用户名: 密码: 验证码:
基于凹腔的超声速燃烧火焰稳定技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文选取基于凹腔的超声速燃烧火焰稳定技术为研究对象,对凹腔燃烧流动过程和凹腔火焰稳定器性能进行了全面深入研究。
     在冷流条件下,研究了气体/液体喷流与凹腔流动之间的相互作用。结果表明:气体/液体喷流对凹腔整体流动特征的影响是一致的,凹腔上游/底壁喷流破坏了当地附面层或剪切层,导致凹腔剪切层偏向主流方向;凹腔前壁喷注对凹腔流场特征基本无影响。
     在燃烧状态下,对基于常温液体煤油燃料的凹腔火焰稳定器的燃烧与流动特征进行了试验研究,并比较了不同当量比和不同燃料喷注方式。研究发现:凹腔上游喷注的液体燃料能够迅速雾化、蒸发,并在较短距离内依靠对流输运过程进入凹腔内部;凹腔后壁始终是凹腔火焰驻留的主要区域,在贫油极限时,也是唯一区域,并存在明显的火焰由后壁向前壁的传播过程;燃烧状态下的凹腔剪切层以较大角度向下游主流发展,不再附着于凹腔后壁,与冷流中的凹腔流场特征相差较大。
     对基于常温液体煤油燃料的凹腔火焰稳定器的贫油稳焰范围进行了试验研究,比较了不同凹腔结构尺寸和不同喷注方式。研究发现:凹腔深度和长深比对凹腔火焰稳定器的贫油极限影响较大,贫油稳焰范围与深度、长深比成正比,随后壁倾斜角的增大先增大后减小。而且,贫油稳焰范围与稳焰效率受喷注方式影响较大,在凹腔上游喷注基础上,辅加凹腔底壁或凹腔前壁喷注都会减小稳焰范围、降低稳焰效率。
     利用直连式试验台推力测量系统,对凹腔火焰稳定器的阻力特性进行了试验研究,主要对不同喷注方式、不同当量比时的热试阻力特性进行了对比和分析。研究发现:凹腔火焰稳定器热试阻力小于冷流阻力,并随着当量比的增加而减小,最终会表现为正推力。
     综合论文研究成果,提出了多凹腔燃烧室设计技术。经过模型超燃冲压发动机和单模块超燃冲压发动机试验验证,该技术具有优良的火焰稳定性能,并有助于实现高效率燃烧。
The flame holding technology based on cavity in supersonic combustion was studied systematically and comprehensively.
     The interaction between gas/liquid injection and cavity flow were studied in non-reaction flows. Results indicate that the characteristics of cavity flowfield were altered similarly by gas and liquid injection. The local boundary layer or shear layer are modified by injection on upstream/bottom wall of cavity, and the cavity shear layer immediately becomes angled with respect to the main flow direction. The injection on fore wall of cavity has little effect on the characteristics of cavity flowfield.
     The combustion and flow process of cavity flame holder with liquid kerosene fuel on room temperature were investigated experimentally, with different fuel equivalence ratio and injection schemes. It is found that the liquid kerosene of injection upstream cavity could finish the process of atomization and evaporation in short distance, and enter into cavity through convection. Aft wall is the primarily area of flame holding in cavity, and the only area when near the lean blowout limit, flame in area of fore wall are spread from it. Cavity shear layer in reaction flow angle greatly to the main flow direction, and couldn’t reattach to aft wall anymore, it appears great difference in characteristics of cavity flowfield between non-reaction and reaction state.
     Experiments on the lean blowout limit of cavity flame holder with liquid kerosene fuel on room temperature were conducted with various cavities and injection schemes. The result indicates that the range of stable lean operation varies greatly for different cavity depth D and length-depth-ratio L/D, it increases with increasing D and L/D, and increases, followed by decreasing with increasing incline angle of aft wall. Adding injection on bottom or fore wall of cavity, based on chief injections on upstream, provides worse lean flameholding performance.
     Experiments on the drag of cavity flame holder were conducted by force measurement system. The result of investigation on drags of cavities under combustion condition, with different injection schemes and fuel equivalence ratio, indicates that it is smaller than it’s of cold flow, and decreases with increasing fuel equivalence ratio, and could be converted into the
引文
[1] Murthy, S. N. B., E. T. Curran. High-speed flight propulsion systems. Volume 137. Progress in astronautics and aeronautics, AIAA 1991.
    [2] 龙玉珍. 高超音速巡航导弹用超燃冲压发动机特点与设计方案. 飞航导弹, 1997(8): 29~37.
    [3] E. T. Curran, Murthy, S. N. B. Scramjet Propulsion. Volume 189. Progress in astronautics and aeronautics, AIAA 2002.
    [4] E. T. Curran. Scramjet Engines: The first Forty Years. Journal of Propulsion and Power. 2001, 17(6): 1138~1148.
    [5] E. H. Andrews. Scramjet Development and Testing in the United States. AIAA Paper 2001-1927. 2001.
    [6] P. J. Waltrup. Liquid Fueled Supersonic Combustion Ramjet: A Research Perspective of the Past, Present and Future. AIAA Paper 86-0158, 1986.
    [7] P. J. Waltrup. Liquid-Fueled Supersonic Combustion Ramjets: A Research Perspective. Journal of Propulsion and Power. 1987, 3(6):515~524.
    [8] P. J. Waltrup, M. E. White, F. Zarlingo, E. S. Cravlin. History of U.S Navy Ramjet, Scramjet, and Mix-Cycle Propulsion Development. Journal of Propulsion and Power. 2002, 18(1):14~17.
    [9] C. R. McClinton, F. L. hunt, R. H. Ricketts, P. Reukauf, C. L. Peddie. Airbreathing Hypersonic Technology Vision Vehicles and Development dreams AIAA Paper 99-4978. 1999.
    [10] G. F. Orton. Air-Breathing Hypersonic Research at Boeing Phantom Works. AIAA Paper2002-5251, 2002.
    [11] http://hapb-www.larc.nasa.gov/public/Projects/Hyperx.html.
    [12] C. E. Cockrell, W. C. Engelund, R. D. Bittner. Integrated Aero-Propulsive CFD Methodology for the Hyper-X flight Experiment. AIAA Paper 2000-4010, 2000.
