用户名: 密码: 验证码:
西秦岭造山带印支期岩浆作用及深部过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西秦岭造山带是秦岭-大别-苏鲁造山带的西延部分,西与昆仑和祁连造山带相接,南与松潘-甘孜造山带相邻一起构成中国大陆最大的构造结,是中国大陆构造东西转换和南北主体拼合的重要衔接部位。印支期是中国大陆主体拼合的主要完成时期,勉略缝合带和阿尼玛卿缝合带作为中国大陆印支期碰撞闭合最重要的缝合带,关于它们是否连通还存在争议。西秦岭造山带及其毗邻的东秦岭造山带、扬子西北缘、东昆仑造山带(柴达木陆块)及松潘-甘孜造山带以发育有大量的印支期岩浆岩为显著特征,这些岩浆作用可能是对中央造山带西段这些微陆块之间相互作用和碰撞拼合过程中的岩石圈演化和深部地球动力学过程的响应和记录。西秦岭造山带位于中国中央造山带的关键位置,对其印支期岩浆岩的时空分布,岩石组合及岩浆成因和源区的研究,对揭示西秦岭造山带印支期的构造演化和深部地球动力背景,阐明东、西秦岭造山带印支期的构造演化是否存在差异性及原因,乃至对大陆碰撞造山过程中大陆地壳的演化和分异均具有十分重要的科学意义。
     本论文选择西秦岭内印支期岩浆岩为研究对象,在总结整合前人资料的基础上,对西秦岭印支期岩浆岩进行详细的地质学、岩相学、锆石U-Pb年代学,地球化学和Sr-Nd-Hf同位素的系统研究。西秦岭以高钾钙碱性Ⅰ型花岗岩类分布最广,本文首先选择对西秦岭地区最大的Ⅰ型复式岩基美武岩体进行了详细的解剖,详细的探讨了其成分多样性的原因及其侵位机制;然后对西秦岭造山带内一类出露较少的岩石类型,含石榴子石岩浆岩和淡色花岗岩的成因机制进行了讨论;接着对整个西秦岭印支期岩浆作用的岩石组合特征、时空分布规律及不同成因类型岩浆岩的源区和岩石成因进行了讨论;最后建立了西秦岭印支期岩浆岩作用的年代学格架,通过与其周缘东秦岭造山带、扬子西北缘、松潘-甘孜造山带及东昆仑造山带内印支期岩浆作用的对比,揭示了西秦岭印支期岩浆形成的深部地球动力学背景。本研究获得的主要认识如下:
     (1)西秦岭中部合作地区美武岩基由石英闪长岩、花岗闪长岩和黑云母花岗岩三种岩性组成,其中,花岗闪长岩广泛发育有大量暗色微粒包体和少量的英云闪长质包体。岩基的侵位年龄为~240-245Ma,属于印支早期。不同的岩性单元的化学组成表现出不同的演化趋势,表明并不存在一个统一的大岩浆房,而是由多批次岩浆侵位聚集而成的,不同岩性单元的地球化学成分的变化是由源区和不同的岩浆演化过程共同控制的。美武岩基建造和成因演化的综合模型如下所述:在印支早期,富集的岩石圈地幔发生部分熔融形成含水玄武质岩浆不断以岩席状反复底侵至西秦岭下地壳,形成深部地壳热区,热的含水玄武质岩浆提供热量和挥发份诱导促使下地壳物质发生熔融,含水玄武质岩浆经历橄榄石和辉石等矿物的分离结晶作用形成的残留熔体与壳源长英质岩浆混合形成混合岩浆,这种混合岩浆多批次的侵位汇聚形成石英闪长岩。石英闪长岩外部快速冷却结晶,而岩体内部缓慢结晶形成一个均一的对流岩浆房并发生内部分异作用;镁铁质岩席状岩浆随机侵位到下地壳中,使不同深度的下地壳物质发生部分熔融作用,形成于不同深度的熔体多批次侵位聚集形成花岗闪长岩,镁质铁岩浆不仅为壳源岩浆提供了热量,还少量的参与了花岗闪长岩岩浆的形成;花岗闪长岩岩浆在就位后冷却发生部分结晶,类似于石英闪长岩的岩浆侵入花岗闪长岩中,与寄主岩发生局部的物理交换和扩散交换作用,形成暗色微粒包体,形成于加厚下地壳的埃达克质岩浆注入花岗闪长岩中形成浅色的英云闪长质包体:下地壳较浅部位的同一源区物质部分熔融程度不断增加形成的熔体不断的侵位形成黑云母花岗岩。
     (2)西秦岭中部合作地区德乌鲁火山岩、夏河地区赛尔钦沟含榴火山岩、含榴花岗斑岩和淡色花岗岩的形成时代为~239-243Ma,属于印支早期。德乌鲁火山岩以安山岩和英安岩为主:赛尔钦沟火山岩的岩性从安山岩到流纹岩及火山碎屑岩均有发育,在赛尔钦沟英安岩和火山碎屑岩和夏河西的花岗斑岩观察到含石榴子石斑晶。这些火山岩和次火山岩主体为钠质岩浆(K20,Na2O多<1),其中性端元安山岩随着SiO2的增加,逐渐从准铝质变为弱过铝质到强过铝质,其酸性端元(赛尔钦沟含榴英安岩,流纹岩和含榴花岗斑岩)的A/CNK均大于1.1,为强过铝质岩浆。地球化学和Sr-Nd-Hf同位素表明德乌鲁火山岩、夏河地区赛尔钦沟含榴火山岩、含榴花岗斑岩是同源岩浆演化序列,由准铝质的钙碱性安山岩质母岩浆发生分离结晶作用并同化混染泥质岩变成强过铝质的岩石。夏河淡色花岗岩具有高的Si02(-74%),高的ISr的值(~0.7103-0.7119),负的εNd(t)值(~-12)和负的锆石εHf(t)值(~-11.3),Nd和Hf二阶段模式年龄分别为1.97-2.00Ga和1.84-2.15Ga,表明其源区主要为中、下地壳古元代变沉积岩物质。夏河淡色花岗岩轻重稀土元素强列分异((La/Yb)N=300-486),极度亏损HREE(YbN=0.1-0.2),表明源区有大量的石榴子石残留。
     本次研究中的石榴子石的成因类型复杂多样,具有不同的成分环带的特征,记录了从源区、混染或不同熔体相互作用的重要的岩石成因信息。根据其内部结构、包裹体类型及成分特征可将其分为3种类型:Ⅰ型石榴子石为岩浆型石榴子石:Ⅱ型石榴子石是直接从准铝质的安山岩在高压环境下结晶出来的,I2型石榴子石是原来的准铝质安山质岩浆发生同化混染分离结晶作用形成过铝质岩浆后结晶出来的;Ⅱ型石榴子石多与黑云母集合体共生或主要成群分布在富云泥质岩包体中,具明显的成分环带,其核部为变泥质岩转熔作用形成的;Ⅲ型石榴子石多呈单颗粒、不规则状,成分多变,为捕虏晶。
     (3)本研究共对西秦岭地区32个样品进行LA-ICP-MS锆石U-Pb定年,对其中的4个样品又进行了SIMS测定,不同方法获得的年龄在误差范围内一致,并整理了近年来发表的19个锆石U-Pb年龄数据,建立和查明了整个西秦岭地区印支期岩浆活动的年代学格架和时空分特征。西秦岭印支期岩浆活动可主要划分为两个时期:(1)第一期为~245-230Ma,属于印支早期,主要分布在西秦岭的中部和西部:(2)第二期为~230-205Ma,属于印支晚期,在整个西秦岭地区均有分布。
     (4)根据西秦岭地区岩浆岩的年代学、岩相学和地球化学等,可将西秦岭印支期岩浆活动分为印支早期闪长岩类(包括暗色微粒包体)、低Sr/Y花岗岩类和高Sr/Y花岗岩类(C型埃达克岩)及印支晚期花岗岩类和暗色微粒包体等几种重要类型:印支早期闪长岩以谢坑辉石闪长岩为代表,谢坑辉石闪长岩可分为高铝闪长岩和高镁闪长岩两种类型,它们均是由先前被板片熔体交代过的富集岩石圈地幔的部分熔融形成的。高铝闪长岩是含水玄武质岩浆在侵位过程中发生橄榄石和辉石的分离结晶并伴有斜长石的优先堆晶作用形成的;高镁闪长岩是玄武质浆岩发生橄榄石的分离结晶并伴有辉石的优先堆晶作用形成的;印支早期的低Sr/Y花岗岩类属于高钾钙碱性Ⅰ型花岗岩类,ISr=0.7063-0.7098,εNd(t)=9.2~-3.8,T2DM=1.46-1.74Ga,其源区为中、古元古代富钾的镁铁质下地壳。其(La/Yb)N=10.0-30.6,Eu/Eu*=0.31-0.79,表明源区有角闪石和斜长石残留;西秦岭高Sr/Y花岗岩类与低Sr/Y花岗岩类的Sr-Nd同位素的组成范围重叠,表明它们的源区相同,轻重稀土分异明显(La/Yb)N>29,亏损HREE,(Yb)N小于7,高Ba.Sr和Sr/Y的特征,表明其源区有石榴子石残留,表明其是由加厚的下地壳部分熔融形成的,部分样品出现中等程度的铕负异常,与岩浆演化中斜长石的分离结晶有关;印支早期的低Sr/Y和高Sr/Y花岗岩类的大部分样品均表现出高Mg#、Cr和Ni的特征,是幔源物质加入并在源区发生岩浆混合作用造成的,加上同期闪长岩类的出露和暗色包体在花岗岩类中的大量发育,表明西秦岭印支早期存在着一期广泛的幔源岩浆底侵事件;西秦岭印支晚期花岗岩类整体具有比印支早期花岗岩类低MgO(Mg#),Cr和Ni和富集K2O、Rb和更高的ISr的特征,表明印支晚期的岩浆主要来自于壳源岩浆,幔源岩浆贡献较少,源区物质的成熟度更高。
     (5)西秦岭印支早期和晚期岩浆岩的地球化学特征也表现出明显的不同,这也反映了它们的形成可能对应着不同的演化阶段和深部地球动力学背景。结合区域地质资料,本文认为阿尼玛卿洋至少在晚二叠末已闭合,西秦岭印支早期的岩浆作用形成于后碰撞早期的构造环境之下,可能与俯冲的阿尼玛卿洋壳发生断离作用有关。板片断离模型能较好地解释西秦岭印支早期岩浆岩线性分布的特征和西秦岭中三叠纪地壳的快速抬升。印支晚期岩浆活动不仅发生在西秦岭地区,且在其周缘如东昆仑-柴北缘地区、东秦岭、扬子西北缘和松潘-甘孜造山带地区均有出现,表明在印支晚期这些地区均已共同进入后碰撞造山阶段,西秦岭印支晚期的岩浆岩的形成可能与区域上广泛的局部的岩石圈拆沉作用有关。西秦岭中部的江里沟钾长花岗岩呈现出了类似铝质A型花岗岩的性质,其形成时代为210±2Ma,与秦岭环斑花岗岩、东昆仑-柴北缘铝质A型花岗岩和在松潘-甘孜年保也则A型花岗岩的形成时代相近,该期岩浆事件的同时出现可能代表了中央造山带造山期的结束,中国大陆完成最终的拼合,从而转入区域岩石圈构造仲展体制。
     (6)西秦岭印支早期岩浆活动主要发育在西秦岭造山带的中、西部,然而东秦岭的岩浆活动以印支晚期为主,表明东、西秦岭在印支早期的构造演化上可能存在明显的差异。阿尼玛卿和勉略缝合带是中国大陆在印支期完成拼合过程中最重要的缝合带,西秦岭的中、西部对应阿尼玛卿缝合带所处的空间范围,而西秦岭东部和东秦岭造山带对应为勉略缝合带的位置。关于阿尼玛卿带和勉略缝合带是否连通还存在一些争论,造成分岐的原因主要是在中段玛曲-兰坪一线并没有发现与原古缝合带相关的蛇绿构造混杂岩的出露,而此段也刚好对应西秦岭岩浆岩带的中带与西秦岭东部岩浆岩带间隔缺失岩浆活动的位置,这可能意味着阿尼玛卿洋和勉略洋有着不同的演化史,在空间上可能并不相连。
The West Qinling belt is the westward extension of the Qinling-Dabie-Sulu orogen in central China. It links the Kunlun and Qilian orogens to the west and the Songpan-Ganze belt to the south, making it an important tectonic syntaxis in China. The final amalgamation of China continents mainly took place during Indosinian stage, along the Mianlue and A'nimaque suture zones. The connection between these two sutures is still puzzling. One of the most profound phenomenon is that the Indosinian magmatism are widely distributed in the West Qinling and the adjacent East Qunlun and Qaidam terrans, Songpan-Ganze block, East Qinling and northwestern margin of the South Chian Block. These magmatic rocks may record the lithosphere evolution and geodynamic processes responding for the amalgamation of these micro-continental blocks in western China. The West Qinling is located on the central domain of these tectono-magma belts. An integral investigation of spatial and temporal distributions, rock types, and petrogenesis of Indosinian magmatic rocks in the West Qinling plays an important role in discussing the west Qinling Indosinian tectonic evolution, the distinct evolutions between east and west Qinling belts, and even the continent crust differentiation during the continents collisional.
     This thesis focuses on the Indosinian magmatism in the West Qinling. Combined with the previous relevant data, we carry out an integrated study of petrography, zircon U-Pb dating and Hf isotope, and whole-rock geochemical and Sr-Nd isotopic compositions for Indosinian magmatic rocks from the West Qinling. The West Qinling is characterized by the most widely distributed of High-K cal-alkalin I-type granitioids. Firstly, the Meiwu composite pluton, one of the largest batholiths in the middle part of the West Qinling, were choosed as the detailed study objects, to clarify the petrogenesis and emplacement mechanism for the composition diversity of I-type high-K calc-alkaline rocks; second, one type of rarely exposed rocks, garnet-bearing magmatic rocks and leucogranite, were discussed for their petrogenesis; then, the rock association and the spatial and temporal distribution of the Indosinian magmatism throughout the West Qinling were investigated for their petrogenesis and magma sources; finally, compared with the Indosinian magmatism in the adjacent areal, the geochronological framework for the Indosinian magmatism in the West Qinling were established and the geodynamic background for their formation were revealed. Our conclusions are summarized as follows:
