fruits [J]. Optics and Lasers in Engineering,2006,44:687-698.
    [20]V. Buzanovskii, A. Bulaev. Chemiluminescent gas analyzers [J]. Chemical & Petroleum Engineering,2008,44:514-518.
    [21]A. M. Dennis K. Killinger. Optical and laser remote sensing [M]:Springer-Verlag,1983.
    [22]JF Doussin, R Dominique, C Patrick. Multiple-Pass Cell for Very-Long-Path Infrared Spectrometry [J]. Appl. Opt.,1999,38:4145-4150.
    [23]S. LI, Q. Yu, F. M. Harren. Cavity enhanced absorption spectroscopy for N20 detection at 2.86 um using a continuous tunable color center laser [J]. Chinese Optics Letters,2003, 1:361-363.
    [24]A. R. Choudhuri, S. R. Gollahalli. Laser induced fluorescence measurements of radical concentrations in hydrogen-hydrocarbon hybrid gas fuel flames [J]. International Journal of Hydrogen Energy,2000,25:1119-1127.
    [25]M. W. Sigrist. Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary) [J]. Review of Scientific Instruments,2003,74:486.
    [26]W. K. Winnett, D. P. Martin, A. C. Sanchez, L. P. Schreurs, W. L. Winniford. Developments in the performance of process gas chromatographs [J]. Process Control & Quality,2000, 11:389-394.
    [27]R. Gangopadhyay, A. De. Conducting polymer composites:novel materials for gas sensing [J]. Sensors and Actuators B:Chemical,2001,77:326-329.
    [28]A. Bell. On the production and reproduction of sound by light [J]. Am. J. Sci,1880, 20:305-324.
    [29]W. C. Rontgen. Uber Tone, welche durch intermittierende Bestrahlung eines Gases entstehen [J]. Ann. der Phys. und Chem.,1881,1:155-159.
    [30]J. Tyndall. Action of an Intermittent Beam of Radiant Heat upon Gaseous Matter [J]. Proc. R. Soc.,1881,31:307-317.
    [31]W. H. Preece. On the Conversion of Radiant Energy into Sonorous Vibrations [J]. Proc. R. Soc.,1881,31:506-520.
    [32]M. L. Viegerov. Eine Methode der GAsanalyse, Beruhend auf der Optisch-Akustischen Tyndall-Rontegeners-cheinung [J]. Dokl. Akad. Nauk SSSR,1938,19:687-688.
    [33]K. Luft. Uber eine neue methode der registrierenden gasanalyse mit hilfe der absorption ultraroter strahlen ohne spektrale zerlegung [J]. Zeitschrift Fur Technische Physik,1943, 24:97-104.
    [34]G. Gorelik. On a possible method of studying energy exchange times between the different degrees of freedom of molecules in a gas [J]. Dokl. Akad. Nauk SSSR,1946,54:779.
    [35]E. Kerr, J. Atwood. The laser illuminated absorptivity spectrophone:a method for measurement of weak absorptivity in gases at laser wavelengths [J]. Applied Optics,1968, 7:915-921.
    [36]L.Kreuzer, N. Kenyon, C. Patel. Air pollution:sensitive detection of ten pollutant gases by carbon monoxide and carbon dioxide lasers [J]. Science,1972,177:347-349.
    [37]L. Kreuzer. Ultralow gas concentration infrared absorption spectroscopy [J]. Journal of Applied Physics,1971,42:2934.
    [38]W. R. Harshbarger, M. B. Robin. Opto-acoustic effect. Revival of an old technique for molecular spectroscopy [J]. Accounts of Chemical Research,1973,6:329-334.
    [39]M. J. Adams, A. A. King, G. F. Kirkbright. Analytical optoacoustic spectrometry. Part I. Instrument assembly and performance characteristics [J]. Analyst,1976,101:73-85.
    [40]A. Rosencwaig. Photoacoustic spectroscopy of solids [J]. Optics Communications,1973, 7:305-308.
    [41]F. Bijnen, J. Reuss, F. Harren. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection [J]. Review of Scientific Instruments,1996,67:2914-2923.