    [13] R. R. Kazmar. Hypersonic Propulsion at Pratt & Whitney – Overview. AIAA Paper 2002-5144, 2002.
    [14] R. T. Voland, A. H. Auslender, M. K. Smart, A. S. Roudakov, V. L. Semenov, V. Kopchenov. CIAM/NASA Mach 6.5 Scramjet Flight and Ground Test. AIAA Paper 99-4848, 1999.
    [15] L. Bezgin, O. Gouskov, V. Kopchenov, I. Laskin. CFD Support of the Development of Hypersonic Flight Laboratory and Model Scramjet. AIAA Paper 2002-5125, 2002.
    [16] L. Serre, F. Falempin. PROMETHEE: the French military hypersonic propulsion program status in 2002. AIAA Paper 2002-5141, 2002.
    [17] F. Falempin, L. Serre. French R & T Activities on High-Speed Airbreathing Propulsion. International Colloquium on Hypersonic Propulsion. Beijing, China, 2003.
    [18] S. Kobayashi. Japanese Spaceplane Program Overview. AIAA Paper 95-6002, 1995.
    [19] T. Kanda, T. Hiraiwa, T. Mitani, S. Tomioka, N. Chinzei. Mach 6 Testing of a Scramjet Engine Model. Journal of Propulsion and Power. 1997, 13(4):543~551.
    [20] N. Chinzei, T. Kanda. Scramjet Engine Tests at NAL of Japan. International Colloquium on Hypersonic Propulsion. Beijing, China, 2003.
    [21] Y. Wakamatsu, T. Kanda, N. Yatsuyanagi. Preliminary Consideration of Hypersonic Test Vehicle for Scramjet Engine Test. ISTS 2000-g-24, 2000.
    [22] P. Kania. The German Hypersonic Technology Program – Overview. AIAA Paper 95-6005, 1995.
    [23] C. S. Craddock. Computational Optimization of Scramjets and Shock Tunnel Nozzles [Dissertaion]. Department of Mechanical Engineering, The University of Queensland, Brisbane, Australia. 1999.
    [24] http://www.space.com/missionlaunches/hyshot-020816.html.
    [25] 刘陵. 超音速燃烧与超音速燃烧冲压发动机. 西北工业大学出版社. 1993.
    [26] 袁生学. 论超声速燃烧. 中国科学(A 辑). 1998, 28(8): 735~741.
    [27] 袁越. 高超声速飞行技术研究的进展. 中国航天. 1998(7): 20~23.
    [28] 张家骅. 远程攻防对抗和高马赫数冲压发动机的研究. 飞航导弹. 1998(8): 34~37.
    [29] 王淑芬. 美欧加紧对高超声速技术的研究. 飞航导弹. 2000(9): 29~35.
    [30] 周军. 高超声速技术综述. 飞航导弹. 2003(4): 1~8.
    [31] 刘桐林. 未来超声速飞航导弹技术发展思考. 飞航导弹. 2003(3): 15~23.
    [32] 解发瑜, 李刚, 徐忠昌. 高超声速飞行器概念与发展动态. 飞航导弹. 2004(5): 27~31.
    [33] J. M. Tishkoff, J. P. Drummond, T. Edwards, A. S. Nejad. Future Directions of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion. AIAA Paper 97-1017. 1997.
    [34] 盛德林. 反舰导弹的发展趋势. 飞航导弹. 2000(1): 9~14.
    [35] 李文杰. 美国海军研制冲压发动机的历程. 飞航导弹. 2002(10): 47~54.
    [36] 王永寿. 弹用吸气式发动机现状与发展动向. 飞航导弹. 2003(1): 47~53.
    [37] http://www.slinews.com.
    [38] U. B. Mehta, J. V. Bowles. Two-Stage-to-Orbit Spaceplane Concept with Growth Potential. Journal of Propulsion and Power. 2001, 17(6):1147~1161.
    [39] I. I. Pinkle, J. S. Serafini. Graphical Method for Obtaining Flow Field in Two-Dimensional Supersonic Stream to Which Heat is Added. NASA TN-2206. 1950.
    [40] A. Ferri, P. A. Libby, V .Zakkay. Theoretical and Experimental Investigations of SupersonicCombustion. Proceedings of the International Council of the Aeronautical Science. New York, USA, 1964.
    [41] R. J. Weber, J. S. Mackay. An Analysis of Ramjet Engines Using Supersonic Combustion. NACA TN-4386, 1958.
    [42] F. S. Billig. A Review of External Burning Ramjets. Johns Hopkins Univ. Applied Physics Lab. TG-801, Laurel, MD, 1965.
    [43] A. Ferri. Review of Problems in Application of Supersonic Combustion. Journal of the Royal Aeronautical Society. 1964, 68(645):575~597.
    [44] P. J. Waltrup, G. Y. Anderson, F. D. Stull. Supersonic Combustion Ramjet (Scramjet) Engine Development in the United States. Proceedings of the third International symposium on Air Breathing Engines. 1976: 835~862.
    [45] P. J. Waltrup. Hypersonic Airbreathing Propulsion: Evolution and Opportunities. AGARD CP-428, Paper No.12, April 1987.
    [46] F. S. Billig. SCRAM-A Supersonic Combustion Ramjet Missile. AIAA Paper 93-2329. 1993.
    [47] A. Kumar, J. P. Drummond, C. R. McClinton, J. L. Hunt. Research in Hypersonic Airbreathing Propulsion at the NASA Langley Research Center. Proceedings of 15th International Symposium on Airbreathing Engines. Bangalore, India. 2001.
    [48] E. H. Andrews, E. A. Mackley. Review of NASA’s Hypersonic Engine Project. AIAA Paper 93-2323. 1993.
    [49] K. F. Rubert, H. J. Lopez. The NASA Hypersonic Research Engine Program. N92-21521. 1992.
    [50] J. R. Herny, G. Y. Anderson. Design Considerations for Airframe-Integrated Scramjet. NASA TM X-2895. 1973.