     (1) The Meiwu pluton, a complex batholith, is composed of quartz diorite, granodiorite, and biotite granite, with abundant mafic enclaves and minor felsic enclaves in the granodiorites. The magma crystallization age is~240-245Ma. The different rock types exhibit distinct geochemical variation, indicating that the Meiwu pluton was constructed by multiple injections and repeated magma pulses assembly over a protracted period, rather than a single larger magma chamber. A united model for the construction and evolution of the Meiwu batholith is listed as bellow:(1) During the Early Indosinian, partial melting of the enriched lithospheric mantle generates the hydrous basaltic magmas. The high-T mafic sills were successively emplaced in the lower crust forming a Deep Crustal Hot Zones. The high-T hydrous basaltic magmas can also provide the necessary heat source and volatiles to induce melting of the lower crust;(2) The hydrous basalts that had experienced fractional crystallization of olivine and pyroxene formed the residual melt. The residual melt from hydrous basaltic magmas mixing with the melt derived from partial melting of crustal materials formed a hybrid magma; then the hybrid magma batches intruded to the upper crust and coalesced as a single magma body as the Meiwu quartz diorites. The outer part of the quartz diorites cooled rapidly preserving the primary isotopically diversity, whereas the inner part would have developed as a larger homogeneous magma chamber that underwent internal differentiation and crystallized slowly;(3) For random emplacement of the mafic sills, the single batches of melt can be generated by polybaric partial melting of the crustal materials over a range of depths through heat transfer from the cooling basalts. The melt segregation from different depths assimilated with minor the evolved mafic magma that then were successive intruded into the present lever of exposure, forming the Meiwu granodiorites;(4) The hybrid magmas analogue to the quartz diorites were injected into the host granitic magma and had experienced local mechanical exchange and diffusion exchange with the adjacent host rocks, producing various types of MME. The melts derived from the thickened mafic lower crusts that were subsequently intruded into the host granitic magma and disaggregated to the tonalitic enclaves;(5) The melts generated by increase degree of partial melting of a single source due to heat input from mantle magma were successive emplaced forming the Meiwu biotite granites.
     (2) The magma crystallization ages for Dewulu volcanic rocks, Sai'erqin garnet-bearing volcanic rocks and Xiahe garnet-bearing granite porphyry, and Xiahe leucogranite are~239-243Ma. Dewulu volcanic rocks are mainly composed of andesite and dacite, and Sai'erqin volcanic rocks range from andesite to rhyolite to volcaniclastic rocks. These rocks are enriched in Na2O (K2O/Na2O ratios mostly<1). The andesitic rocks range from metaluminous to weakly peraluminous with increasing SiO2contents, and the felsic rocks show strongly peraluminous (A/CNK>1.1). Geochemical and Sr-Nd-Hf isotopic compositions indicate that these rocks share a single metaluminous calc-alkaline andesitic magma source, which turned into strongly peraluminous magmas through AFC processes. The Xiahe leucogranite has high SiO2contents (~74%), high ISr values of~0.7103-0.7119, negative εNd(t)(~-12) andεNf(t)(~-11.3), with two-stages model ages of~ 1.8-2.2Ga, implying derivation from partial melting of reworked mature crust. The leucogranite contains very low HREE (YbN=0.1-0.2), with strongly fractionated REE patterns with (La/Yb)N ratios of400-486, indicating a large volume of residual garnet. Garnets from these rocks show distinct formation features. They are divided into three types:(i) crystallizing from the metaluminous to peraluminous magmas;(ii) inheriting from the melting source;(ⅲ) xenocryst.
     (3) To understand the temporal and spatial distribution of west Qinling Indosinian magmatism, thirty-two samples were selected for in situ LA-ICP-MS zircon U-Pb analyses. And four of them were reanalyzed by using the SIMS. We compile new results and nineteen published data. Our compilation shows two magmatism stages:(i) early Indosinian (-245-230Ma), concentrating on the central and west part of west Qinling belt;(ii) late Indosinian (-230-205Ma), widespread throughout the west Qinling belt.
     (4) Based on geochronology, petrology, and geochemistry data of west Qinling magmatic rocks, they are mainly composed of early Indosinian diorite (including mafic enclaves), low Sr/Y granitoids, and high Sr/Y granitoids (C-type adakite), and late Indosinian granitoids and mafic enclaves. Xiekeng pyroxene diorite is a typical example of early Indosinian diorite, including high-Al diorite and high-Mg diorite. Both of them were derived from partial melting of enriched lithospheric mantle that had been modified by slab-derived melt. The Xiekeng high-Al diorite was formed by the hydrous basaltic magmas that had experienced fractional crystallization of olivine and pyroxene and/or preferential accumulation of plagioclase, while the Xiekeng high-Mg diorite was formed by fractional crystallization of olivine and/or preferential accumulation of pyroxene. Early Indosinian low Sr/Y granitoids are high-K calc-alkaline series, and they display ISr=0.7063-0.7098, εNd(t)=-9.2--3.8, with T2DM=1.46-1.74Ga, indicating derivation from a early-middle proterozoic mafic K-rich lower crust. Their low (La/Yb)N (10.0-30.6) and Eu/Eu*(0.31-0.79) imply the residual mineral of amphibole and plagioclase in its source. The high Sr/Y granitoids show similar Sr-Nd isotopic compositions with those of the low Sr/Y granitoids, suggesting that they share a same source. Their high Ba, Sr contents and high Sr/Y and (La/Yb)N ratios imply the residual mineral face of garnet. Some samples exhibit slightly negative Eu anomalies, probably resulted from fractional crystallization of plagioclase during the emplacement. Most of the early Indosinian low Sr/Y and high Sr/Y granitoids show high Mg#, Cr, and Ni values. Besides, coeval diorites and mafic enclaves are widespread, suggesting a culmination of basalt underplating during early Indosinian. Late Indosinian granitoids commonly have low MgO, Cr, and Ni contents, and high K2O, Rb, and ISr values, indicating they were derived from more mature crust, with less juvenile material contribution.