    [42]M. Moeckli, M. Fierz, M. Sigrist. Emission factors for ethene and ammonia from a tunnel study with a photoacoustic trace gas detection system [J]. Environ. Sci. Technol,1996, 30:2864-2867.
    [43]Zoltan Boz6ki, Arpad Mohacsi, Gabor Szabo, Zsolt Bor, Miklos Erdelyi, Weidong Chen, and Frank K. Tittel. Near-infrared diode laser based spectroscopic detection of ammonia: A comparative study of photoacoustic and direct optical absorption methods [J]. Applied spectroscopy,2002,56:715-719.
    [44]J. Li, X. Gao, W. Li, Z. Cao, L. Deng, W. Zhao, M. Huang, W. Zhang. Near-infrared diode laser wavelength modulation-based photoacoustic spectrometer [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2006,64:338-342.
    [45]S. Schilt, J. Besson, L. Thevenaz. Near-infrared laser photoacoustic detection of methane:the impact of molecular relaxation [J]. Applied Physics B:Lasers and Optics,2006, 82:319-328.
    [46]M. Webber, M. Pushkarsky, C. Patel:Ultra-sensitive gas detection using diode lasers and resonant photoacoustic spectroscopy. SPIE's International Symposium on Optical Science and Technology,2002.
    [47]M. Webber, M. Pushkarsky, C. Patel. Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers [J]. Applied Optics,2003, 42:2119-2126.
    [48]刘善峥,张望,于清旭.基于可调谐掺铒光纤激光器和掺铒光纤放大器的光声光谱气体分析仪[J].中国激光,2009,36:964-967.
    [49]F. Kuhnemann, K, Schneider, A. Hecker, A. Martis, W. Urban, S. Schiller, J. Mlynek. Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator [J]. Applied Physics B:Lasers and Optics,1998,66:741-745.
    [50]C. Fischer, M. Sigrist, Q. Yu, M. Seiter. Photoacoustic monitoring of trace gases by use of a diode-based difference frequency laser source [J]. Optics Letters,2001, 26:1609-1611.
    [51]B. Paldus, T. Spence, R. Zare, J. Oomens, F. Harren, D. Parker, C. Gmachl, F. Cappasso, D. Sivco, J. Baillargeon. Photoacoustic spectroscopy using quantum-cascade lasers [J]. Optics Letters,1999,24:178-180.
    [52]A. Miklos, P. Hess, Z. Bozoki. Application of acoustic resonators in photoacoustic trace gas analysis and metrology [J]. Review of Scientific Instruments,2001,72:1937-1955.
    [53]K. Song, H. Cha, V. Kapitanov, Y. Ponomarev, A. Rostov, D. Courtois, B. Parvitte, V. Zeninari. Differential Helmholtz resonant photoacoustic cell for spectroscopy and gas analysis with room-temperature diode lasers [J]. Applied Physics B:Lasers and Optics,2002, 75:215-227.
    [54]M. Gondal, A. Dastageer, M. Shwehdi. Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries [J]. Talanta,2004,62:131-141.
    [55]F. Harren, F. Bijnen, J. Reuss, L. Voesenek, C. Blom. Sensitive intracavity photoacoustic measurements with a C02 waveguide laser [J]. Applied Physics B:Lasers and Optics,1990,50:137-144.
    [56]A. A. Kosterev, Yu. A. Bakhirkin, R. F. Curl, and F. K. Tittel. Quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters,27(2):1902-1904.
    [57]http://www.lumasenseinc.com/EN/products/gas-monitoring-instruments/gas-monitoring /gas-monitoring-list.html.
    [58]http://www. kelman. co. uk/index.php?option=com_content&task=section&id=4&Itemid=34.
    [59]刘先勇,周方洁,胡劲松,李红雷.光声光谱在油中气体分析中的应用前景[J].变压器,2004,41:30-33.
    [60]X. Liu. Research on photoacoustic sensing of transformer fault gases. Proc. of SPIE, 2005.
    [61]Y. Yun, W. Chen, Y. Wang, C. Pan. Photoacoustic detection of dissolved gases in transformer oil [J]. European Transactions on Electrical Power,2007,18:562-576.