    [51] R. C. Rogers, D. P. Capriotti, R. W. Guy. Experimental Supersonic Combustion Research at NASA Langley. AIAA Paper 98-2506. 1998.
    [52] R. L. Chase, M. H. Tang. A History of the NASP Program from the Formation of the joint Program Office to the Termination of the HySTP Scramjet Performance Demonstration Program. AIAA Paper 95-6051. 1995.
    [53] B. Waldman, P. Harsha. NASP- A Maturing Technology Base. AIAA Paper 93-5173. 1993.
    [54] D. K. Terry. NASP: A National Utility Review. SAE Paper-911170. 1990.
    [55] http://www.fas.org/irp/mystery/nasp.htm
    [56] R. A. Mercier, J. W. Weber. US Air force Hypersonic Technology Program. AIAA Paper 1996.
    [57] R. F. Faulkner, J. W. Weber. Hydrocarbon Scramjet Propulsion System Development, Demonstration and Application. AIAA Paper 99-4922. 1999.
    [58] Review and Evaluation of the Air Force Hypersonic Technology Program. ADA-351152. 1998.
    [59] F. S. Billg. Supersonic Combustion Ramjet Missile. Journal of Propulsion and Power, 1995, 11(6):1139~1146.
    [60] H. F. Nelson, D. G. Hillstorm. Aerodynamic Interference for Hypersonic Missiles at Low Angle of Attack. Journal of Spacecraft and Rockets, 1998,35(6): 749~754.
    [61] R. M. Stuckey, M. J. Lewis. Hypersonic Missile Requirements and Operational Tradeoff Studies. Journal of Spacecraft and Rockets, 2003,40(2): 292~293.
    [62] 蔡国飙, 李惠峰, 徐大军. 高超声速飞行器技术发展战略研究. 国防科技报告. 2002.
    [63] 丛敏. 美国的高超声速导弹计划. 飞航导弹. 1999(8): 23.
    [64] http://www.newscientist.com/article.ns?id=dn4408
    [65] P. L. Moses, K. A. Bouchard, R. F. Vause, S. Z. Pinckney. An Airbreathing Launch Vehicle Design with Turbine-Based Low-Speed Propulsion and Dual Mode Scramjet High-Speed Propulsion. AIAA Paper 99-4948. 1999.
    [66] L. F. Scuderi, G. F. Orton, J. L. Hunt. Mach 10 Cruise/Space Access Vehicle Study. AIAA Paper 98-1584.1998.
    [67] C. E. Cockrell, A. H. Auslender, R. W. Guy, C. R. McClinton, S. S. Welch. Technology Roadmap for Dual-Mode Scramjet Propulsion to Support Space-Access Vision Vehicle Development. AIAA Paper 2002-5188. 2002.
    [68] U. Hueter, C. R. McClinton. NASA’s Advanced Space Transportation Hypersonic Program. AIAA Paper 2002-5175. 2002.
    [69] V. L. Rausch, C. R. McClinton, J. L. Crawford. Hyper-X: Flight Validation of Hypersonic Airbreathing Technology. Proceedings of 13th International Symposium on Air Breathing Engines. ISABE Paper 97-7024. 1997.
    [70] D. R. Rausch, C. R. McClinton. Hyper-X Program Overview. Proceedings of 14th International Symposium on Air Breathing Engines. ISABE Paper 99-7213. 1999.
    [71] C. R. McClinton, D. R. Rausch. Hyper-X Program Status. AIAA Paper 2001-1910. 2001.
    [72] R. T. Voland, K. E. Rock, L. D. Huebner, D. W. Witte, K. E. Fischer, C. R. McClinton. Hyper-X Engine Design and Ground Test Program. AIAA Paper 98-1532. 1998.
    [73] L. D. Huebner, K. E. Rock, E. G. Ruf, D. W. Witte. Hyper-X Flight Engine Ground Testing for X-43 Flight Risk Reduction. AIAA Paper 2001-1809. 2001.
    [74] http://www.space.com/businesstechnology/technology/x43a_destroyed_010602.html
    [75] http://www.space.com/missionlaunches/x43_launch_040327.html
    [76] http://www.nasa.gov/home/hqnews/2004/nov/HQ_04373_x43a_scramjet.html
    [77] R. A. Mercier, T. M. F. Ronald. Hypersonic Technology (HyTech) Program Overview. AIAA Paper 98-1566. 1998.
    [78] R. A. Mercier, Robert, McClinton. Hypersonic Propulsion – Transforming the Future of Flight. AIAA Paper 2003-2732. 2003.
    [79] Boudreau, Albert. Status of the U.S. Air Force HyTech Program. AIAA Paper 2003-6947. 2003.
    [80] Faulkner, Robert. The Evolution of the Hyset Hydrocarbon Fueled Scramjet Engine. AIAA Paper 2003-7005. 2003.
    [81] R. B. Norris. Freejet Test of the AFRL HySET Scramjet Engine Model at Mach 6.5 and 4.5. AIAA Paper 2001-3196. 2001.
    [82] T. Edwards, L. Maurice. HyTech Fuel/Fuel System Research. AIAA Paper 98-1562. 1998.
    [83] R. B. Dirling. Progress in materials and structures evaluation for the HyTech Program. AIAA Paper 98-1591. 1998.
    [84] D. P. Wishart, T. B. Fortin, D. Guinan, D. Modroukas. Design, Fabrication and Testing of an Actively Cooled Scramjet Propulsion System. AIAA Paper 2003-0015. 2003.
    [85] http://www.spaceref.com/news/viewpr.html?pid=11888
    [86] http://www.arpa.gov/tto/programs/hyfly.html
    [87] http://www.aviationnow.com/avnow/news/channel_military.jsp?view=story&id=news/mdcrj0903.xml
    [88] http://www.jhuapl.edu/newscenter/pressreleases/2002/020617.htm
    [89] http://www.onr.navy.mil/media/release_display.asp?ID=107
    [90] J. S. Tyll, R. J. Bakos, J. I. Erdos. Low-Cost Free-Flight Testing of Hypersonic Airbreathing Engines. Proceedings of 15th International Symposium on Airbreathing Engines. ISABE 2001-1072. Bangalore, India. 2001.
