用户名: 密码: 验证码:
大庆外围特低渗透储层微观孔隙结构及渗流机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以大庆外围特低渗透油藏为研究对象,结合常规压汞、恒速压汞、核磁共振和物理模拟实验等方法,研究了特低渗透油藏微观孔隙结构特征,并从微观角度出发,阐述了单相流体非线性渗流特征和油水两相渗流规律。研究结果表明:
     1.对于特低渗透储层,喉道分布、孔喉比和分选性是决定储层物性的关键因素。随着渗透率的增大,喉道分选性变差,并且平均喉道半径与渗透率在对数坐标系中具有较好的线性关系。可动流体百分数和可动流体孔隙度和渗透率具有较好的半对数关系,是储层评价的重要参数。
     2.研究了特低渗透岩心应力敏感性和水敏性,认为特低渗透储层敏感性与渗透率具有较好相关关系,并且普遍表现出较强的应力敏感性和水敏性。从微观角度分析了喉道半径和粘土矿物对其影响,认为喉道半径越小,粘土矿物含量越高,应力敏感程度和水敏程度越强。并且分析了应力敏感程度对产能的影响。
     3.测试了大庆外围特低渗透岩芯在低流速下的渗流曲线,根据微观喉道分布,结合毛管模型,计算了不同驱替压力梯度下吸附边界层的厚度。研究表明,特低渗透岩芯渗流曲线具有非线性特征,表现在其视渗透率不是常数,而是随压力梯度的增加而增大,并逐渐趋近一定值。随着驱替压力梯度的增大,吸附边界层厚度变小,并且其在低压力梯度下变化明显,这是影响非线性渗流的关键。
     4.分析了特低渗透岩心油水相渗特征及束缚水和残余油下的非线性渗流特征。提出了可动油饱和度参数及其测试方法,分析了不同渗透率、不同润湿性、不同驱替压力、不同含水阶段的可动油和残余油分布规律。
     5.建立了考虑非线性渗流的压裂井产能公式、产量递减公式和水驱特征公式,分析了非线性渗流参数及储层物性参数对其影响。并分析了典型区块的生产规律。
In this dissertation, combining with mercury, constant rate mercury injection, nuclear magnetic resonance and physics simulation, the micro pore structure character of ultra-low permeability reservoir. Then, from the microscopic point of view, the percolation flow law of the single phase and two phase fluids percolation are studied. The main research results are as followed:
     1. Throat distribution, pore-throat ratio and sorting coefficient are the main factors that control reservoir properties. The sorting coefficient increases with permeability, and the relationship between the average throat radius and permeability are linear in logarithmic coordinates. The relationship between movable fluid percentage, movable fluid porosity and permeability are linear in semi-logarithmic coordinates, and movable fluid percentage and movable fluid porosity are important parameter of reservoir evaluation.
     2. The stress sensitivity and water sensitivity are strong in ultra-low permeability reservoir. The influence factors by throat radius and clay are analyzed. The degree of stress sensitivity and water sensitivity are higher with the smaller radius of throat and the higher clay content, and the production capacity is analyzed considering stress sensitivity.
     3. The flow characteristics at low velocity were studied by the self-designed micro-flux measuring instrument. Considering the throat distribution and capillary model, the thickness of fluid boundary layer under different pressure gradient was calculated, the mechanism and influencing factors of nonlinear percolation were discussed. The study showed that the percolation curve of ultra-low rocks was nonlinear, and apparent permeability was not a constant, which increased with pressure gradient. The absorption boundary layer decreased with the increase of pressure gradient, and changed significantly especially in low pressure gradient, which was the essence of bringing nonlinear percolation.
     4. The character of oil/water relative permeability, nonlinear percolation character at irreducible water state and residual oil state of ultra-low permeability cores are analyzed. A new method of testing movable oil saturation was established, and the difference between movable fluid and movable oil was analyzed. The main influencing factors of the movable oil saturation including wettability, displacement pressure and water cut were studied.