    [62]刘波,姜丰.基于光声光谱技术的变压器油中溶解气体在线监测[J].华东电力,2010:250-253.
    [63]高树国,秦九渠,刘伟,杜黎明.光声光谱法在变压器油溶解气体检测中的应用[J].河北电力技术,2010,29:15-17.
    [64]http://www.sennheiser.com/sennheiser/home_en.nsf/root/professional-audio.
    [65]http://www.bksv.com/Products/TransducersConditioning/AcousticTransducers/Micropho nes. aspx.
    [66]http://www.knowles.com/search/products/microphones.jsp.
    [67]V. Koskinen, J. Fonsen, K. Roth, J. Kauppinen. Progress in cantilever enhanced photoacoustic spectroscopy [J]. Vibrational Spectroscopy,2008,48:16-21.
    [68]S. Firebaugh, K. Jensen, M. Schmidt. Miniaturization and integration of photoacoustic detection [J]. Journal of Applied Physics,2002,92:1555-1563.
    [69]王建业,纪新明,吴飞堞,周嘉,黄宜平MEMS光声气体传感器光声腔的研究[J].传感器与微系统,2006,25:86-88.
    [70]D. Han, B. Lee. Flame and smoke detection method for early real-time detection of a tunnel fire [J]. Fire Safety Journal,2009,44:951-961.
    [71]B. Ko, K. H. Cheong, J. Y. Nam. Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian Networks [J]. Fire Safety Journal,2010, 45:262-270.
    [72]M. Kobes, I. Helsloot, B. de Vries, J. G. Post. Building safety and human behaviour in fire:A literature review [J]. Fire Safety Journal,2010,45:1-11.
    [73]P. Nebiker, R. Pleisch. Photoacoustic gas detection for fire warning [J]. Fire Safety Journal,2001,36:173-180.
    [74]W. Grosshandler, R. Brown, M. Good, A. Prabhakar. A review of measurements and candidate signatures for early fire detection [J]. Rep. NISTIR,5555.
    [75]S. J. Chen, D. C. Hovde, K. A. Peterson, A. W. Marshall. Fire detection using smoke and gas sensors [J]. Fire Safety Journal,2007,42:507-515.
    [76]E. Fallows, T. Cleary, J. Miller. Development of a multiple gas analyzer using cavity ringdown spectroscopy for use in advanced fire detection [J]. Applied Optics,2009, 48:695-703.
    [77]D. Justo, N. Mashav, Y. Arbel, M. Kinori, A. Steinvil, M. Swartzon, B. Molat, A. Halkin, A. Finkelstein, R. Heruti, S. Banai. Increased erythrocyte aggregation in men with coronary artery disease and erectile dysfunction [J]. International Journal of Impotence Research, 2009,21:192-197.
    [78]M. H. Larsen, T. V. F. Hviid. Human leukocyte antigen-G polymorphism in relation to expression, function, and disease [J]. Human Immunology,2009,70:1026-1034.
    [79]A. Singla, M. J. Antonino, K. P. Bliden, U. S. Tantry, P. A. Gurbel. The relation between platelet reactivity and glycemic control in diabetic patients with cardiovascular disease on maintenance aspirin and clopidogrel therapy [J]. American Heart Journal,2009, 158:784. el-784.e6.
    [80]D. Pantoflickova, D. Scott, G. Sachs, G. Dorta, A. Blum.13C urea breath test (UBT) in the diagnosis of Helicobacter pylori:why does it work better with acid test meals? [J]. British Medical Journal,2003,52:933-937.
    [81]C. Patel. Sensitive Analysis of Breath Gases for "Bloodless Blood Tests" [J]. Gases and Technology,2002,1:24-30.
    [82]L. Narasimhan, W. Goodman, C. Patel. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis [J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98:4617-4621.
    [83]Y. Pao. Optoacoustic spectroscopy and detection [M]:Academic Press,1977.
    [84](美)罗森威格著,王耀俊等译.光声学和光声谱学[M]:科学出版社,1986.
    [85]沢田嗣郎.光声光谱法的原理和应用[M]:北京大学出版社,1988.
    [86]殷庆瑞等著.光声光热技术及其应用[M]:科学出版社,1991.