    [91] A. S. Roudakov, V. L. Semenov, V. I. Kopchenov, J. W. Hicks. Future flight Test Plans of an Axisymmetric Hydrogen-Fueled Scramjet Engine on the Hypersonic Flying Laboratory. AIAA Paper 96-4572. 1996.
    [92] A. S. Roudakov, V. L. Semenov, J. W. Hicks. Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program. NASA TP-1998-206548. 1998.
    [93] R. T. Voland, A. H. Auslender, M. K. Smart, A. S. Roudakov, V. L. Semensov, V. Kopchenov. CIAM/NASA Mach 6.5 Scramjet Flight and Ground Test. AIAA Paper 99-4848. 1999.
    [94] A. S. Roudakov, V. L. Semenov, M. V. Strokin, V. L. Relin, V. V. Tsyplkov, A. A. Kondralov. The Prospects of Hypersonic Engines In-flight Testing Technology Development. AIAA Paper 2001-1807. 2001.
    [95] V. V. Kislykh, A.A. Kondralov, V. L. Semenov. The Program for the Complex Investigation of the Hypersonic Flight Laboratory (HFL) “IGLA” in the PGU of TSNIIMASH. AIAA Paper 2001-1875. 2001.
    [96] P. W. Sacher, B. Zellner. Flight Testing Objectives for Small Hypersonic Flight Test Vehicles Featuring a Ramjet Engine. AIAA Paper 94-6014. 1994.
    [97] T. M. Berens, N. C. Bissinger. Forebody Precompression Performance of Hypersonic Flight Test Vehicles. AIAA Paper 98-1574.
    [98] Novelli, W. Koschel. FAPHAR: a joing ONERA-DLR research project for high-speed Airbreathing propulsion. Proceedings of 14th International Symposium on Airbreathing Engines. ISABE Paper 99-7091. 1999
    [99] Novelli. Progress of the JAPHAR cooperation between ONERA and DLR on hypersonic Airbreathing propulsion. AIAA Paper 2001-1870. 2001.
    [100] Dessornes, Scherrer, Novelli. Tests of the JAPHAR Dual Mode Ramjet Engine. AIAA Paper 2001-1886. 2001.
    [101] M. Bouchez, F. Falempin, J. P. Minard, V. Levine, V. Avrashkov, D. Davidenko. French-Russian Partnership on Hypersonic Wide Range Ramjets: Status in 2002. AIAA Paper 2002-5254. 2002.
    [102] L. Serre, J. P. Minard. French potential for semi-free jet test of an experimental dual mode ramjet in Mach 4-8 condintions. AIAA Paper 2002-5448. 2002.
    [103] LEA Flight Test Program A First Step towards an Operational Application of High-Speed Airbreathing Propulsion. AIAA Paper 2002-5249.
    [104] F. Falempin, L. Serre. The French PROMETHEE Program Status in 2000. AIAA Paper 2000-3341. 2000.
    [105] L. Serre, F. Falempin. The French PROMETHEE Program on Hydrocarbon Fueled Dual mode Ramjet Status in 2001. AIAA Paper 2001-1871.
    [106] F. Falempin, L. Serre. Promethee – The French Military Hypersonic Propulsion Program. AIAA Paper 2003-6950. 2003.
    [107] F. Heitmeir, R. Lederer, O. Herrmann. German Hypersonic Technology Programme – Airbreathing Propulsion Activities. AIAA Paper 92-5057.
    [108] S. Weingartner, S?NGER – The Reference Concept of the German Hypersonics Technology Program. AIAA Paper 93-5161.
    [109] H. Kuczera, H. Hauck, P. Krammer, P. Sacher. The German Hypersonics Technology Programme Status 1993 and Perspectives. AIAA Paper 93-5159.
    [110] P. Kania. The German Hypersonics Technology Program – Overview. AIAA Paper 95-6005.
    [111] N. H. Voss. Ram Combustor Development within the German Hypersonics Technology Program. AIAA Paper 95-6030.
    [112] http://www.eads.com/frame/lang/es/1024/content/OF00000000400006/6/92/30820926.html
    [113] http://www.bayern-chemie.de/en/news/news_40.html
    [114] 诸运. 德国高超声速导弹达到 Ma=7+的速度. 飞航导弹. 2004(3): 5.
    [115] A. Paull, H. Alesi, S. Anderson. The HyShot Flight Program and how it was developed. AIAA Paper 2002-4939.
    [116] http://www.mech.uq.edu.au/hyper/hyshot/
    [117] A. D. Gardner, K. Hannemann, J. Steelant, A. Paull. Ground Testing of the HyShot Supersonic Combustion Flight Experiment in HEG and Comparison with Flight Data. AIAA Paper 2004-3345.
    [118] Kobayashi S. Japanese Spaceplane Program Overview. AIAA Paper 95-6002.
    [119] General Accounting Office. Aerospace Plane Technology: Research and Development Efforts in Japan an Australia. GAO/NSIAD-92-5. 1991.
    [120] Also: http://www.globalsecurity.org/space/library/report/gao/nsiad92005/index.html
    [121] G. Masuya, N. Chinzei. Experiment of Scramjet Combustors and their Application to a Sub-Scale Engine. Proceedings of the 20th International Symposium on Space Technology and Science. 1994.
    [122] N. Yatsuyanagi, N. Chinzei, Y. Miki. Initial Tests of a Sub-Scale Scramjet Engine. Proceedings of the 12th International Symposium on Air Breathing Engines. 1995.
    [123] T. Kanda, T. Hiraiwa, T. Mitani, S. Tomioka, N. Chinzei. Mach 6 Testing of a Scramjet Engine Model. Journal of Propulsion and Power. 1997,13(4): 543~551.
    [124] T. Mitani, T. Hiraiwa, S. Sato, S. Tomioka, T. Kanda, K. Tani. Comparison of Scramjet Engine Performance in Mach 6 Vitiated and Storage-Heated Air. Journal of Propulsion and Power. 1997,13(5): 635~642.
    [125] T. Kanda, Y. Wakamatsu, F. Ono, K. Kudo, A. Murakami, M. Izumikawa. Mach 8 Testing of a Scramjet Engine Model. AIAA Paper99-0617.