     5. Considering the character of nonlinear percolation, the formulae of calculating vertical fracture well productivity for steady-state flow, production decline equation and water-drive characteristic equation are put forward. The influence factors by nonlinear percolation parameters and reservoir properties parameters are studied, and production law of typical blocks are analyzed.
引文
[1]王道富.鄂尔多斯盆地特低渗透油田开发[M].北京:石油工业出版社,2007
    [2]李道品.低渗透油田高效开发决策论[M].北京:石油工业出版社,2003
    [3]李莉.大庆外围油田注水开发综合调整技术研究[D].中国科学院渗流流体力学研究所博士论文,2006,10-11
    [4]石京平.低渗透油田油水两相低速非达西渗流规律研究[D].成都理工大学博士学位论文,2006,17-18
    [5]罗蛰谭,王允诚.油气储集层的孔隙结构[M].科学出版社1986
    [6]沈平平,油水在多孔介质中的运动理论与实践[M].北京:石油工业出版社,2000
    [7]Dullien F.A.L著,杨富民,黎用启译.多孔介质:流体渗移与孔隙结构[M],北京:石油工业出版社,1990.8
    [8]Blunt, M. J., Jackson M. D., Piri M. et al. Detailed physics, Predictive Capabilities and Macroscopic Consequences for Pore-network Models of Multiphase Flow[J]. Advances in Water Resources,2002; 25(8-12):1069-1089.
    [9]Fenwick, Darryl H. and Blunt, M. J. Use of Network Modeling to Predict Saturation Paths, Relative Permeabilities and Oil Recovery for Three Phase Flow in Porous Media[C].SPE 38881.
    [10]王金勋.应用孔隙水平网络模型研究两相渗流规律[D].北京:中国石油勘探开发研究院,2001:1-16.
    [11]Wong P Z, Koplik J, Tomanic J. Conductivity and Permeability of Rocks[J]. Physical Review B,1984,30(11):6606-6614.
    [12]郭尚平.渗流力学几个方面的进展和建议.见:李家春编.自然、工业与流动[M].北京:气象出版社,2001.
    [13]周济福,渗流力学研究的现状和发展趋势[J],力学与实践,2007,29(3):1-6
    [14]张晓军,刘祖原,万明芳.Lattice Boltzmann方法及其应用[J].武汉理工大学学报,2002,24(2):46-49.
    [15]辛峰.用渗流网络模型研究多孔介质中的孔结构和气体扩散[D].天津大学化学工程系,1996,1-21.
    [16]高慧梅,姜汉桥,陈民锋.多孔介质孔隙网络模型的应用现状[J].大庆石油地质与开发,2007,26(2):74-78
    [17]姚军,赵秀才,衣艳静,等.数字岩心技术现状及展望[J],油气地质与采收率,2005,12(6):52-54.
    [18]Purcell W R. Capillary pressures-Their measurement using mercury and the calculation of permeability from it[J]. Trans AIME,1949,41(5):39-48.
    [19]Thomeer J H M. Introduction of a pore geometrical factor defined by the capillary pressure curve[J].Trans AIME,1960,52(3):354-358.
    [20]Wardlaw, N.C.,Taylor, RP. Mercury Capillary Pressure Curves and the Interpretation of Pore Structure and Capillary Behavior in Reservoir Rocks[J]. B.C.P.G.,1976,24(2):225-262.
    [21]ShenPingping, Li Kevin, Jia Fenshu. Quantitative Description for the Heterogeneity of Pore Structure by Using Mercury Capillary Pressure Curves[C]. SPE29996.
    [22]罗蛰潭;王允诚.储层孔隙结构、润湿性和油田采收率[J].成都理工大学学报,1980,4:1-16
    [23]王允诚.油田开发与储集岩的孔隙结构[J].成都地质学院学报,1982,2:97-113.
    [24]贺承祖,华明琪.低渗砂岩气藏的孔隙结构与物性特征[J].新疆石油地质,2005,26(3):280-283
    [25]杨满平,彭彩珍,郭平,等.流纹岩储层的孔隙结构特征研究[J].试采技术,2004,25(1):11-14.