    [87]P. L. Meyer, M. W. Sigrist. Atmospheric pollution monitoring using C02-laser photoacoustic spectroscopy and other techniques [J]. Rev. Sci. instrum.,1990, 61(7):1779-1807.
    [88]杨晓龙,于清旭,李少成.混合气体成分光声光谱分析的非线性拟合法[J].Journal of Optoelectronics Laser,2003,14:163-167.
    [89]M. Sigrist, C. Fischer. Perspectives of laser-photoacoustic spectroscopy in trace gas sensing [J]. J. Phys. IV France,2005,125:619-625.
    [90]M. Planck. On the law of distribution of energy in the normal spectrum [J]. Annalen der Physik,1901,4:1-8.
    [91]A. G. Bell. The production of sound by radiant energy [J]. Science,1881, os-2:242-253.
    [92]http://www.helioworks.com/index.html.
    [93]http://www.igniterproducts.saint-gobain.com/InfraredSource.aspx.
    [94]http://www.eoc-inc.com/infrared_ir_pulsable_sources.htm.
    [95]http://search.newport.com/i/1/ql/Products/q2/Light+Sources/q3/Incandescent+Source s/xl/pageType/x2/section/x3/chapter/nav/1.
    [96]E. J. Houston, A. E. Kennelly. Electric ARC Lighting (1902) [M]:Kessinger Publishing, 2008.
    [97]W. E. Company. Arc lighting:arc lamps and accessories [M]:Western Electric Co.,1902.
    [98]E. F. Schubert. Light-emitting diodes [M]:Cambridge University Press,2006.
    [99]J. Hecht. The Laser Guidebook [M]:McGraw-Hill Professional,1999.
    [100]W. T. Silfvast. Laser fundamentals [M]:Cambridge University Press,2004.
    [101]R. C. Crafter. Carbon dioxide laser systems [M]:University of Essex,1972.
    [102]林钧岫,于清旭著.一氧化碳分子激光器[M]:大连理工大学出版社,1998.
    [103]于清旭,张望,林钧岫.宽带可调谐一氧化碳激光器研究新进展[J].光电子激光,2006,17:24-26.
    [104]V. Evtuhov, D. P. Devor, B. H. Soffer, M. Robinson, H. R. L. M. CA,. Solid State Infrared Laser Devices [M]:Defense Technical Information Center,1970.
    [105]I. T. Sorokina, K. L. Vodopyanov. Solid-state mid-infrared laser sources [M]:Springer, 2003.
    [106]W. Koechner. Solid-state laser engineering [M]:Springer,2006.
    [107]E. Snitzer. Optical Maser Action of Nd+3 in a Barium Crown Glass [J]. Physical Review Letters,1961,7:444-446.
    [108]Q. Wang, Q. Yu. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser [J]. Laser Physics Letters,2009,6:607-610.
    [109]E. Kapon. Semiconductor Lasers:Materials and structures [M]:Academic Press,1999.
    [110]W. W. Chow, S. W. Koch. Semiconductor-laser fundamentals:physics of the gain materials [M]:Springer,1999.
    [111]T. Suhara. Semiconductor laser fundamentals [M]:CRC Press,2004.
    [112]D. Sands. Diode lasers [M]:CRC Press,2004.
    [113]于清旭,陈自斌.基于波导C02激光器的光声光谱仪[J].激光杂志,2001,22:11-14.
    [114]N. Pawera. Microphones:technique & technology [M]:ARSIS Baedeker & Lang Verlags, 1981.
    [115]J. Eargle. The microphone book [M]:Focal Press,2004.
    [116]朱伟.录音技术[M]:中国广播电视出版社,2003.
    [117]G. S. K. Wong, T. F. W. Embleton. AIP handbook of condenser microphones:theory, calibration, and measurements [M]:Springer,1995.
    [118]陈小平编著.扬声器和传声器原理与应用principles and applications [M]中国广播电视出版社,2005.
    [119]A. Dehe. Silicon microphone development and application [J]. Sensors and Actuators A:Physical,2007,133:283-287.
    [120]A. J. DeMaria, D. E. Flinchbaugh, G. E. D. (Jr). Ultrasonic laser modulation techniques [M]:Defense Technical Information Center,1965.