    [126] T. Mitani, T. Hiraiwa, Y. Tarukawa, G. Masuya. Drag and Total Pressure Distributions in Scramjet Engines at Mach 8 Flight. Journal of Propulsion and Power. 2002,18(4): 953~960.
    [127] S. Tomioka, M. Izumikawa, T. Hiraiwa, S. Sato. Enhancement of Ignition Ability in a Model Scramjet Engine. AIAA Paper 96-3240.
    [128] N. Chinzei. On the Isolator for the Scramjet Engines. Proceedings of the 20th International Symposium on Space Technology and Science. 1994.
    [129] K. Tani, T. Kanda, T. Sunami. Geometrical Effects to Aerodynamic Performance of Scramjet Engine. AIAA Paper 97-3018.
    [130] T. Kanda. Study of the Intensive Combustion in the Scramjet Engine. AIAA Paper 98-3123.
    [131] S. Tomioka. Testing of a Scramjet Engine with a Strut at Mach 8 Flight Condition. AIAA Paper 98-3134.
    [132] Y. Sato, M. Sayama, K. Ohwaki, G. Masuya. Effectiveness of Plasma Torches for Ignition and Flameholding in Scramjet. Journal of Propulsion and Power. 1992,8(4): 883~889.
    [133] D. Akihisa, G. Masuya, T. Kanda, K. Tani, K. Kudo. Effects of Airframe Integrated Configuration on Scramjet Inlet Performance. AIAA Paper 2000-0619.
    [134] N. Chinzei, T. Kanda, Hypersonic Propulsion Research at NAL-KPL. International Colloquium on Hypersonic Propulsion. 2003, BeiJing.
    [135] http://www.aiaa.org/aerospace/Article.cfm?issuetocid=380&ArchiveIssueID=40
    [136] 刘陵, 张榛. 超音速燃烧冲压发动机最佳设计参数. 推进技术. 1988, 9(1): 73~78.
    [137] 刘陵, 张榛, 牛海发, 刘敬华. 超音速燃烧室燃烧效率数学模型及气流状态参数的计算. 推进技术. 1989, 10(2): 1~7.
    [138] 刘陵, 张榛, 唐明, 刘敬华等. 氢燃料超音速燃烧室实验研究. 航空动力学报. 1991, 6(3): 267~270.
    [139] 刘兴洲, 刘敬华, 王裕人等. 超声速燃烧实验研究(I). 推进技术. 1991, 12(2): 1~8.
    [140] 刘兴洲, 刘敬华, 王裕人等. 超声速燃烧实验研究(II). 推进技术. 1991, 12(2): 1~8.
    [141] 刘小勇等. 冲压发动机双模态燃烧的理论与试验研究. 航天科工集团三院三十一所. 国防科技报告. 2000.
    [142] Y. Gong, L. J. Guo, et al. Experimental Studies on H2/Air Supersonic Combustion. AIAA Paper 96-4512.
    [143] 张新宇, 陈立红, 顾洪斌, 俞刚. 超燃冲压模型发动机实验设备和实验技术. 力学进展. 2003, 33(4): 491~498.
    [144] 张新宇, 陈立红. 高焓高超声速自由射流风洞的建设与初步实验结果. 第十届全国激波与激波管学术讨论会. 2001.
    [145] 贺伟, 刘伟雄, 白菡尘, 丛京伟, 李向东, 乐嘉陵. 脉冲燃烧风洞及其在超燃冲压发动机试验研究中的应用. 第十届全国激波与激波管学术讨论会. 2001.
    [146] 刘伟雄, 谭宇, 白菡尘, 乐嘉陵. 激波风洞超燃发动机试验初步研究. 第十届全国激波与激波管学术讨论会. 2001.
    [147] 刘卫东, 梁剑寒等. 超燃冲压模型发动机试验研究. 国防科技大学. 国防科技报告.2003.
    [148] 刘伟强, 邹建军等. 单模块超燃冲压发动机试验样机方案及试验技术方案研究. 国防科技大学. 国防科技报告 2003.
    [149] 刘敬华, 刘兴洲, 胡欲立, 凌文辉, 刘陵, 张榛. 超音速气流中氢燃料强化混合的燃烧实验研究. 推进技术, 1996,17(1): 1~7.
    [150] 胡欲立, 刘陵, 刘敬华, 凌文辉. 超音速气流中横喷氢气自动着火与燃烧非定常过程的实验研究. 推进技术. 1996, 17(4): 26~31.
    [151] 胡欲立, 钱志博, 刘敬华, 刘陵. 双模态超音速燃烧室的实验研究. 宇航学报, 1998, 19(2): 55~60.
    [152] 李建国, 俞刚, 李英, 钱大兴. 氢/空气超音速燃烧自燃规律的实验研究. 推进技术, 1997,18(2): 11~15.
    [153] Li Jiang guo, Yu Gong, Zhang Yue, Li Ying, Qian Da xing. Experimental Studies on Self-Ignition of Hydrogen/Air Supersonic Combustion. Journal of Propulsion and Power. 1997, 13(4): 538~542.
    [154] G. Yu, J. G. Li, J. R. Zhao, D. X. Qian, B. Han, Y. Li. Hydrogen-Air Supersonic Combustion Study by Strut Injectors. AIAA Paper 98-3275.
    [155] G. Yu, J. G. Li, et al. Experimental Studies on H2/Air Model Scramjet Combustor. AIAA Paper 99-2449.
    [156] 俞刚, 李建国. 氢/空气超声速燃烧研究. 流体力学实验与测量. 1999, 13(1): 1~12.
    [157] 俞刚, 张新宇. 燃烧室构型对超燃冲压发动机性能影响研究. 流体力学实验与测量. 2000, 14(1): 72~80.
    [158] 俞刚, 李建国, 陈立红, 黄庆生. 煤油-氢双燃料超声速燃烧点火特性研究. 流体力学实验与测量. 2000, 14(1): 63~71.
    [159] G. Yu, J. G. Li, X. Y. Zhang, L. H. Chen. Investigation on Combustion Characteristics of Kerosene – Hydrogen Dual Fuel in a Supersonic Combustor. AIAA Paper 2000-3620.