     (5) Distinct geochemistry features of early and late Indosinian granitoids may imply different geodynamic setting. Combined with regional studies, we interpret this early Indosinian magmatism in the West Qinling to result from break-off of the subducted A'nimaque oceanic slab soon after collision. The slab break-off model can explain the linear distribution of the early Indosinian plutons and rapid uplift during the Middle Triassic in the West Qinling. Late Indosinian magmatic rocks are widely exposed in the Qinling orogen, the northwest part of the Yangtze craton, the Songpan-Ganzi belt, and the east Kunlun belt, suggesting all of these regions are in a post-collision setting. Widespread late Indosinian intrusions are most likely caused by delamination of thickened crust. The Jiangligou potassic granite shows similar geochemical features with those of A-type granite, and its crystallization age is210Ma. Coeval A-type granites and are also found in east Kunlun and Songpan-Ganzi. This A-type granitic magmatism may represent the end of central orogen processes, and the west Qinling belt turn into an extension setting.
     (6) Early Indosinian magmatism mainly concentrate on the central and west part of west Qinling belt, whereas the east Qinling was dominated by the late Indosinian magmatism, suggesting that West Qinling and East Qinling belts are in different geodynamic settings during early Indosinian. Whether the A'nimaque and Mianlue suture zones is connected or not is still in debate. The early Indosinian magmatism in the middle and west part of the West Qinling is related to the A'nimaque suture zone in spatial, and the east part (as well as east Qinling belt) magmatism related to the Mianlue suture zone in spatial. The distinct temporal evolutions of Indosinian magmatism between these two domains reveal that the A'nimaque Ocean and Mianlue Ocean were not connected before.
引文
[l]杨经绥,许志琴,马昌前,等.复合造山作用和中国中央造山带的科学问题[J].中国地质.2010,37(001):1-11.
    [2]张国伟,柳小明.关于“中央造山带”几个问题的思考[J].地球科学.1998,23(5):443448.
    [3]冯益民,曹宜铎,张二朋,等.西秦岭造山带结构造山过程及动力学[M].西安市:西安地图出版社,2002:1-263.
    [4]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].科学出版社,2001.
    [5]张国伟,郭安林,姚安平.中国大陆构造中的西秦岭—松潘大陆构造结[J].地学前缘.2004,11(3):23-32.
    [6]Wu Y B, Gao S, Zhang H F, et al. Timing of UHP metamorphism in the Hong'an area, western Dabie Mountains, China:evidence from zircon U-Pb age, trace element and Hf isotope composition[J]. Contributions to Mineralogy and Petrology.2008,155(1):123-133.
    [7]郑永飞.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例[J].科学通报.2008,53(18):2129-2152.
    [8]Hacker B R, Ratschbacher L, Webb L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters.1998, 161(1):215-230.
    [9]Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on geochemistry.2003,3: 1-64.
    [10]Altherr R, Henjes-Kunst F, Langer C, et al. Interaction between crustal-derived felsic and mantle-derived mafic magmas in the Oberkirch Pluton (European Variscides, Schwarzwald, Germany)[J]. Contributions to Mineralogy and Petrology.1999,137(4):304-322.
    [11]Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review[J]. Lithos.2004,78(1): 1-24.
    [12]Tepper J H, Kuehner S M. Geochemistry of mafic enclaves and host granitoids from the Chilliwack Batholith, Washington:chemical exchange processes between coexisting mafic and felsic magmas and implications for the interpretation of enclave chemical traits[J]. The Journal of geology.2004,112(3):349-367.
    [13]Barbarin B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:nature, origin, and relations with the hosts[J]. Lithos. 2005,80(1):155-177.
    [14]Huppert H E, Sparks R S J. The generation of granitic magmas by intrusion of basalt into continental crust[J]. Journal of Petrology.1988,29(3):599-624.
    [15]Bergantz G W. Underplating and partial melting:implications for melt generation and extraction[J]. Science.1989,245(4922):1093-1095.
    [16]Annen C, Sparks R. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust[J]. Earth and Planetary Science Letters.2002,203(3): 937-955.
    [17]Kemp A, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon[J]. Science.2007,315(5814):980-983.
    [18]Koteas G C, Williams M L, Seaman S J, et al. Granite genesis and mafic-felsic magma interaction in the lower crust[J]. Geology.2010,38(12):1067-1070.
    [19]Tepper J H, Nelson B K, Bergantz G W, et al. Petrology of the Chilliwack batholith, North Cascades, Washington:generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity[J]. Contributions to Mineralogy and Petrology.1993,113(3): 333-351.
    [20]van de Flierdt T, Hoernes S, Jung S, et al. Lower crustal melting and the role of open-system processes in the genesis of syn-orogenic quartz diorite-granite-leucogranite associations: constraints from Sr-Nd-O isotopes from the Bandombaai Complex, Namibia[J]. Lithos.2003, 67(3):205-226.
    [21]Annen C, Blundy J D, Sparks R. The genesis of intermediate and silicic magmas in deep crustal hot zones[J]. Journal of Petrology.2006,47(3):505-539.
    [22]Annen C, Blundy J D, Sparks R S J. The sources of granitic melt in Deep Hot Zones[J]. Transactions of the Royal Society of Edinburgh, Earth Sciences.2008,97:297-309.
    [23]Depaolo D J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[J]. Earth and planetary science letters.1981,53(2):189-202.
    [24]Hildreth W, Moorbath S. Crustal contributions to arc magmatism in the Andes of central Chile[J]. Contributions to Mineralogy and Petrology.1988,98(4):455-489.
    [25]Clemens J D, Helps P A, Stevens G. Chemical structure in granitic magmas-a signal from the source?[J]. Earth and environmental science transactions of the Royal Society of Edinburgh. 2009,100(1):159.
    [26]Moyen J F, Champion D, Smithies R H. The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting[J]. Transactions of the Royal Society of Edinburgh:Earth and Environmental Science.2009,100(1-2):35-50.
    [27]Stevens G, Villaros A, Moyen J F. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites[J]. Geology.2007,35(1):9-12.
    [28]Chappell B W, White A, Wyborn D. The importance of residual source material (restite) in granite petrogenesis[J]. Journal of Petrology.1987,28(6):1111-1138.
    [29]Chappell B. Two contrasting granite types[J]. Pacific geology.1974,8:173-174.
    [30]Chappell B W, White A J R. Two contrasting granite types:25 years later[J]. Australian Journal of Earth Sciences.2001,48(4):489-499.
    [31]Collins W J. Lachlan Fold Belt granitoids:products of three-component mixing[J]. Transactions of the Royal Society of Edinburgh-Earth Sciences.1996,87(1):171-182.
    [32]Keay S, Collins W J, Mcculloch M T. A three-component Sr-Nd isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern Australia[J]. Geology.1997,25(4):307-310.
    [33]White A J, Chappell B W. Ultrametamorphism and granitoid genesis[J]. Tectonophysics.1977, 43(1):7-22.
    [34]Clemens J D. The importance of residual source material (restite) in granite petrogenesis:a comment[J]. Journal of Petrology.1989,30(5):1313-1316.
    [35]Clemens J D. S-type granitic magmas—petrogenetic issues, models and evidence[J]. Earth-Science Reviews.2003,61(1):1-18.
    [36]Collins W J. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids:implications for crustal architecture and tectonic models[J]. Australian Journal of Earth Sciences.1998,45(4): 483-500.
    [37]Vernon R H. Problems in identifying restite in S-type granites of southeastern Australia, with speculations on sources of magma and enclaves[J]. The Canadian Mineralogist.2007,45(1): 147-178.
    [38]Gray C M. An isotopic mixing model for the origin of granitic rocks in southeastern Australia[J]. Earth and Planetary Science Letters.1984,70(1):47-60.
    [39]Gray C M. A strontium isotopic traverse across the granitic rocks of southeastern Australia: petrogenetic and tectonic implications[J]. Australian Journal of Earth Sciences.1990,37(3): 331-349.
    [40]Kemp A, Hawkesworth C J, Paterson B A, et al. Exploring the plutonic-volcanic link:a zircon U-Pb, Lu-Hf and O isotope study of paired volcanic and granitic units from southeastern Australia[J]. Transactions of the Royal Society of Edinburgh. Earth Sciences.2006,97:337-355.
    [41]Appleby S K, Gillespie M R, Graham C M, et al. Do S-type granites commonly sample infracrustal sources? New results from an integrated O, U-Pb and Hf isotope study of zircon[J]. Contributions to Mineralogy and Petrology.2010,160(1):115-132.
    [42]Chappell B W. Compositional variation within granite suites of the Lachlan Fold Belt:its causes and implications for the physical state of granite magma[J]. Transactions of the Royal Society of Edinburgh-Earth Sciences.1996,87(1):159-170.
    [43]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature.1990,347(6294):662-665.
    [44]Moyen J F. High Sr/Y and La/Yb ratios:the meaning of the "adakitic signature" [J]. Lithos. 2009,112(3):556-574.
    [45]Muir R J, Weaver S D, Bradshaw J D, et al. The Cretaceous Separation Point batholith, New Zealand:granitoid magmas formed by melting of mafic lithosphere[J]. Journal of the Geological Society.1995,152(4):689-701.