    [121]K. Petermann. Laser diode modulation and noise [M]:Springer,1991.
    [122]J. Y. Larikova. Optical modulation techniques [M]:Stony Brook University,2005.
    [123]M. Aravind. Application of photoacoustic techniques to solid and liquid materials [M]:University of Hong Kong,1994.
    [124]R. Gerlach, N. Amer. Brewster window and windowless resonant spectrophones for intracavity operation [J]. Applied Physics A:Materials-Science & Processing,1980, 23:319-326.
    [125]S. Castleden, G. Kirkbright, D. Spillane. Wavelength modulation in photoacoustic spectroscopy [J]. Analytical Chemistry,1981,53:2228-2231.
    [126]S. Schilt, L. Thevenaz. Wavelength modulation photoacoustic spectroscopy: theoretical description and experimental results [J]. Infrared Physics & Technology,2006, 48:154-162.
    [127]J. Saarela, J. Toivonen, A. Manninen, T. Sorvajarvi, R. Hernberg. Wavelength modulation waveforms in laser photoacoustic spectroscopy [J]. Applied Optics,2009, 48:743-747.
    [128]C. Kittel, H. Kroemer. Thermal physics [M]:W. H. Freeman,1980.
    [129]E. Kritchman, S. Shtrikman, M. Slatkine. Resonant optoacoustic cells for trace gas analysis [J]. J. Opt. Soc. Am.,1978,68:1257-1271.
    [130]S. Bernegger, M. Sigrist. Longitudinal resonant spectrophone for CO-laser photoacoustic spectroscopy [J]. Applied Physics B:Lasers and Optics,1987,44:125-132.
    [131]M. Tavakoli, A. Tavakoli, M. Taheri, H. Saghafifar. Design, simulation and structural optimization of a longitudinal acoustic resonator for trace gas detection using laser photoacoustic spectroscopy (LPAS) [J]. Optics & Laser Technology,2010,42:828-838.
    [132]P. R. Crippa, C. Viappiani. Photoacoustic studies of non-radiative relaxation of excited states in melanin [J]. European Biophysics Journal,1990,17:299-305.
    [133]A. Sikorska, A. Sliwinski, S. Zachara. Photoacoustic signal analysis for the relaxation study of dibenzoilmethane [J]. Spectroscopy Letters,1995,28:547-555.
    [134]P. Rudnick. The detection of weak signals by correlation methods [M]:University of California, Marine Physical Laboratory of the Scripps Institution of Oceanography,1952.
    [135]T. W. Clinton. A lock-in amplifier for detecting weak signals buried in noise [M]:Oregon State University,1970.
    [136]曾庆勇编著.微弱信号检测[M]:浙江大学出版社,1994.
    [137]张斌珍.刘俊.微弱信号检测技术[M]:电子工业出版社,2005.
    [138]冯艳萍.世界火灾统计[J].消防技术与产品信息,2009,3:75-78.
    [139]M. Kobes, I. Helsloot, B. de Vries, J. Post. Building safety and human behaviour in fire:A literature review [J]. Fire Safety Journal,2010,45:1-11.
    [140]E. Morawski. All About Fire Alarms:A Guide for Owners & Property Managers [M]:CreateSpace,2009.
    [141]S. Chen, D. Hovde, K. Peterson, A. Marshall. Fire detection using smoke and gas sensors [J]. Fire Safety Journal,2007,42:507-515.
    [142]B. Hagen. Evaluation of gaseous signatures in large-scale test:[dissertation]. University of Maryland at College Park,1994.
    [143]B. Levin, E. Braun, M. Navarro, M. Paabo. Further development of the N-gas mathematical model [J]. Fire and Polymers II,1995,20:293-311.
    [144]R. Gann, J. Averill, K. Butler, W. Jones, G. Mulholland, J. Neviaser, T. Ohlemiller, R. Peacock, P. Reneke, J. Hall. International Study of the Sublethal Effects of Fire Smoke on Survivability and Health (SEFS):Phase I Final Report [M]:National Institute of Standards and Technology,2001.