    [160] G. Yu, J. G. Li, X. Y. Zhang, L. H. Chen, C. J. Sung. Investigation of Kerosene Combustion Characteristics with Pilot Hydrogen in Model Supersonic Combustors. Journal of Propulsion and Power. 2001, 17(6): 1263~1272.
    [161] G. Yu, J. G. Li, X. Y. Zhang, L. H. Chen. Investigation of Fuel Injection and Flame Stabilization in Liquid Hydrocarbon – Fueled Supersonic Combustors. AIAA Paper 2001-3608.
    [162] G. Yu, J. G. Li, S. R. Yang, L. J. Yue, X. Y. Zhang. Investigation of Liquid Hydrocarbon Combustion in Supersonic Flow Using Effervescent Atomization.
    [163] X. J. Fan, G. Yu, J. G. Li, X. Y. Zhang. Performance of a Supersonic Model Combustor using Vaporized Kerosene Injection. AIAA Paper 2004-3485.
    [164] 司徒明, 王子川等. 高温富油燃气超燃试验研究. 推进技术, 1999, 20(6): 75~79.
    [165] 孙英英, 司徒明, 王春, 韩肇元. 双燃烧室中煤油超燃试验研究. 流体力学实验与测量, 2000, 14(1): 51~56.
    [166] 司徒明, 王春, 陆惠萍, 李建国, 俞刚. 一种研究煤油超燃的新方案. 流体力学实验与测量, 2001, 15(3): 7~12.
    [167] 司徒明, 王春, 陆惠萍. 双燃式冲压发动机中富油燃气射流的超燃研究. 推进技术, 2001, 22(3): 237~240.
    [168] 孙英英, 韩肇元, 司徒明, 徐胜利. 一种缩短碳氢燃料-空气混合物点火延迟的方法. 流体力学实验与测量, 2001, 15(2): 28~33.
    [169] 孙英英, 司徒明, 韩肇元等. 碳氢燃料超声速燃烧研究的新方法. 推进技术, 2001, 22(1): 69~71.
    [170] 孙英英, 司徒明, 韩肇元等. 超声速预混科燃气流的点火与燃烧. 工程热物理学报, 2002, 23(6): 776~778.
    [171] 袁生学, 赵伟, 黄志澄. 激波风洞中超声速燃烧现象的初步实验研究. 燃烧科学与技术. 2001. 7(2): 149~152.
    [172] 宋文艳, 黎明, 蔡元虎, 刘伟雄, 白菡尘. 超音速燃烧室碳氢燃料点火实验研究. 中国航空学报(英文版). 2004. 17(2): 65~71.
    [173] 余勇, 丁猛, 刘卫东等. 煤油超音速燃烧的试验研究. 国防科技大学学报. 2004. 26(1): 1~4.
    [174] 王成鹏, 张堃元, 杨建军. 带进气道的隔离段流场实验研究与数值模拟. 推进技术. 2004, 25(1): 27~31.
    [175] 王成鹏, 张堃元, 金志光等. 非均匀超声来流矩形隔离段内流场实验. 推进技术. 2004, 25(4): 349~353.
    [176] 顾洪斌, 陈立红, 张新宇. 超燃冲压发动机侧压式与顶压式进气道实验研究. 第十二界高超声速气动力(热)学术交流会. 2003.
    [177] 杨进军, 张堃元, 徐辉, 徐惊雷. 双模态冲压发动机高超进气道的实验研究. 推进技术. 2001, 22(6): 473~475.
    [178] 张元, 金志光, 王成鹏, 杨建军, 徐惊雷. 四种高超侧压式进气道的对比研究. 2003 年高超声速技术研讨会. 2003.
    [179] 董建明, 刘小勇, 刘世俭, 牛余涛. 超燃冲压模型发动机自由射流试验研究. 2003 年高超声速技术研讨会. 2003.
    [180] X. Y. Zhang, L. H. Chen, H. B. Gu, G. Yu. A Hydrogen/Kerosene Fueled Scramjet Model Test in Free – Jet Tunnel. International Colloquium on Hypersonic Propulsion. Beijing, China, 2003.
    [181] 顾洪斌, 陈立红, 张新宇. 超燃冲压模型发动机自由射流实验及实验技术研究. 2003 年高超声速技术研讨会. 2003.
    [182] 刘卫东, 梁剑寒, 王振国. 碳氢燃料超燃冲压发动机自由射流试验研究. 2003 年高超声速技术研讨会. 2003.
    [183] 刘卫东, 梁剑寒等. 单模块超燃冲压发动机试验样机方案及试验研究. 国防科技大学. 国防科技报告. 2004.
    [184] J. L. Le, W. X. Liu, W. He. CARDC’s New short Duration Facility and Its Application in Scramjet Research. International Colloquium on Hypersonic Propulsion. Beijing, China, 2003.
    [185] 白菡尘, 刘伟雄, 贺伟, 乐嘉陵. M6 氢燃料双模态冲压模型发动机的试验研究. 第十届全国激波与激波管学术讨论会. 2001.
    [186] 刘陵, 唐明, 张榛, 刘敬华. 氢气超音速燃烧非定常过程数值模拟. 推进技术. 1996, 17(3): 1~5.
    [187] 刘陵, 张榛, 胡欲立, 孙惠贤, 刘敬华. 台阶后横喷氢气超音速燃烧流场数值模拟研究. 推进技术. 1996, 17(2): 1~7.
    [188] 梁剑寒, 王承尧. 超燃发动机燃烧室三维化学反应流场的数值模拟. 航空学报. 1998, 19(3):269~274.
    [189] 梁剑寒, 王承尧. 超燃发动机激波增强混合的数值模拟. 空气动力学报. 1999, 17(3): 346~350.
    [190] 梁剑寒, 王正华, 王承尧. 斜坡增强混合的数值模拟. 推进技术. 1999, 20(2): 49~52.
    [191] 梁剑寒, 王正华, 王承尧. 超燃发动机垂直燃料喷射的数值模拟. 推进技术. 2000, 21(1): 12~14.
    [192] 梁剑寒, 王正华, 李桦, 王承尧. 超燃发动机化学非平衡流场的并行计算. 空气动力学报. 2002. 20(增刊): 70~76.