    [46]Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust:the Cordillera Blanca Batholith, Peru[J]. Journal of Petrology.1996,37(6):1491-1521.
    [47]Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines:insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology.1999,134(1):33-51.
    [48]Chiaradia M. Adakite-like magmas from fractional crystallization and melting-assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador)[J]. Chemical Geology. 2009,265(3):468-487.
    [49]Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust?[J]. Geology.2002, 30(12):1111-1114.
    [50]Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature.2004,432(7019):892-897.
    [51]Coleman D S, Gray W, Glazner A F. Rethinking the emplacement and evolution of zoned plutons:Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California[J]. Geology.2004,32(5):433-436.
    [52]Glazner A F, Bartley J M, Coleman D S, et al. Are plutons assembled over millions of years by amalgamation from small magma chambers?[J]. GSA today.2004,14(4/5):4-12.
    [53]Miller J S. Assembling a pluton---one increment at a time[J]. Geology.2008,36(6):511-512.
    [54]Lipman P W. Incremental assembly and prolonged consolidation of Cordilleran magma chambers:Evidence from the Southern Rocky Mountain volcanic field[J]. Geosphere.2007,3(1): 42-70.
    [55]Bachmann O, Bergantz G W. Rhyolites and their source mushes across tectonic settings[J]. Journal of Petrology.2008,49(12):2277-2285.
    [56]Annen C. From plutons to magma chambers:Thermal constraints on the accumulation of eruptible silicic magma in the upper crust[J]. Earth and Planetary Science Letters.2009,284(3): 409-416.
    [57]Annen C. Implications of incremental emplacement of magma bodies for magma differentiation, thermal aureole dimensions and plutonism-volcanism relationships^]. Tectonophysics.2011, 500(1):3-10.
    [58]张宏飞,靳兰兰,张利,等.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制[J].中国科学:D辑.2005,35(10):914-926.
    [59]陶炳昆.关于西秦岭中生代花岗岩类的时代期次问题的讨论[J].地球化学.1982(4):340-347.
    [60]王婧,张宏飞,徐旺春,等.西秦岭党川地区花岗岩的成因及其构造意义[J].地球科学:中国地质大学学报.2008,33(4):474-486.
    [61]Sun W D, Li S G, Chen Y D, et al. Timing of Synorogenic Granitoids in the South Qinling, Central China:Constraints on the Evolution of the Qinling-Dabie Orogenic BeltfJ]. The Journal of geology.2002,110(4):457-468.
    [62]Cao X F, Lu X B, Yao S Z, et al. LA-ICP-MS U-Pb zircon geochronology, geochemistry and kinetics of the Wenquan ore-bearing granites from West Qinling, China[J]. Ore Geology Reviews.2011,43(1):120-131.
    [63]Qin J, Lai S, Grapes R, et al. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China)[J]. Lithos. 2009,112(3):259-276.
    [64]王天刚,倪培,孙卫东,等.西秦岭勉略带北部黄渚关和厂坝花岗岩锆石U-Pb年龄及源区性质[J].科学通报.2011:56(39):3493-3505
    [65]刘明强.甘肃西秦岭舟曲憨班花岗岩体的单颗粒锆石U-Pb年龄及地质意义[J].地质科学.2012,47(003):899-907.
    [66]Zhu L, Zhang G, Chen Y, et al. Zircon U-Pb ages and geochemistry of the Wenquan Mo-bearing granitioids in West Qinling, China:Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit[J]. Ore Geology Reviews.2011,39(1):46-62.
    [67]金维浚,张旗,何登发,等.西秦岭埃达克岩的SHRIMP定年及其构造意义[J].岩石学报.2005,21(3):959-966.
    [68]王绘清,朱云海,林启祥,等.青海尖扎—同仁地区隆务峡蛇绿岩的形成时代及意义—来自辉长岩钻石LA-ICP-MS U-Pb年龄的证据[J].地质通报.2010,29(001):86-92.
    [69]张宏飞,陈岳龙,徐旺春,等.青海共和盆地周缘印支期花岗岩类的成因及其构造意义[J].岩石学报.2006,22(12):2910-2922.
    [70]邱庆伦,龚全胜,卢书伟,等.甘肃夏河地区印支期埃达克岩的厘定及其意义[J].甘肃地质.2008,17(3):6-12.
    [71]徐启平.西秦岭地区的麦秀群[J].地层学杂志.1994,18(4):282-288.
    [72]王松产,丁毅.西秦岭地区钙碱质火山岩中石榴石的发现及其地质意义[J].岩石矿物学杂志.1990,1:1.
    [73]Qin J, Lai S, Li Y. Slab breakoff model for the Triassic post-collisional adakitic granitoids in the Qinling Orogen, Central China:Zircon U-Pb Ages, geochemistry, and Sr-Nd-Pb isotopic constraints[J]. International Geology Review.2008,50(12):1080-1104.
    [74]Qin J, Lai S, Diwu C, et al. Magma mixing origin for the post-collisional adakitic monzogranite of the Triassic Yangba pluton, Northwestern margin of the South China block:geochemistry, Sr-Nd isotopic, zircon U-Pb dating and Hf isotopic evidences[J]. Contributions to Mineralogy and Petrology.2010,159(3):389-409.
    [75]Qin J, Lai S, Grapes R, et al. Origin of LateTriassic high-Mg adakitic granitoid rocks from the Dongjiangkou area, Qinling orogen, central China:Implications for subduction of continental crust[J]. Lithos.2010,120(3):347-367.
    [76]Jiang Y, Jin G, Liao S, et al. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China:implications for a continental arc to continent-continent collision[J]. Lithos.2010,117(1):183-197.
    [77]张宏飞,肖龙,张利,等.扬子陆块西北缘碧口块体印支期花岗岩类地球化学和Pb-Sr-Nd同位素组成:限制岩石成因及其动力学背景[J].中国科学:D辑.2007,37(4):460-470.
    [78]秦江锋,赖绍聪,李永飞.扬子板块北缘碧口地区阳坝花岗闪长岩体成因研究及其地质意义[J].岩石学报.2005,21(3).
    [79]凸崧,颜丹平,王焰.等.碧口地块麻山,木皮岩体岩石地球化学与地质年代学:对构造 属性的指示意义[J].岩石学报.2010,26(6):1889-1901.
    [80]王晓霞,王涛,Happala Ilmari,等.秦岭环斑结构花岗岩中暗色包体的岩浆混合成因及岩石学意义——元素和Nd, Sr同位素地球化学证据[J].岩石学报.2005.
    [81]秦江锋.秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景[D].西安:西北大学,2010.
    [82]卢欣祥,尉向东.秦岭环斑花岗岩的年代学研究及其意义[J].高校地质学报.1999,5(4):372-377.
    [83]张成立,张国伟,晏云翔,等.南秦岭勉略带北光头山花岗岩体群的成因及其构造意义[J].岩石学报.2005,3:711-720.
    [84]Meng Q, Wang E, Hu J. Mesozoic sedimentary evolution of the northwest Sichuan basin: Implication for continued clockwise rotation of the South China block[J]. Geological Society of America Bulletin.2005,117(3-4):396-410.
    [85]张成立,王涛,王晓霞.秦岭造山带早中生代花岗岩成因及其构造环境[J].高校地质学报.2008,14(3):304-316.
    [86]Harangi S Z, Downes H, Kosa L, et al. Almandine garnet in calc-alkaline volcanic rocks of the Northern Pannonian Basin (Eastern-Central Europe):Geochemistry, petrogenesis and geodynamic implications[J]. Journal of Petrology.2001,42(10):1813-1843.
    [87]Dorais M J, Pett T K, Tubrett M. Garnetites of the Cardigan Pluton, New Hampshire:Evidence for peritectic garnet entrainment and implications for source rock compositions[J]. Journal of Petrology.2009,50(11):1993-2016.
    [88]Dorais M J, Tubrett M. Detecting peritectic garnet in the peraluminous Cardigan Pluton, New Hampshire[J]. Journal of petrology.2012,53(2):299-324.
    [89]Dahlquist J A, Galindo C, Pankhurst R J, et al. Magmatic evolution of the Penon Rosado granite: petrogenesis of garnet-bearing granitoids[J]. Lithos.2007,95(3):177-207.
    [90]Villaros A, Stevens G, Buick I S. Tracking S-type granite from source to emplacement:Clues from garnet in the Cape Granite Suite[J]. Lithos.2009,112(3):217-235.
    [91]Taylor J, Stevens G. Selective entrainment of peritectic garnet into S-type granitic magmas: Evidence from Archaean mid-crustal anatectites[J]. Lithos.2010,120(3):277-292.
    [92]Lackey J S, Romero G A, Bouvier A, et al. Dynamic growth of garnet in granitic magmas[J]. Geology.2012,40(2):171-174.
    [93]Zhang H F, Gao S, Zhong Z Q, et al. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids:constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China[J]. Chemical Geology.2002,186(3):281-299.
    [94]Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology.2008,247(1): 133-153.
    [95]Wu F Y, Sun D, Li H, et al. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J]. Chemical Geology.2002,187(1):143-173.
    [96]Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin.2010,55(15):1535-1546.
    [97]Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter.1995,19(1):1-23.
    [98]Andersen T. Correction of common lead in U-Pb analyses that do not report 204 Pb [J]. Chemical geology.2002,192(1):59-79.
    [99]Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China Orogen:U-Pb dating, Hf isotopes and trace elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology.2010,51(1-2):537-571.
    [100]Ludwig K R. Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel(?)(Revised Version), vol.4Berkeley Geochronological Center[J]. Spec. Publ., Berkeley, CA.2003.
    [101]Slama J, KoSler J, Condon D J, et al. Plesovice zircon—a new natural reference material for U-Pb and Hf isotopic microanaiysis[J]. Chemical Geology.2008,249(1):1-35.