    [26]庞彦明,章凤奇,邱红枫,等.酸性火山岩储层微观孔隙结构及物性参数特征[J].石油学报,2007,28(6):72-77
    [27]廖明光,付晓文,何光怀,等.陕甘宁盆地中部气田奥陶系碳酸盐岩储层孔喉大小与孔隙度和渗透率间的关系[J].西南石油学院学报,1995,17(1):1-7
    [28]涂富华,唐仁琪,韩锦文,等.砂岩孔隙结构对水驱油效率影响的研究[J].石油学报,1983,4(2):49-62.
    [29]祁庆祥.砂岩储层某些孔隙结构参数与水驱油效率的对比关系[J].石油勘探与开发,1984,11(2):56-63.
    [30]蔡忠.储集层孔隙结构与驱油效率关系研究[J].石油勘探与开发,2000,27(6):45-46.
    [31]李振泉,候健,曹绪龙,等.储层微观参数对剩余油分布影响的微观模拟研究[J].石油学报,2005,26(6):69-73.
    [32]李传亮.孔喉比对地层渗透率的影响[J].油气地质与采收率,2007,14(5):78-79.
    [33]王瑞飞,陈明强,孙卫.特低渗透砂岩储层微观孔隙结构分类评价[J].地球学报,2008,29(2):213-220
    [34]A.J.Katz, A.H.Thompson. Fractal Sandstone Pores:Implications for Conductivity and Pore Formation[J]. Physical Review Letters.1985,54(3):1325-1328
    [35]C.E.Krohn. Sandstone fractal and Euclidean pore volume distribution[J]. Journal of Geophysical Research,1988,93(B4):3286-3296
    [36]李克文.分维几何及其在石油工业中的应用[J].石油勘探与开发,1990,5:109-114
    [37]屈世显.沉积岩的孔隙分维与孔隙率的关系[J].西安石油大学学报,1991,6(3):1-3
    [38]屈世显.分形与分维及在地球物理学中的应用[J].西安石油大学学报,1991,6(2):8-13
    [39]王域辉,廖淑华.分形与石油[M].北京石油工业出版社,1994
    [40]贺承祖,华明琪.储层孔隙结构的分形几何描述[J].石油与天然气地质,1998,19(1):15-23
    [41]何琰,吴念胜.确定孔隙结构分形维数的新方法[J].石油实验地质,1999,21(4):372-375
    [42]马新仿,张士诚,郎兆新.储层岩石孔隙结构的分形研究[J].中国矿业,2003,12(9):46-48
    [43]师永民,张玉广,何勇.利用毛管压力曲线分形分维方法研究流动单元[J].地学前缘,2006,13(3):129-134
    [44]Greg Gubelin, Austin Boyd. Total Porosity and Bound-Fluid Measurements From an NMR Tool[C]. SPE 39096
    [45]Borgia, G.C. A New Unfree Fluid Index in Sandstones Through NMR Studies[C]. SPE 28366
    [46]肖立志.核磁共振测井资料解释与应用导论[M],北京:石油工业出版社.2001
    [47]Hsu, Wen-Fu, Li, Xiaoyu. Wettability of Porous Media by NMR Relaxation Methods[C]. SPE 24761
    [48]R.J. Zittel,, D. Beliveau, T. O,Sullivan. Reservoir Crude-Oil Viscosity Estimation From Wireline NMR Measurements-Rajasthan, India[C]. SPE101689
    [49]J. L. Bryan, F. P. Manalo, Y. Wen. Advances in Heavy Oil and Water Property Measurements Using Low Field Nuclear Magnetic Resonance[C]. SPE78970
    [50]P. Egermann, N. Doerler, M. Fleury, J. Behot, F. Deflandre. Petrophysical Measurements From Drill Cuttings:An Added Value for the Reservoir Characterization Process[C]. SPE88684
    [51]F. Ferrer, M. Vielma, A. Lezama, Permeability Model Calibration and Pore Throat Radius Determination Using Core Analysis and Nuclear Magnetic Resonance Data in Mixed-Lithology Reservoirs, Southwestern Venezuela[C]. SPE108078
    [52]Brown,R.J.S.and Fatt,I. Measurement of fractional wettability of oil fields'rocks by the nuclear magnetic relaxation method[C].SPE-743-G
    [53]燕继红译.NMR技术的最新进展—测量总孔隙度[J].石油物探译丛.1998.12:69-89
    [54]肖立志,杜有如,叶朝辉.储油岩心魔角旋转核磁共振纵向驰豫特征[J].科学通报.1994, 39(5):478
    [55]黄延章,尚根华,陈永敏.用核磁共振成像技术研究周期注水驱油机理[J].石油学报.1995,16(4):62-64.