    [193] 刘敬华, 凌文辉, 马祥辉, 刘陵, 蔡元虎, 张榛. 设置空腔的超声速燃烧室流场数值模拟. 推进技术. 2000, 21(2): 56~59.
    [194] 崔玉峰, 徐纲, 黄伟光. 后台阶喷氢加喷空气超音速燃烧数值模拟. 航空学报. 2004. 25(2): 113~116.
    [195] 王晓栋, 宋文艳. 支板构型超燃冲压燃烧室流场数值模拟. 推进技术. 2005. 26(1): 5~9.
    [196] 唐亚林, 张德良, 王琳琳, 袁生学, 王发民. 碳氢燃料超声速燃烧的化学动力学研究 (I) 甲烷超声速燃烧的简化化学动力学模型. 推进技术. 1999. 20(5): 91~94.
    [197] 刘宏, 杜新, 沈月阳, 雷麦芳, 王发民. 甲烷超声速燃烧过程的数值模拟. 推进技术. 2002. 23(1): 63~66.
    [198] 徐旭, 蔡国飙. 氢/碳氢燃料超声速燃烧的数值模拟. 推进技术. 2002. 23(5): 398~401.
    [199] 徐旭, 蔡国飙. 单模块超燃冲压发动机一体化流场数值计算. 宇航学报.2004.25(1): 114~118.
    [200] 王春, 陆惠萍, 司徒明. 双燃式冲压发动机中超燃燃烧室冷态流场数值模拟. 推进技术. 1999. 20(5):35~38.
    [201] 王春, 司徒明, 马继华, 杨茂林. 高温富油燃气超声速燃烧数值模拟. 2000. 21(4): 60~63.
    [202] 孙英英, 司徒明. 煤油-空气预混气流超声速燃烧数值模拟.推进技术.2004.25(2): 101~106.
    [203] 徐胜利 , 岳朋涛, 张梦萍 . 采用斜坡凹槽稳焰器强化 H2 超燃的数值研究 . 2001. 22(6):505~509.
    [204] 岳朋涛, 张梦萍, 徐胜利. H2 引燃雾化煤油超燃混合的数值研究. 推进技术. 2001. 22(6): 500~504.
    [205] 徐胜利, 岳朋涛, 韩肇元. 具有 H2 引燃的 CH4、煤油超声速混合的三维数值研究. 应用数学和力学. 22(4): 411~419.
    [206] 黄生洪, 徐胜利, 刘小勇. 煤油超燃冲压发动机两相流场数值模拟 (I) 数值校验及总体流场特性. 推进技术. 2004, 25(6): 484~490.
    [207] 黄生洪, 徐胜利, 刘小勇. 煤油超燃冲压发动机两相流场数值模拟 (II) 导流型凹槽对增强掺混合火焰稳定的影响处探. 推进技术. 2005, 26(1): 10~16.
    [208] 赵桂萍, 周新海. 高超声速进气道湍流流场的数值模拟. 推进技术. 1998. 19(3):33~38.
    [209] 陈方, 陈立红, 张新宇. 不同收缩比超燃冲压发动机进气道的数值研究. 第十届全国激波与激波管学术讨论会. 2001.
    [210] 丁猛. 超声速/高超声速进气道-隔离段流场的数值模拟. [硕士学位论文]. 国防科技大学研究生院. 2000.
    [211] 范晓樯, 李桦, 丁猛. 三维超声速隔离段湍流内流场漩涡结构的数值模拟. 国防科技大学学报. 2001. 23(6): 5~8.
    [212] 范晓樯, 李桦, 丁猛. 等截面矩形隔离段内流场的三维数值模拟. 推进技术. 2002. 23(2): 129~131.
    [213] 乐嘉陵, 刘陵. 高超声速飞行器的碳氢燃料双模态超燃冲压方案研究. 流体力学实验与测量. 1997. 11(2): 1~12.
    [214] 乐嘉陵, 胡欲立, 刘陵. 双模态超燃冲压发动机研究进展. 流体力学实验与测量. 2000. 14(1): 1~12.
    [215] 路艳红, 凌文辉, 刘敬华等. 双模态超燃燃烧室计算. 推进技术. 1999. 20(3): 56~60.
    [216] 司徒明. 煤油超燃冲压发动机性能分析. 推进技术. 1998. 19(2): 18~22.
    [217] 司徒明. 碳氢燃料超燃研究与应用. 流体力学实验与测量. 2000. 14(1): 43~50.
    [218] 余勇, 刘卫东, 王振国. 超声速燃烧室性能一维数值模拟. 流体力学实验与测量. 2004. 18(3): 36~41.
    [219] 张鹏, 俞刚. 超燃燃烧室一维流场分析模型的研究.流体力学实验与测量.2003.17(1): 88~92.
    [220] 徐旭, 蔡国飙. 超燃冲压发动机二维进气道优化设计方法研究. 推进技术. 2001. 22(6): 468~472.
    [221] 陈兵, 徐旭, 蔡国飙. 二维超燃冲压发动机尾喷管优化设计. 推进技术.2002. 23(5):433~437.
    [222] 徐大军, 孙冰, 徐旭, 王元光, 陈兵. 超燃冲压发动机一体化设计与优化方法研究. 推进技术. 2002. 23(5): 360~362.
    [223] L. Lefvbrev, Spray and Atomization, 1989.
    [224] M. Pilch, C. Erdman. Use of break-up time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced break-up of a liquid drop. Inter. Journal of Multiphase Flow, 13, 741-757,1999.
    [225] D.D. Joseph, J.Belanger. Breakup of a liquid drop suddenly exposed to a high-speed airstream, Inter. Journal of Multiphase Flow, 25,1263-1303,1999.
    [226] J. A. Schetz, F. S. Billig. Penetration of Gaseous Jets Injected into a Supersonic Stream. Journal of Spacecraft and Rockets, 3(11): 1658~1665. 1966.
    [227] M. R. Gruber, A. S. Nejda, T. H. Chen, J. C. Dutton. Compressibility Effects in SupersonicTransverse Injection Flowfields. Physics of Fluids, 9(5): 1448~1461. 1966.