    [102]Li X H, Liu Y, Li Q L, et al. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization[J]. Geochemistry, Geophysics, Geosystems. 2009,10(4).
    [103]Li Q L, Li X H, Liu Y, et al. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique[J]. Journal of Analytical Atomic Spectrometry.2010, 25(7):1107-1113.
    [104]Stacey J T, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters.1975,26(2):207-221.
    [105]Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry.2012, 27(9):1391-1399.
    [106]Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation[J]. Chemical Geology. 2004,209(1):121-135.
    [107]Blichert-Toft J, Chauvel C, Albarede F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS[J]. Contributions to Mineralogy and Petrology.1997,127(3):248-260.
    [108]Mcculloch M T, Rosman K J, De Laeter J R. The isotopic and elemental abundance of ytterbium in meteorites and terrestrial samples[J]. Geochimica et Cosmochimica A eta.1977, 41(12):1703-1707.
    [109]Valley P M, Fisher C M, Hanchar J M, et al. Hafnium isotopes in zircon:A tracer of fluid-rock interaction during magnetite-apatite (" Kiruna-type ") mineralization[J]. Chemical Geology. 2010,275(3):208-220.
    [110]Fisher C M, Hanchar J M, Samson S D, et al. Synthetic zircon doped with hafnium and rare earth elements:A reference material for in situ hafnium isotope analysis[J]. Chemical Geology. 2011,286(1):32-47.
    [111]Blichert-Toft J. The Hf isotopic composition of zircon reference material 91500[J]. Chemical Geology.2008,253(3):252-257.
    [112]Elhlou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of GJ-red zircon standard by laser ablation[J]. Geochimica et Cosmochimica Acta Supplement.2006,70: 158.
    [113]Woodhead J D, Hergt J M. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination[J]. Geostandards and Geoanalytical Research.2005,29(2): 183-195.
    [114]Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science.2001, 293(5530):683-687.
    [115]Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time[J]. Geochimica et Cosmochimica Acta.1999,63(3):533-556.
    [116]Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos.2002,61(3): 237-269.
    [117]Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology.2008,257(1):34-43.
    [118]Zheng J P, Griffin W L, Sun M, et al. Tectonic affinity of the west Qinling terrane (central China):North China or Yangtze?[J]. Tectonics.2010,29(2).
    [119]Kroner A, Zhang G W, Sun Y. Granulites in the Tongbai area, Qinling belt, China: Geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia[J]. Tectonics.1993,12(1):245-255.
    [120]Xue F, Lerch M F, Kroner A, et al. Tectonic evolution of the East Qinling Mountains, China, in the Palaeozoic:a review and new tectonic model[J]. Tectonophysics.1996,253(3):271-284.
    [121]Li S, Sun W, Zhang G. Chronology and geochemistry of metavolcanic rocks from Heigouxia valley in the Mian-Lue tectonic zone, south Qinling-Evidence for a Paleozoic oceanic basin and its close time[J]. SCIENCE IN CHINA SERIES D EARTH SCIENCES-ENGLISH EDITION-. 1996,39:300-310.
    [122]Xu J, Castillo P R, Li X, et al. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China:implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean[J]. Earth and Planetary Science Letters.2002,198(3):323-337.
    [123]Konstantinovskaia E A, Brunei M, Malavieille J. Discovery of the Paleo-Tethys residual peridotites along the Anyemaqen-KunLun suture zone (North Tibet)[J]. Comptes Rendus Geoscience.2003,335(8):709-719.
    [124]赖绍聪,秦江锋.勉略缝合带三岔子辉绿岩墙锆石U-Pb年龄及Hf同位素组成——古特提斯洋壳俯冲的年代学证据[J].地球科学与环境学报.2010,32(001):27-33.
    [125]张国伟,郭安林,姚安平.中国大陆构造中的西秦岭—松潘大陆构造结[J].地学前缘.2004, 11(3).
    [126]张国伟,董云鹏,赖绍聪,等.秦岭-大别造山带南缘勉略构造带与勉略缝合带[J].中国科学:D辑.2003.
    [127]赖绍聪,秦江锋.南秦岭勉略缝合带蛇绿岩与火山岩[M].北京:科学出版社,2010:1-257.
    [128]裴先治,张国伟,赖绍聪,等.西秦岭南缘勉略构造带主要地质特征[J].地质通报.2002,21(8):486-494.
    [129]郭安林,张国伟,孙延贵,等.阿尼玛卿蛇绿岩带OIB和MORB的地球化学及空间分布特征:玛积雪山古洋脊热点构造证据[J].中国科学(D辑).2006,36(7):618-629.
    [130]陈亮,孙勇,柳小明,等.青海省德尔尼蛇绿岩的地球化学特征及其大地构造意义[J].岩石学报.2000,16(1):106-110.
    [131]杨经绥,王希斌,史仁灯,等.青藏高原北部东昆仑南缘德尔尼蛇绿岩[J].中国地质.2004,31(3).
    [132]Bian Q, Li D, Pospelov Ⅰ, et al. Age, geochemistry and tectonic setting of Buqingshan ophiolites, north Qinghai-Tibet Plateau, China[J]. Journal of Asian Earth Sciences.2004,23(4):577-596.
    [133]陈亮,孙勇,裴先浩,等.德尔尼蛇绿岩帅Ar.39Ar年龄:青藏最北端古特提斯洋盆存在和延展的证据[J].2001.
    [134]张克信,林启祥,朱云海,等.东昆仑东段混杂岩建造时代厘定的古生物新证据及其大地构造意义[J].中国科学D辑.2004,34(3):210-218.
    [135]冯庆来,杜远生,殷鸿福,等.南秦岭勉略蛇绿混杂岩带中放射虫的发现及其意义[J].中国科学D辑.1996,9:78-82.
    [136]殷鸿福,杜远生.南秦岭勉略古缝合带中放射虫动物群的发现及其古海洋意义[J].地球科学:中国地质大学学报.1996,21(2):184.
    [137]李曙光,侯振辉,杨永成,等.南秦岭勉略构造带三岔-子古岩浆弧的地球化学特征及形成时代[J].中国科学(D辑).2003,33(12):1065-1173.
    [138]赖绍聪,张国伟,董云鹏,等.秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布[J].中国科学D辑.2003,33(12):1174-1183.
    [139]张克信,朱云海,林启祥,等.青海同仁县隆务峡地区首次发现镁铁质-超镁铁质岩带[J][J].地质通报.2007,26(6):661-667.
    [140]寇晓虎.西秦岭-南祁连结合部二叠纪小洋盆充填序列及构造演化[D].武汉:中国地质大学(武汉),2009.
    [141]寇晓虎,朱云海,张克信,等.青海省同仁地区上二叠统石关组上部火山岩的新发现及其地球化学特征和构造环境意义[J].地球科学:中国地质大学学报.2007,32(1):45-58.
    [142]甘肃省地质局区测队.合作幅I-48-7 1/20万区域地质测量报告[R].,1970.
    [143]曾宜君,黄思静,熊昌利,等.川西色达早侏罗世郎木寺组火山岩特征及构造意义[J].成都理工大学学报(自然科学版).2009,36(1):78-86.
    [144]Kou Xiao Hu, Zhang Ke Xin, Zhu Yun Hai, et al. Middle Permian Seamount from Xiahe Area, Gansu Province, Northwest China:Zircon U-Pb Age, Biostratigraphy and Tectonic Implications[J]. Journal of Earth Science.2009,20(2):364-380.
    [145]黄雄飞,喻学惠,莫宜学,等.甘肃西秦岭甘加地区OIB型钾质拉斑玄武岩的发现——对 西秦岭晚中生代大陆裂谷作用的启示?[J].地学前缘.2013.
    [146]Li X W, Mo X X, Yu X H, et al. Geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the origin of the Late Mesozoic Intraplate magmatism in the Duofutun Area, West Qinling:Implications for asthenosphere-lithosphere interaction[Z].中国兰州:2012230.
    [147]范立勇,王岳军,李晓勇.青海西秦岭地区晚中生代基性火山岩地球化学特征及构造意义[J].矿物岩石.2007,27(3):63-72.
    [148]范立勇,王岳军,李晓勇,等.西秦岭地区晚中生代基性火山岩地球化学特征及构造意义[J].大地构造与成矿学.2007,31(4):471-481.
    [149]喻学惠,莫宣学,赵志丹,等.甘肃西秦岭两类新生代钾质火山岩:岩石地球化学与成因[J].地学前缘.2009,16(2):79-89.
    [150]Petford N. Batholith formation[C]. Geophysical Research Abstracts,2012, Vol.14, EGU2012-3696-1.
    [151]Menand T, de Saint-Blanquat M, Annen C. Emplacement of magma pulses and growth of magma bodies[J]. Tectonophysics.2011,500:1-2.
    [152]Kaygusuz A, Siebel W, sen C, et al. Petrochemistry and petrology of I-type granitoids in an arc setting:the composite Torul pluton, Eastern Pontides, NE Turkey[J]. International Journal of Earth Sciences.2008,97(4):739-764.
    [153]Clemens J D, Belcher R W, Kisters A F. The Heerenveen batholith, Barberton Mountain Land, South Africa:Mesoarchaean, potassic, felsic magmas formed by melting of an ancient subduction complex[J]. Journal of Petrology.2010,51(5):1099-1120.
    [154]Memeti V, Paterson S, Matzel J, et al. Magmatic lobes as "snapshots " of magma chamber growth and evolution in large, composite batholiths:An example from the Tuolumne intrusion, Sierra Nevada, California[J]. Geological Society of America Bulletin.2010,122(11-12): 1912-1931.
    [155]Turnbull R, Weaver S, Tulloch A, et al. Field and geochemical constraints on mafic-felsic interactions, and processes in high-level arc magma chambers:an example from the Halfmoon Pluton, New Zealand[J]. Journal of Petrology.2010,51(7):1477-1505.