    [56]阙洪培.多孔介质润湿性的测定—核磁共振(NMR)松驰法[J].国外油田工程.1995.6:1-5.
    [57]王为民,孙佃庆,苗盛.核磁共振测井基础实验研究[J].测井技术,1997,21(6):385-392
    [58]王为民,郭和坤,孙佃庆,等.用核磁共振成像技术研究聚合物驱油机理[J].石油学报,1997,18(4):54-61.
    [59]高敏,安秀荣,祗淑华等.用核磁共振测井资料评价储层的孔隙结构[J],测井技术,2000,24(3):188-193
    [60]运华云,赵文杰,刘兵开等.利用T2分布进行岩石孔隙结构研究[J],测井技术,2002,26(1):18-21
    [61]唐小梅,何宗斌,张超谟等.用核磁共振T2分布定量求取孔隙结构参数的区域性对比研究[J],江汉石油学院学报,2003,25(4):75-77
    [62]刘堂宴,马在田,傅容珊.核磁共振谱的岩石孔喉结构分析[J].地球物理学进展,2003,18(4):737-742
    [63]何雨丹,毛志强,肖立志.核磁共振T2分布评价岩石孔径分布的改进方法[J],地球物理学报,2005,48(2):373-378
    [64]李艳,范宜仁,邓少贵,等.核磁共振岩心实验研究储层孔隙结构[J].勘探地球物理进展,2008,31(2):129-132
    [65]李海波,朱巨义,郭和坤.核磁共振T2谱换算孔隙半径分布方法研究[J].波谱学杂志,2008,25(2):273-279
    [66]为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6):40-44.
    [67]杨正明,苗盛,刘先贵等.特低渗透油藏可动流体百分数参数及其应用[J].西安石油大学学报,2007,22.(2):96-99
    [68]杨正明,张英芝,郝明强,等.低渗透油田储层综合评价方法[J].石油学报,2006,27(2):64-67.
    [69]郝明强,李树铁,杨正明,等.可动流体相对体积对低渗透油藏开发效果的影响[J].新疆石油地质,2006,27(3):335-337
    [70]王瑞飞,陈明强.特低渗透砂岩储层可动流体赋存特征及影响因素[J].石油学报,2008,29(4):558-561.
    [71]郭平黄伟岗姜贻伟等致密气藏束缚与可动水研究.天然气工业.2006,26(10):99-101
    [72]高瑞民.核磁共振测试天然气藏可动气体饱和度.天然气工业.2006,26(6):33-35
    [73]杨正明,郭和坤,姜汉桥,等.火山岩气藏不同岩性核磁共振实验研究[J].石油学报,2009,30(3):400-403
    [74]郎东江,尚根华,吕成远,等.碳酸盐岩储层核磁共振分析方法的实验及应用—以塔河油田为例[J].石油与天然气地质,2009,30(3):363-369
    [75]时宇.海拉尔-塔木察格盆地不同类型油藏储层特征及渗流机理研究[D].中国科学院渗流流体力学研究所博士论文,2008,1-10
    [76]Morrow W N R. Physics and thermodynamics of capillary action in porous media [J]. Industrial and Engineering Chemistry Research,1970,63:32-56.