    [145]R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. M"'ller, P. Jauch, M. Loepfe, H. Frerichs. Fire detection with low power fet gas sensors [J]. Sensors and Actuators B:Chemical,2007,120:669-672.
    [146]M. Jackson, I. Robins. Gas sensing for fire detection:Measurements of CO, C02, H2, 02, and smoke density in European standard fire tests [J]. Fire Safety Journal,1994, 22:181-205.
    [147]S. Christian, T. Shields. Safe tolerability limits for Carbon monoxide? A review of the clinical and fire engineering implications of a single, acute, sub-lethal exposure [J]. Journal of fire sciences,2000,18:308-323.
    [148]主殊,窦征.火灾探测及其信号处理[M]:华中理工大学出版社,1998.
    [149]黎强,刘清辉,张慧,连晨舟,占丽萍,吕子安.火灾烟气中有毒气体的体积分数分布与危害[J].自然灾害学报,2003,12:69-74.
    [150]张望,于清旭.基于红外热辐射光源的光声气体分析仪[J].光谱学与光谱分析,2007,27:614-618.
    [151]L. Rothman, C. Rinsland, A. Goldman, S. Massie, D. Edwards, J. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Mandin. The HITRAN molecular spectroscopic database and HAWKS. (HITRAN Atmospheric Workstation):1996 edition [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1998,60:665-710.
    [152]http://search.newport.com/i/l/xl/pageType/q1/Products/q2/Light%20Sources/q3/Inca ndescent%20Sources/q4/Infrared%20Elements%20for%200riel%20Light%20Sources/x2/section/x 3/chapter/x4/family/nav/1/.
    [153]http://www. newport.com/Ellipsoidal-and-Paraboloidal-Reflectors/378641/1033/catal og. aspx.
    [154]林永昌等编著.光学薄膜原理[M]:国防工业出版社,1990.
    [155]杨乐平,李海涛,杨磊LabVIEW程序设计与应用[M]:电子工业出版社,2005.
    [156]N. Instruments. LabView:user manual [M]:National Instruments Corporation,2000.
    [157]李海涛,杨乐平LabVIEW高级程序设计[M]:清华大学出版社,2003.
    [158]http://sine.ni.com/ds/app/doc/p/id/ds-218/lang/zhs.
    [159]http://digital.ni.com/manuals.nsf/websearch/D4CEE0671FB7C06286256EB70060F7C0.
    [160]R. Bitter, T. Mohiuddin, M. Nawrocki. LabView advanced programming techniques[M]:CRC Press,2007.
    [161]G. W. Johnson, R. Jennings. LabVIEW graphical programming [M]:McGraw-Hill Professional,2006.
    [162]http://www. sevenstar. com. cn/fler/.
    [163]曾海.采用光声光谱技术与气相色谱技术进行变压器油中溶解气体检测的分析比较[J].广东输电与变电技术,2005,6:21-23.
    [164]杨振勇.《变压器油中溶解气体分析和判断导则》判断变压器故障的探讨[J].变压器,2008,45:24-26.
    [165]张川,王辅.光声光谱技术在变压器油气分析中的应用[J].高电压技术,2005,31:84-86.
    [166]李宪栋,肖明,刘定友,唐新文,徐力明.光声光谱变压器油中溶解气体在线监测系统在小浪底水电厂的应用[J].变压器,2008,45:45-48.
    [167]高树国,秦九渠,刘伟,杜黎明.光声光谱法在变压器油溶解气体检测中的应用[J].河北电力技术,2010,29:15-17.
    [168]J. Barthel, E. Everett. Diagnosis of Campylobacter pylori infections:the "gold standard" and the alternatives [J]. Reviews of infectious diseases,1990,12:107-114.
    [169]李冀,姚哲刚,王平.呼吸气体诊断系统的最新进展[J].中国医疗器械杂志,2000,24:335-341.
    [170]A. Lupascu, M. Gabrielli, E. Lauritano, E. Scarpellini, A. Santoliquido, G. Cammarota, R. Flore, P. Tondi, P. Pola, G. Gasbarrini. Hydrogen glucose breath test to detect small intestinal bacterial overgrowth:a prevalence case-control study in irritable bowel syndrome [J]. Alimentary pharmacology & therapeutics,2005,22:1157-1160.