    [156]Petford N, Cruden A R, Mccaffrey K, et al. Granite magma formation, transport and emplacement in the Earth's crust[J]. Nature.2000,408(6813):669-673.
    [157]Krogstad E J, Walker R J. Evidence of heterogeneous crustal sources:The Harney peak granite, South Dakota, USA[J]. Transactions of the Royal Society of Edinburgh-Earth Sciences.1996, 87(1):331-338.
    [158]Ishihara S. The redox state of granitoids relative to tectonic setting and earth history:the magnetite-ilmenite series 30 years later[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences.2004,95(1-2):23-33.
    [159]Clemens J D, Stevens G. What controls chemical variation in granitic magmas?[J]. Lithos.2012, 134:317-329.
    [160]Moyen J, Stevens G. Experimental constraints on TTG petrogenesis:Implications for Archean geodynamics[J]. GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION. 2006,164:149.
    [161]Didier J, Barbarin B. The different types of enclaves in granites-Nomenclature[J]. Enclaves and granite petrology.1991,13:19-24.
    [162]Didier J, Barbarin B. Enclaves and granite petrology [J].1991.
    [163]Michel J, Baumgartner L, Putlitz B, et al. Incremental growth of the Patagonian Torres del Paine laccolith over 90 ky[J]. Geology.2008,36(6):459-462.
    [164]Schaltegger U, Brack P, Ovtcharova M, et al. Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy)[J]. Earth and Planetary Science Letters.2009,286(1):208-218.
    [165]Leuthold J, Muntener O, Baumgartner L P, et al. Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia)[J]. Earth and Planetary Science Letters.2012,325:85-92.
    [166]Schoene B, Schaltegger U, Brack P, et al. Rates of magma differentiation and emplacement in a ballooning pluton recorded by U-Pb TIMS-TEA, Adamello batholith, Italy[J]. Earth and Planetary Science Letters.2012,355:162-173.
    [167]Walker Jr B A, Miller C F, Lowery Claiborne L, et al. Geology and geochronology of the Spirit Mountain batholith, southern Nevada:implications for timescales and physical processes of batholith construction[J]. Journal of Volcanology and Geothermal Research.2007,167(1): 239-262.
    [168]Matzel J E, Bowring S A, Miller R B. Time scales of pluton construction at differing crustal levels:Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington[J]. Geological Society of America Bulletin.2006,118(11-12):1412-1430.
    [169]Lipman P W. Incremental assembly and prolonged consolidation of Cordiileran magma chambers:Evidence from the Southern Rocky Mountain volcanic field[J]. Geosphere.2007,3(1): 42-70.
    [170]Bachmann O, Bergantz G W. Rhyolites and their source mushes across tectonic settings[J]. Journal of Petrology.2008,49(12):2277-2285.
    [171]du Bray E A, Bacon C R, John D A, et al. Episodic intrusion, internal differentiation, and hydrothermal alteration of the Miocene Tatoosh intrusive suite south of Mount Rainier, Washington[J]. Geological Society of America Bulletin.2011,123(3-4):534-561.
    [172]Miller C F, Furbish D J, Walker B A, et al. Growth of plutons by incremental emplacement of sheets in crystal-rich host:Evidence from Miocene intrusions of the Colorado River region, Nevada, USA[J]. Tectonophysics.2011,500(1):65-77.
    [173]肖林,王伟,刘彬,等.1:25万《合作》幅基础地质调查报告[R].甘肃省地质调查院,2007.
    [174]Corfu F, Hanchar J M, Hoskin P W, et al. Atlas of zircon textures[J]. Reviews in mineralogy and geochemistry.2003,53(1):469-500.
    [175]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报.2004,49(16):1589-1604.
    [176]Pidgeon R T, Nemchin A A, Hitchen G J. Internal structures of zircons from Archaean granites from the Darling Range batholith:implications for zircon stability and the interpretation of zircon U-Pb ages[J]. Contributions to Mineralogy and Petrology.1998,132(3):288-299.
    [177]Hoskin P, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of metamorphic Geology.2000,18(4):423-439.
    [178]Bomparola R M, Ghezzo C, Belousova E, et al. Resetting of the U-Pb Zircon System in Cambro-ordovician intrusives of the deep freeze range, Northern Victoria Land, Antarctica[J]. Journal of Petrology.2007,48(2):327-364.
    [179]Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:geochronology of the Ivrea Zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology.1999,134(4):380-404.
    [180]Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to mineralogy and petrology.1976,58(1): 63-81.
    [181]Sun S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications.1989, 42(1):313-345,
    [182]张宏飞,陈岳龙.南秦岭宁陕地区花岗岩类Pb, Sr, Nd同位素组成及其深部地质信息[J].岩石矿物学杂志.1997,16(1):22-32.
    [183]刘红杰,陈衍景,毛世东,等.西秦岭阳山金矿带花岗斑岩元素及Sr-Nd-Pb同位素地球化学[J].岩石学报.2008,24(5):1101-1111.
    [184]陈岳龙,李大鹏,周建,等.中国西秦岭碎屑锆石U-Pb年龄及其构造意义[J].地学前缘.2008,15(4):88-107.
    [185]郭安林,张国伟,孙延贵,等.青海省共和盆地周缘晚古生代镁铁质火山岩Sr-Nd-Pb同位素地球化学及其地质意义[J].岩石学报.2007,23(4):747-754.
    [186]Guo X Q, Yan Z, Wang Z Q, et al. Middle Triassic arc magmatism along the northeastern margin of the Tibet:U-Pb and Lu-Hf zircon characterization of the Gangcha complex in the West Qinling terrane, central China[J]. Journal of the Geological Society.2012,169(3):327-336.
    [187]Gerdes A, Zeh A. Zircon formation versus zircon alteration-new insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt[J]. Chemical Geology.2009,261(3):230-243.
    [188]Vervoort J D, Patchett P J, Blichert-Toft J, et al. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system[J]. Earth and Planetary Science Letters.1999, 168(1):79-99.
    [189]Condon D J, Bowring S A. A user's guide to Neoproterozoic geochronologyfj]. Geological Society, London, Memoirs.2011,36(1):135-149.
    [190]Miller J S, Matzel J E, Miller C F, et al. Zircon growth and recycling during the assembly of large, composite arc plutons[J]. Journal of Volcanology and Geothermal Research.2007,167(1): 282-299.
    [191]Lima S M, Corfu F, Neiva A, et al. Dissecting Complex Magmatic Processes:an in-depth U-Pb Study of the Pavia Pluton, Ossa-Morena Zone, Portugal[J]. Journal of Petrology.2012, 53(9):1887-1911.
    [192]Corfu F. A century of U-Pb geochronology:The long quest towards concordance[J]. Geological Society of America Bulletin.2013,125(1-2):33-47.
    [193]Castifleiras P, Garcia F D, Barreiro J G. REE-assisted U-Pb zircon age (SHRIMP) of an anatectic granodiorite:Constraints on the evolution of the A Silva granodiorite, Iberian allochthonous complexes[J]. Lithos.2010,116(1):153-166.
    [194]Ludwig K R, Mundil R. Extracting reliable U-Pb ages and errors from complex populations of zircons from Phanerozoic tuffs[J]. Geochimica et Cosmochimica Acta.2002,66(15A):463.
    [195]Shirey S B, Hanson G N. Mantle-derived Archaean monozodiorites and trachyandesites[J]. 1984. Nature.1984,310:222-224.
    [196]Stern R A, Hanson G N, Shirey S B. Petrogenesis of mantle-derived, LILE-enriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern Superior Province[J]. Canadian Journal of Earth Sciences.1989,26(9):1688-1712.
    [197]Smithies R H, Champion D C. The Archaean high-Mg diorite suite:links to tonalite-trondhjemite-granodiorite magmatism and implications for early Archaean crustal growth[J], Journal of Petrology.2000,41(12):1653-1671.
    [198]Yogodzinski G M, Volynets O N, Koloskov A V, et al. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far western Aleutians[J]. Journal of Petrology.1994,35(1):163-204.
    [199]Kelemen P B, Yogodzinski G M, Scholl D W. Along-strike variation in the Aleutian island arc: Genesis of high Mg# andesite and implications for continental crust[J]. Geophysical Monograph Series.2003,138:223-276.
    [200]Tatsumi Y. High-Mg andesites in the Setouchi Volcanic Belt, Southwestern Japan:analogy to Archean magmatism and continental crust formation?[J]. Annu. Rev. Earth. Planet. Sci.2006,34: 467-499.
    [201]Hirose K. Melting experiments on Iherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts[J]. Geology.1997,25(1):42-44.
    [202]Shimoda G, Tatsumi Y, Nohda S, et al. Setouchi high-Mg andesites revisited:geochemical evidence for melting of subducting sediments[J]. Earth and Planetary Science Letters.1998, 160(3):479-492.
    [203]Wood B J, Turner S P. Origin of primitive high-Mg andesite:Constraints from natural examples and experiments[J]. Earth and Planetary Science Letters.2009,283(1):59-66.
    [204]Kelemen P B. Genesis of high Mg# andesites and the continental crust[J]. Contributions to Mineralogy and Petrology.1995,120(1):1-19.
    [205]Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa[J]. Chemical Geology.1999,160(4): 335-356.
    [206]Rapp R P, Norman M D, Laporte D, et al. Continent formation in the Archean and chemical evolution of the cratonic lithosphere:melt-rock reaction experiments at 3-4 GPa and petrogenesis of Archean Mg-diorites (sanukitoids)[J]. Journal of Petrology.2010,51(6): 1237-1266.
    [207]Streck M J, Leeman W P, Chesley J. High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination, not a primitive mantle melt[J]. Geology.2007,35(4): 351-354.