    [77]C.Gaulier. Studying Vugular Rock By-Constant-Rate Mercury Injection[C].SPE3612
    [78]H.H.Yuan, B.F.Swanson. Resolving Pore Space Characteristics by Rate-Controlled Porosimetry[C]. SPE 14892
    [79]Pedro.G..Toledo,L.E.Scrieven. Supplement to Pore-Space Statistics and Capillary Pressure Curves from Volume-control Prosimetry:Mechanisms of Mercury Injection and Withdrawal[C]. SPE27950
    [80]王金勋,杨普华,刘庆杰.应用恒速压汞实验数据计算相对渗透率曲线[J].石油大学学报(自然科学版)2003.27(4):66-69
    [81]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征[J].大庆石油学院学报.2006.30(2):22-25
    [82]杨正明,郭和坤,姜汉桥,等.火山岩气藏微观孔隙结构特征参数[J].辽宁工程技术大学学报(自然科学版),2009,28(suppl):286-289
    [83]杨正明姜汉桥,李树铁,等.低渗气藏微观孔隙结构特征参数研究—以苏里格和迪那低渗气藏为例[J].石油天然气学报,2007,29(6):108-110
    [84]时宇,齐亚东,杨正明,等.基于恒速压汞法的低渗透储层分形研究[J].油气地质与采收率,2009,16(2):88-90
    [85]Miller-Bownlie, T. A. Subsoil water in relation to tube wells [J]. Indian & Eastern Engineer, 1919:191.
    [86]Barenblatt,G.I.. Basic concepts in the theory of seepage of homogeneous liquids in fissured roeks[J]. Journal of Applied Mathematical Mechanics,1960,24(5):1286-1303.
    [87]B.A.弗洛林.同济大学上力学及地基基础教研室译.上力学原理[M].北京:中国工业出版社.1964.
    [88]Von Engelhardt, W., Tunn, W. L. M. The flow of fluids through sandstones[J]. Heidelberger Beitrage zur Mineralogie und Petrographie,1954,2:12.
    [89]Miller.R.J.etal.Thresholdgradientforwaterflowinelaysystem.Proe.soil.Sei.Soe.Am.,1963 27:606-609.
    [90]Dudgeon, C. R. An experimental study of the flow of water through coarse granular media[J]. La Houille Blanche,1966,21:785.
    [91]Basak, P. Non-Darcy flow and its implications to seepage problems[J].Journal of the Irrigation & Drainage Division, American Society of Civil Engineers,1970,103:459.
    [92]马尔哈辛.油层物理化学机理[M].北京:石油工业出版社,1987
    [93]Alvaro Prada, Faruk Civan. Modification of Darcy's law for the threshold pressure gradient[J]. Journal of Petroleum Science & Engineering,1999,22:237-240.
    [94]Swartzendruber, D. Non-Darcy Flow Behavior in Liquid-Saturated Porous Media[J]. Journal of Geophysical Research,1962,67:5205.
    [95]Lutz, J. F., Kemper, W. D. Intrinsic permeability of clay as affected by clay-water interaction[J]. Soil Science,1959,88:83.
    [96]Miller, R. J., Low, P. F. Threshold Gradient for Water Flow in Clay Systems[J]. Soil Science Society of America Proceedings,1963,27:605.
    [97]Mitchell, J. K., Younger, J. S. Abnormalities in Hydraulic Flow Through Fine-Grained Soils[J].Permeability and Capillarity of Soils,1967,417:106.