    [171]N. Makisimovich, V. Vorotyntsev, N. Nikitina,0. Kaskevich, P. Karabun, F. Martynenko. Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis [J]. Sensors and Actuators B:Chemical,1996,36:419-421.
    [172]J. Yu, H. Byun, M. So, J. Huh. Analysis of diabetic patient's breath with conducting polymer sensor array [J]. Sensors and Actuators B:Chemical,2005,108:305-308.
    [173]L. Pauling, A. Robinson, R. Teranishi, P. Cary. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography [J]. Proceedings of the National Academy of Sciences of the United States of America,1971,68:2374-2376.
    [174]S. Davies, P. Spanel, D. Smith. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure [J]. Kidney international,1997,52:223-228.
    [175]K. Moorhead, J. Scotter, J. Chase, C. Hann, J. Hill, Z. Endre:Modelling Acute Renal Failure using Blood and Breath Biomarkers in Rats [M]:University of Canterbury,2009.
    [176]袁发焕,周剑锋.慢性肾脏疾病的现状及其防治[J].重庆医学,2007,36:385-388.
    [177]D. Oreopoulos, A. Tzamaloukas. World Kidney Day [J]. International urology and nephrology,2008,40:151-152.
    [178]J. T. Daugirdas. Prescribing and monitoring hemodialysis in a 3-4 X/week setting [J]. Hemodialysis International,2008,12:215-220.
    [179]P. Blake. Practical guide to measuring adequacy of dialysis [J]. Advances in renal replacement therapy,1999,6:80-84.
    [180]Clinical practice guidelines and clinical practice recommendations:2006 updates; hemodialysis adequacy, peritoneal dialysis, adequacy vascular access [M]:W. B Saunders, 2006.
    [181]C.康姆罗.呼吸生理学/第二版/Physiology of Respiration [M]:人民卫生出版社,1981.
    [182]M. Mennen, B. Van Elzakker, E. Van Putten, J. Uiterwijk, T. Regts. Evaluation of automatic ammonia monitors for application in an air quality monitoring network [J]. Atmospheric Environment,1996,30:3239-3256.
    [183]B. Timmer, W. Olthuis, A. Berg. Ammonia sensors and their applications-a review [J]. Sensors and Actuators B:Chemical,2005,107:666-677.
    [184]W. Zhang, Z. Wu, Q. Yu. Photoacoustic spectroscopy for fast and sensitive ammonia detection [J]. Chinese Optics Letters,2007,5:677-679.
    [185]A. Th ny, M. Sigrist. New developments in C02-laser photoacoustic monitoring of trace gases [J]. Infrared Physics & Technology,1995,36:585-615.
    [186]Y. Peng, W. Zhang, L. Li, Q. Yu. Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2009.
    [187]朱步瑶,赵振国编著.界面化学基础[M]:化学工业出版社,1996.
    [188]A. Goel. Surface Chemistry [M]:Discovery Publishing House,2006.
    [189](阿根廷)德鲁·迈尔斯著,吴大诚等译.表面、界面和胶体(原理及应用)[M]:化学工业出版社,2005.
    [190]J. Henningsen, N. Melander. Sensitive measurement of adsorption dynamics with nonresonant gas phase photoacoustics [J]. Applied Optics,1997,36:7037-7045.
    [191]A. Schmohl, A. Miklos, P. Hess. Effects of adsorption-desorption processes on the response time and accuracy of photoacoustic detection of ammonia [J]. Applied Optics,2001, 40:2571-2578.
    [192]S. M. Beck. Cell coatings to minimize sample (NH3 and N2H4) adsorption for low-level photoacoustic detection [J]. Applied Optics,1985,24:1761-1763.
    [193]R. Rooth, A. Verhage, L. Wouters. Photoacoustic measurement of ammonia in the atmosphere:influence of water vapor and carbon dioxide [J]. Applied Optics,1990, 29:3643-3653.
    [194]A. Schmohl, A. Miklos, P. Hess. Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers [J]. Applied Optics,2002,41:1815-1823.
    [195]颜肖慈,罗明道编著.界面化学[M]:化学工业出版社,2005.