    [208]Kamei A, Owada M, Nagao T, et al. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc:evidence from clinopyroxene and whole rock compositions[J]. Lithos.2004,75(3):359-371.
    [209]Tatsumi Y. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, Ⅱ. Melting phase relations at high pressures[J]. Earth and Planetary Science Letters.1982,60(2): 305-317.
    [210]Kawabata H, Shuto K. Magma mixing recorded in intermediate rocks associated with high-Mg andesites from the Setouchi volcanic belt, Japan:implications for Archean TTG formationfJ]. Journal of volcanology and geothermal research.2005,140(4):241-271.
    [211]Tatsumi Y, Suzuki T, Kawabata H, et al. The petrology and geochemistry of Oto-Zan composite lava flow on Shodo-Shima Island, SW Japan:remelting of a solidified high-Mg andesite magma[J]. Journal of Petrology.2006,47(3):595-629.
    [212]Belousova E A, Griffin W L, O'Reilly S Y. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling:examples from Eastern Australian granitoids[J]. Journal of Petrology.2006,47(2):329-353.
    [213]Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis:in situ U-Pb dating and Hf-isotope analysis of zircons[J]. Contributions to Mineralogy and Petrology.2007, 153(2):177-190.
    [214]Kelemen P B, Hanghoj K, Greene A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[J]. Treatise on geochemistry.2003,3:593-659.
    [215]Johannes W, Holtz F. Petrogenesis and experimental petrology of granitic rocks[M]. Springer Berlin,1996.
    [216]Springer W, Seek H A. Partial fusion of basic granulites at 5 to 15 kbar:implications for the origin of TTG magmas[J]. Contributions to Mineralogy and Petrology.1997,127(1-2):30-45.
    [217]Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar:implications for continental growth and crust-mantle recycling[J], Journal of Petrology.1995,36(4):891-931.
    [218]Winther K T. An experimentally based model for the origin of tonalitic and trondhjemitic melts[J]. Chemical Geology.1996,127(1):43-59.
    [219]Barbarin B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:nature, origin, and relations with the hosts[J]. Lithos. 2005,80(1):155-177.
    [220]White A J, Chappell B W, Wyborn D. Application of the restite model to the Deddick granodiorite and its enclaves — a reinterpretation of the observations and data of Maas et al.(1997)[J]. Journal of Petrology.1999,40(3):413-421.
    [221]Vernon R H. Crystallization and hybridism in microgranitoid enclave magmas:microstruetural evidence[J]. Journal of Geophysical Research:Solid Earth (1978-2012).1990,95(B11): 17849-17859.
    [222]Tepper J H, Kuehner S M. Geochemistry of mafic enclaves and host granitoids from the Chilliwack Batholith, Washington:chemical exchange processes between coexisting mafic and felsic magmas and implications for the interpretation of enclave chemical traits[J]. The Journal of geology.2004,112(3):349-367.
    [223]Vernon R H. Microgranitoid enclaves in granites—globules of hybrid magma quenched in a plutonic environment[J]. Nature.1984,309(5967):438-439.
    [224]Vernon R H. Restite, xenoliths and microgranitoid enclaves in granites[M].1983.
    [225]Dodge F, Kistler R W. Some Additional Observations on Inclusions in the Granitic Rocks of the Sierra Nevada[J]. Journal of Geophysical Research.1990,95(B11):17817-17841,848.
    [226]Dahlquist J A. Mafic microgranular enclaves:early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina[J]. Journal of South American Earth Sciences.2002,15(6):643-655.
    [227]Ilbeyli N, Pearce J A. Petrogenesis of igneous enclaves in plutonic rocks of the Central Anatolian Crystalline Complex, Turkey[J]. International Geology Review.2005,47(10): 1011-1034.
    [228]Donaire T, Pascual E, Pin C, et al. Microgranular enclaves as evidence of rapid cooling in granitoid rocks:the case of the Los Pedroches granodiorite, Iberian Massif, Spain[J]. Contributions to Mineralogy and Petrology.2005,149(3):247-265.
    [229]Esna-Ashari A, Hassanzadeh J, Valizadeh M. Geochemistry of microgranular enclaves in Aligoodarz Jurassic arc pluton, western Iran:implications for enclave generation by rapid crystallization of cogenetic granitoid magma[J]. Mineralogy and Petrology.2011,101(3-4): 195-216.
    [230]Pascual E, Donaire T, Pin C. The significance of microgranular enclaves in assessing the magmatic evolution of a high-level composite batholith:A case on the Los Pedroches Batholith, Iberian Massif, Spain[J]. Geochemical Journal.2008,42(2):177-198.
    [231]Pin C, Binon M, Belin J M, et al. Origin of microgranular enclaves in granitoids:Equivocal Sr-Nd Evidence From Hercynian Rocks in the Massif Central (France)[J]. Journal of Geophysical Research:Solid Earth (1978-2012).1990,95(B11):17821-17828.
    [232]Lesher C E. Decoupling of chemical and isotopic exchange during magma mixing[J].1990.
    [233]Lesher C E. Kinetics of Sr and Nd exchange in silicate liquids:theory, experiments, and applications to uphill diffusion, isotopic equilibration, and irreversible mixing of magmas[J]. Journal of Geophysical Research:Solid Earth (1978-2012).1994,99(B5):9585-9604.
    [234]Allen C M. Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California:Mineral, chemical, and isotopic evidencefJ]. American Mineralogist;(United States). 1991,76.
    [235]Metcalf R V, Smith E I, Walker J D, et al. Isotopic disequilibrium among commingled hybrid magmas:evidence for a two-stage magma mixing-commingling process in the Mt. Perkins Pluton, Arizona[J]. The Journal of Geology.1995:509-527.
    [236]Eberz G W, Nicholls I A. Chemical modification of enclave magma by post-emplacement crystal fractionation, diffusion and metasomatism[J]. Contributions to Mineralogy and Petrology. 1990,104(1):47-55.
    [237]Jiang Y H, Ling H F, Jiang S Y, et al. Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, Southeast China[J]. Journal of Petrology.2005,46(6):1121-1154.
    [238]Cherniak D J, Hanchar J M, Watson E B. Diffusion of tetravalent cations in zircon[J]. Contributions to Mineralogy and Petrology.1997,127(4):383-390.
    [239]Blundy J D, Sparks R. Petrogenesis of mafic inclusions in granitoids of the Adamello Massif, Italy[J]. Journal of Petrology.1992,33(5):1039-1104.
    [240]Watson E B. Basalt contamination by continental crust:some experiments and models[J]. Contributions to Mineralogy and Petrology.1982,80(1):73-87.
    [241]Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evoIution[J]. Lithos.2005,79(1):1-24.
    [242]Topuz G, Altherr R, Schwarz W H, et al. Post-collisional plutonism with adakite-like signatures: the Eocene Saraycik granodiorite (Eastern Pontides, Turkey)[J]. Contributions to Mineralogy and Petrology.2005,150(4):441-455.
    [243]Rollinson H R, Rollinson H R. Using geochemical data:evaluation, presentation, interpretation[M]. Longman Scientific & Technical Essex,1993.
    [244]Icenhower J, London D. Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous meIt[J]. American Mineralogist.1996,81(5):719-734.
    [245]Roberts M P, Clemens J D. Origin of high-potassium, talc-alkaline,I-type granitoids[J]. Geology.1993,21(9):825-828.
    [246]Sisson T W, Ratajeski K, Hankins W B, et al. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology.2005,148(6):635-661.
    [247]Hirt W H. Petrology of the Mount Whitney Intrusive Suite, eastern Sierra Nevada, California: Implications for the emplacement and differentiation of composite felsic intrusions[J]. Geological Society of America Bulletin.2007,119(9-10):1185-1200.
    [248]Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos.1998,45(1):29-44.
    [249]Barbarin B. Genesis of the two main types of peraluminous granitoids[J]. Geology.1996,24(4): 295-298.
    [250]Villaros A, Stevens G, Buick I S. Tracking S-type granite from source to emplacement:Clues from garnet in the Cape Granite Suite[J]. Lithos.2009,112(3):217-235.
    [251]Lackey J S, Erdmann S, Hark J S, et al. Tracing garnet origins in granitoid rocks by oxygen isotope analysis:examples from the South Mountain Batholith, Nova Scotia[J]. The Canadian Mineralogist.2011,49(2):417-439.
    [252]Whitney D L, Evans B W. Abbreviations for names of rock-forming minerals[J]. American mineralogist.2010,95(1):185.
    [253]Le Maitre R W, Bateman P, Dudek A, et al. A classification of igneous rocks and glossary of terms:Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Blackwell Oxford,1989.
    [254]Vielzeuf D, Holloway J R. Experimental determination of the fluid-absent melting relations in the pelitic system[J]. Contributions to Mineralogy and Petrology.1988,98(3):257-276.
    [255]Patiffo Douce A E, Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology.1998,39(4):689-710.
    [256]Patiffo Douce A E, Johnston A D. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology.1991,107:202-218.
    [257]Montel J, Vielzeuf D. Partial melting of metagreywackes, Part Ⅱ. Compositions of minerals and melts[J]. Contributions to Mineralogy and Petrology.1997,128(2-3):176-196.
    [258]Patifio Douce A E, Beard J S. Effects of P, f (O 2) and Mg/Fe ratio on dehydration melting of model metagreywackes[J]. The Journal of Petrology.1996,37(5).
    [259]Zhang H F, Harris N, Parrish R, et al. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform[J]. Earth and Planetary Science Letters.2004, 228(1):195-212.
    [260]King J, Harris N, Argles T, et al. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet[J]. Geological Society of America Bulletin.2011,123(1-2): 218-239.
    [261]Alonso-Perez R, Muntener O, Ulmer P. Igneous garnet and amphibole fractionation in the roots of island arcs:experimental constraints on andesitic liquids[J]. Contributions to Mineralogy and Petrology.2009,157(4):541-558.