    [98]邓英尔,阎庆来,马宝岐.界面分子力作用与渗透率的关系及其对渗流的影响[J].石油勘探与开发,1998,25(2):46-49
    [99]黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998
    [100]徐绍良,岳湘安,侯吉瑞等,边界层流体对低渗透油藏渗流特性的影响[J].西安石油大学学报,2007,27(2):26-28
    [101]李中锋,何顺利。低渗透储层原油边界层对渗流规律的影响[J].大庆石油地质与开发,2005,24(2):57-59
    [102]何英.低渗透油藏井网部署的油藏工程方法研究[D].中国科学院渗流流体力学研究所博士论文.2009:1-16
    [103]薛定谔.A.E多孔介质中的渗流物理[M].北京:石油工业出版社.1982
    [104]冯文光,非达西低速渗流的研究现状与展望[J],石油勘探与开发,1986,13(4):76-80
    [105]冯文光,葛家理.单一介质、双重介质中非定常非达西低速渗流问题[J].石油勘探与开发,1985,12(1):56-62
    [106]葛家理.油气层渗流力学[M].北京:石油工业出版社,1982
    [107]阎庆来,何秋轩.低渗透油气藏勘探开发技术[M].北京:石油工业出版社,1987
    [108]黄延章.低渗透油层非线性渗流特征[J].特种油气藏,1997,4(1):9-14
    [109]姚约东,葛家理.低渗透油层非达西渗流规律的研究[J],新疆石油地质,2000,21(3):213-215
    [110]邓英尔,刘慈群.低渗油藏非线性渗流规律数学模型及其应用[J].石油学报,2001,22(4):72-77
    [111]杨清立.特低渗透油藏非线性渗流理论及其应用[D].中国科学院渗流流体力学研究所博士论文.2007:1-30
    [112]郭尚平,黄延章,周娟,等.物理化学渗流微观机理[M].北京:科学出版社,1990
    [113]孙卫,曲志浩,陈付星,等.砂岩微观孔隙模型在安塞油田水驱油机理研究中的应用[A].低渗透油田开发技术—全国低渗透油田开发技术座谈会论文选.北京:石油工业出版社,1994
    [114]朱玉双,曲志浩,孔令荣,等.靖安油田长2、长6油层驱油效率影响因素[J].石油与天然气地质199920(4):333-335.
    [115]陈蓉,曲志浩,朱玉双,等.靖安油田长2、长6油层润湿性的微观模型研究[J].西北大学学报,1999,29(2):145-148.
    [116]朱玉双,曲志浩,孔令荣,等.安塞油田王窑区、坪桥区长6油层储层特征及驱油效率分析[J].沉积学报,2000,18(2):279-283.
    [117]李劲峰,曲志浩,孔令荣.都善油田三间房组油层微观水驱油特征[J].新疆石油地质,1999,20(5):422-425.
    [118]李劲峰,曲志浩,孔令荣.贾敏效应对低渗透油层有不可忽视的影响[J].石油勘探与开发,1999,26(2):93-96.
    [119]周波,侯平,王为民,等.核磁共振成像技术分析油运移过程中含油饱和度[J].石油勘探与开发,2005:32(6):78-81.
    [120]苗胜,张发强.核磁共振成像技术在油气运移路经观察与分析中的应用[J].石油学报,2004,25(3):44-47.
    [121]郭公建,谷长春.水驱油孔隙动用规律的核磁共振实验研究[J].西安石油大学学报(自然 科学版),2005,20(5):45-48.
    [122]邓瑞健.核磁共振技术在水驱油实验中的应用[J].断块油气田,2002,9(4):33-37.
    [123]宋广寿,高辉,高静乐,等.西峰油田长8储层微观孔隙结构非均质性与渗流机理实验[J].吉林大学学报(地球科学版),2009,39(1):53-59
    [124]高建,韩冬,王家禄,等.应用CT成像技术研究岩心水驱含油饱和度分布特征[J].新疆石油地质,2009,30(2):269-271
    [125]王瑞飞.特低渗透砂岩油藏储层微观特征—以鄂尔多斯盆地延长组为例[M].北京:石油工业出版社,2008.
    [126]任晓娟.低渗砂岩储层孔隙结构与流体微观渗流特征研究[D].西北大学博士论文,2006:180-181.
    [127]吴毓熙.应用弹性力学[M].上海:同济大学出版社,1989:178-180.
    [128]Farber, D. L., B. P. Bonner, M. Balooch, et al. Observations of water induced transition from brittle to viscoelastic behavior in nanocrystalline swelling clay[R]. EOS 82,2001.
    [129]Viet Hoai Nguyen, Adrian P. Sheppard, Mark A. Knackstedt, et al. The effect of displacement rate on imbibition relative permeability and residual saturation [J]. Journal of Petroleum Science and Engineering,2006,52:54-70.
    [130]朱维耀,鞠岩,赵明,等.低渗透裂缝性砂岩油藏多孔介质渗吸机理研究[J].石油学报,2002,23(6):56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700