    [196]http://www2.dupont.com/Teflon_Industrial/en_US/.
    [197](美)J. S. Lee(李仁师)等著.循环与呼吸系统中的物质传输[M]:重庆大学出版社,1993.
    [198]吴彦敏.气体纯化[M]:国防工业出版社,1983.
    [199]A. L. Kohl, R. B. Nielsen. Gas purification [M]:Gulf Professional Publishing,1997.
    [200]B. Freeman. Membrane Gas Separation [M]:John Wiley and Sons,2010.
    [201]化学工业部第四设计院.深冷手册[M]:化学工业出版社,1979.
    [202]张望,于清旭.基于LabVIEW的CO激光器控制系统[J].计算机测量与控制,2007,15:629-631.
    [203]N. Dorst. Using LabVIEW to create multithreaded VIs for maximum performance and reliability [J]. National Instruments Corporation, Application Note,2000,114.
    [204]M. Pushkarsky, M. Webber,0. Baghdassarian, L. Narasimhan, C. Patel. Laser-based photoacoustic ammonia sensors for industrial applications [J]. Applied Physics B:Lasers and Optics,2002,75:391-396.
    [205]M. Pushkarsky, M. Webber, C. Patel. Ultra-sensitive ambient ammonia detection using CO 2-laser-based photoacoustic spectroscopy [J]. Applied Physics B:Lasers and Optics,2003, 77:381-385.
    [206]J. Besson, S. Schilt, L. Thevenaz:Sup-ppb ammonia detection based on photoacoustic spectroscopy. Proc. of SPIE,2005.
    [207]J. Besson, S. Schilt, E. Rochat, L. Thevenaz. Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy [J]. Applied Physics B:Lasers and Optics,2006, 85:323-328.
    [208]http://www.amonics.com/hpedfa.html.
    [209]R. Burch, S. Golunski, M. Spencer. The role of hydrogen in methanol synthesis over copper catalysts [J]. Catalysis Letters,1990,5:55-60.
    [210]G. Marnellos, M. Stoukides. Ammonia synthesis at atmospheric pressure [J]. Science, 1998,282:98-100.
    [211]K. H. Tacke, R. Steffen. Hydrogen for the reduction of iron ores. Chinese-Germern seminar on Fundamentals of Iorn and Steelmaking,2004.
    [212]唐一科,刁显珍,侯长军,范瑛.氢传感器的研究进展[J].传感器与微系统,2006,25:9-11.
    [213]G. D. Brewer. Hydrogen aircraft technology [M]:CRC Press,1991.
    [214]G. Klempner, I. Kerszenbaum. Operation and maintenance of large turbo-generators [M]:Wiley-IEEE,2004.
    [215]S. C. Levy, P. Bro. Battery hazards and accident prevention [M]:Springer,1994.
    [216]W. Buttner, M. Post, R. Burgess, C. Rivkin. An overview of hydrogen safety sensors and requirements [J]. International Journal of Hydrogen Energy,2010.
    [217]G. Korotcenkov, S. Do Han, J. Stetter. Review of Electrochemical Hydrogen Sensors [J]. Chem. Rev,2009,109:1402-1433.
    [218]V. Gaman. Basic physics of semiconductor hydrogen sensors [J]. Russian physics journal, 2008,51:425-441.
    [219]I. Simon, M. Arndt. Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications [J]. Sensors and Actuators A:Physical,2002,97:104-108.
    [220]M. Jones, T. Nevell. The detection of hydrogen using catalytic flammable gas sensors [J]. Sensors and Actuators,1989,16:215-224.
    [221]B. Sutapun, M. Tabib-Azar, A. Kazemi. Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing [J]. Sensors & Actuators:B. Chemical,1999, 60:27-34.
    [222]张望,于清旭.一种氢气浓度的检测方法.中国,技术发明专利,申请号:200510046907.2.2006.
    [223]马大猷,沈[xiao]著.声学手册[M]:科学出版社,2004.
    [224]S. Temkin. Elements of acoustics [M]:Wiley,1981.
    [225]S. Dong, F. Bai, J. Li, D. Viehland. A piezoelectric-sound-resonance cavity for hydrogen gas detection [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2003,50:1105-1113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700