    [262]Patiffo Douce A E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geological Society of London Special Publications. 1999,168:55-75.
    [263]Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos.1999,46(3):535-551.
    [264]Champion D C, Bultitude R J. The geochemical and SrNd isotopic characteristics of Paleozoic fractionated S-types granites of north Queensland:Implications for S-type granite petrogenesis[J]. Lithos.2013,162-163(0):37-56.
    [265]杨立朋.青海省循化县谢坑铜金矿矽卡岩成因[D].中国地质大学(北京),2008.
    [266]Sisson T W, Grove T L. Temperatures and H2O contents of low-MgO high-alumina basa!ts[J]. Contributions to Mineralogy and Petrology.1993,113(2):167-184.
    [267]Crawford A J, Falloon T J, Eggins S. The origin of island arc high-alumina basalts[J]. Contributions to Mineralogy and Petrology.1987,97(3):417-430.
    [268]Wagner T P, Donnelly-Nolan J M, Grove T L. Evidence of hydrous differentiation and crystal accumulation in the low-MgO, high-A12O3 Lake Basalt from Medicine Lake volcano, California[J]. Contributions to Mineralogy and Petrology.1995,121(2):201-216.
    [269]Danyushevsky L V. The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas[J]. Journal of Volcanology and Geothermal Research.2001,110(3): 265-280.
    [270]Dokuz A. A slab detachment and delamination model for the generation of Carboniferous high-potassium I-type magmatism in the Eastern Pontides, NE Turkey:The Kose composite pluton[J]. Gondwana Research.2011,19(4):926-944.
    [271]Elliott T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc[J]. Journal of Geophysical Research:Solid Earth (1978-2012).1997,102(B7): 14991-15019.
    [272]Class C, Miller D M, Goldstein S L, et al. Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc[J]. Geochemistry, Geophysics, Geosystems.2000,1(6).
    [273]Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Sciences.1995,23:251-286.
    [274]Hawkesworth C J, Turner S P, Mcdermott F, et al. U-Th isotopes in arc magmas:Implications for element transfer from the subducted crust[J]. Science.1997,276(5312):551-555.
    [275]Rushmer T. Partial melting of two amphibolites:contrasting experimental results under fluid-absent conditions[J]. Contributions to Mineralogy and Petrology.1991,107(1):41-59.
    [276]Wolf M B, Wyllie P J. Dehydration-melting of amphibolite at 10 kbar:the effects of temperature and time[J]. Contributions to Mineralogy and Petrology.1994,115(4):369-383.
    [277]Guo F, Nakamuru E, Fan W, et al. Generation of Palaeocene adakitic andesites by magma mixing; Yanji Area, NE China[J]. Journal of Petrology.2007,48(4):661-692.
    [278]郭安林,张国伟,强娟,等.青藏高原东北缘印支期宗务隆造山带[J].岩石学报.2009,25(1):1-12.
    [279]陈丹玲,刘良,车自成,等.祁漫塔格印支期铝质A型花岗岩的确定及初步研究[J].地球化学.2001,30(6):540-546.
    [280]刘云华,莫宣学,喻学惠,等.东昆仑野马泉地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报.2006,10.
    [281]刘成东,莫宣学,罗照华,等.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据[J].科学通报.2004,49(6):596-602.
    [282]刘成东.东昆仑造山带东段花岗岩岩浆混合作用[M].地质出版社,2008.
    [283]常有英,李建放,张军,等.青海那陵郭勒河东晚三叠世侵入岩形成环境及年代学研究[J].西北地质.2009,42(1):57-65.
    [284]李世金,孙丰月,丰成友,等.青海东昆仑鸭子沟多金属矿的成矿年代学研究[J].地质学报.2008,82(7):949-955.
    [285]詹发余,古凤宝,李东生,等.青海东昆仑埃达克岩的构造环境及成矿意义[J].地质学报.2007,81(10):1352-1368.
    [286]孙雨,裴先治,丁仨平,等.东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据[J].地质学报.2009,83(7):1000-1010.
    [287]王松,丰成友,李世金,等.青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义[J].中国地质.2009,36(1):74-84.
    [288]吴芳,张绪教,张永清,等.东昆仑闹仓坚沟组流纹质凝灰岩锆石U-Pb年龄及其地质意义[J].地质力学学报.2010,16(001):44-50.
    [289]强娟.青藏高原东北缘宗务隆构造带花岗岩及其构造意义[D].西北大学,2008.
    [290]Zhang H, Parrish R, Zhang L, et al. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau:implication for lithospheric delamination[J]. Lithos.2007,97(3):323-335.
    [291]Zhang H, Zhang L, Harris N, et al. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau:constraints on petrogenesis and tectonic evolution of the basement[J]. Contributions to Mineralogy and Petrology.2006,152(1): 75-88.
    [292]Xiao L, Zhang H F, Clemens J D, et al. Late Triassic granitoids of the eastern margin of the Tibetan Plateau:Geochronology, petrogenesis and implications for tectonic evolution[J]. Lithos. 2007,96(3):436-452.
    [293]Yuan C, Zhou M, Sun M, et al. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China:Magmatic response to geodynamics of the deep Iithosphere[J]. Earth and Planetary Science Letters.2010,290(3):481-492.
    [294]赵永久,袁超,周美夫,等.松潘甘孜造山带早侏罗世的后造山伸展:来自川西牛心沟和四姑娘山岩体的地球化学制约[J].地球化学.2007,36(2):139-152.
    [295]时章亮,张宏飞,蔡宏明.松潘造山带马尔康强过铝质花岗岩的成因及其构造意义[J].地球科学(中国地质大学学报).2009,4:3.
    [296]蔡宏明,张宏飞,徐旺春,等.松潘带印支期岩石圈拆沉作用新证据:来自火山岩岩石成因的研究[J].中国科学:地球科学.2010(11):1518-1532.
    [297]胡健民,孟庆任,石玉若,等.松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义[J].岩石学报.2005,21(3).
    [298]Cai H M, Zhang H F, Xu W C. U-Pb Zircon Ages, Geochemical and Sr-Nd-Hf Isotopic Compositions of Granitoids in Western Songpan-Garze Fold Belt:Petrogenesis and Implication for Tectonic Evolution[J]. Journal of Earth Science.2009,20(4):681-698.
    [299]莫宜学,罗照华,邓晋福,等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报.2007,13(3):403-414.
    [300]谌宏伟,罗照华,莫宜学,等.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制[J].中国地质.2005,32(3):386-395.
    [301]任纪舜.昆仑一秦岭造山系的几个问题[J].西北地质.2004,37(1):1-5.
    [302]殷鸿福,张克信.中央造山带的演化及其特点[J].地球科学.1998,23(5):437-442.
    [303]陈守建,李荣社,计文化,等.昆仑造山带二叠纪岩相古地理特征及盆山转换探讨[J].中国地质.2010,37(002):374-393.
    [304]吴福元,黄宝春,叶凯,等.青藏高原造山带的垮塌与高原隆升[J].岩石学报.2008,24(1):1-30.
    [305]Herve F, Pankhurst R J, Fanning C M, et al. The South Patagonian batholith:150 my of granite magmatism on a plate margin[J]. Lithos.2007,97(3):373-394.
    [306]Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews.2005,68(3): 173-196.
    [307]Huw Davies J, von Blanckenburg F. Slab breakoff:a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters.1995,129(1):85-102.
    [308]Blanckenburg F, Davies J H. Slab breakoff:a model for syncollisional magmatism and tectonics in the Alps[J]. Tectonics.1995,14(1):120-131.
    [309]Maheo G, Guillot S, Blichert-Toft J, et al. A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet[J]. Earth and Planetary Science Letters.2002, 195(1):45-58.
    [310]Atherton M P, Ghani A A. Slab breakoff:a model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, IrelandfJ]. Lithos. 2002,62(3):65-85.
    [311]Altunkaynak S. Collision-driven slab breakoff magmatism in Northwestern Anatolia, Turkey [J]. The Journal of geology.2007,115(1):63-82.
    [312]Massonne H. Involvement of crustal material in delamination of the lithosphere after continent-continent collision[J]. International Geology Review.2005,47(8):792-804.
    [313]Lustrino M. How the delamination and detachment of lower crust can influence basaltic magmatism[J]. Earth-Science Reviews.2005,72(1):21-38.
    [314]Gutierrez-Alonso G, Murphy J B, Fernandez-Suarez J, et al. Lithospheric delamination in the core of Pangea:Sm-Nd insights from the Iberian mantle[J]. Geology.2011,39(2):155-158.
    [315]Kay R W, Mahlburg Kay S. Delamination and delamination magmatism[J]. Tectonophysics. 1993,219(1):177-189.
    [316]Maheo G, Blichert-Toft J, Pin C, et al. Partial melting of mantle and crustal sources beneath South Karakorum, Pakistan:implications for the Miocene geodynamic evolution of the India-Asia convergence zone[J]. Journal of Petrology.2009,50(3):427-449.
    [317]Duretz T, Gerya T V, May D A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response[J]. Tectonophysics.2011,502(1):244-256.
    [318]Rogers R D, Karason H, van der Hilst R D. Epeirogenic uplift above a detached slab in northern Central America[J]. Geology.2002,30(11):1031-1034.
    [319]van Hunen J, Allen M B. Continental collision and slab break-off:A comparison of 3-D numerical models with observations[J]. Earth and Planetary Science Letters.2011,302(1):27-37.
    [320]殷鸿福.秦岭及邻区三叠系[M].中国地质大学出版社,1992.
    [321]郑德文,张培震,万景林,等.西秦岭北缘中生代构造活动的40Ar/39Ar, FT热年代学证据 [J].岩石学报.2004,20(3):697-706.
    [322]Muntener O, Kelemen P, Grove T. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites:an experimental study[J]. Contributions to Mineralogy and Petrology.2001,141:643-658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700