    [228] R. C. Rogers. A Study of the Mixing of hydrogen Injected Normal to a Supersonic Airstream. NASA TN L-7386. 1971.
    [229] E. J. Fuller, R. B. Mays, R. H. Thomas, J. A. Schetz. Mixing Studies of helium at High Supersonic Speeds. AIAA Journal, 30(9): 2234~2243. 1992.
    [230] M. R. Gruber, A. S. Nejda, T. H. Chen, J. C. Dutton. Mixing and Penetration Studies of Sonic jets in a Mach 2 Freestream. Journal of Propulsion and Power, 11(2): 315~323. 1995.
    [231] M. R. Gruber, A. S. Nejda, T. H. Chen, J. C. Dutton. Large Structure Convection Velocity Measurements in Compressible Transverse Injection Flowfields. Experiments in Fluids, 22(3): 397~407. 1997.
    [232] S. H. Lee, H. B. Kim, T. Mitani. Mixing and Combustion Augmentations of Transverse Injection in Scramjet Combustor. AIAA Paper 2001-0384.
    [233] C. R. McClinton. The Effect of Injection Angle on the Interaction Between Sonic Secondary Jets and a Supersonic Freestream. NASA TND-6669. 1972.
    [234] R. B. Mays, R. H. Thomas, J. A. Schetz. Low Angle Injection into a Supersonic Flow. AIAA Paper 89-2461.
    [235] D. J. Bayley, R. J. Hartfield. Experimental investigation of Angled Injection in a Compressible Flow. AIAA Paper 95-2414.
    [236] A. Takakage, F. Hideo, M. Junji. Experimental Investigation of Inclined Hydrogen Injection into a Supersonic Flow. AIAA Paper 99-4915.
    [237] Y. Haimovitch, E. Gartenberg, A. S. Roberts, G. B. Northam. An Investigation of Wall Injectors for Supersonic Mixing Enhancement. AIAA Paper 94-2940.
    [238] M. R. Gruber, A. S. Nejda, J. C. Dutton. Circular and Elliptical Transverse Injection into a Supersonic Crossflow – The Role of Large-Scale Structures. AIAA Paper 95-2150.
    [239] M. R. Gruber, A. S. Nejda, J. C. Dutton. An Experimental Investigation of Transverse Injection from Circular and Elliptical Nozzles into a Supersonic Crossflow. AD Report WL-TR-96-2102, 1996.
    [240] G. S. Elliott, A. Mosedale, M. R. Gruber, A. S. Nejad, C. D. Carter. The Study of a Transverse Jet in a Supersonic Cross-Flow Using Molecular Filter Based Diagnostics. AIAA Paper 97-2999.
    [241] M. J. Barber, L. A. Roe, J. A. Schetz. Simulated Fuel Injection Through a Wedge-Shaped Orifice into Supersonic Flow. AIAA Paper 95-2559.
    [242] S. Tomioka, L. S. Jacobsen, J. A. Schetz. Angled Injection Through Diamond-Shaped Orifices into a Supersonic Stream. AIAA Paper 2001-1762.
    [243] S. Tomioka, L. S. Jacobsen, J. A. Schetz. Sonic Injection from Diamond-Shaped Orifices into aSupersonic Crossflow. Journal of Propulsion and Power, 19(1): 104~114. 2003.
    [244] L. E. Foster, W. A. Engblom. Computation of Transverse Injection into Supersonic Crossflow with Various Injector Orifice Geometries. AIAA Paper 2004-1199.
    [245] L. A. Povinelli, M. Hersch. A Study of Helium Penetration and Spreading in a Mach 2 Airstream Using a Delta Wing Injector. NASA TN D-5322. 1969.
    [246] M. Hersch, L. A. Povinelli. Effect of Interacting Vortices on Jet Penetration into a Supersonic Stream. NASA TM-X-2134. 1970.
    [247] L. A. Povinelli, R. C. Ehlers. Swirling Base Injection for Supersonic Combustion Ramjets. AIAA Journal, 10(9): 1243~1244. 1972.
    [248] T. G.. Tillman, W. P. Patrick, R. W. Paterson. Enhanced Mixing of Supersonic Jets. Journal of Propulsion and Power, 7(6): 1006~1014. 1991.
    [249] J. W. Naughton, L. N. Cattafesta, G. S. Settles. An Experimental Study of the Effect of Streamwise Vorticity on Supersonic Mixing Enhancement. AIAA Paper 92-3549.
    [250] F. E. Marble, G. J. Hendricks, E. E. Zukoski. Progress Toward Shock Enhancement of Supersonic Combustion Processes. AIAA Paper 87-1880.
    [251] I. A. Waitz, F. E. Marble, E. E. Zukoski. Vorticity Generation by Contoured Wall Injectors. AIAA Paper 92-3550.
    [252] J. Yang, T. Kubota, E. E. Zukoski. A model for Characterization of a Vortex Pair Formed by Shock Passage over a Light-Gas Inhomogeneity. Journal of Fluid Mechanics, Vol.258: 217~244. 1994.
    [253] F. E. Marble, E. E. Zukoski, J. W. Jacobs, G. J. Hendricks, I. A. Waitz. Shock Enhancement and Control of Hypersonic Mixing and Combustion. AIAA Paper 90-1981.
    [254] O. Metwally, G. Settles. An Experimental Study of Shock Wave/Vortex Interaction. AIAA Paper 89-0082.
    [255] J. B. Freund, P. Moin. Jet Mixing Enhancement by High-Amplitude Fluidic Actuation.  AIAA Journal, 38 (10): 1863~1870. 2000.
    [256] A. Nedungadi, M. J. Lewis. Numerical Study of Fuel Mixing Enhancement Using an Oblique Shock/Vortex Interaction. Journal of Propulsion and Power, 16(6): 946~955. 2000.
    [257] S. Hari, J. Kurian. Effectiveness of Secondary Tabs for Supersonic Mixing. Experiments in Fluids, 31(3): 320~308. 2001.
    [258] H. Wang, S. Menon. Fuel/Air Mixing Enhancement by Synthetic Microjets. AIAA Journal, 39(12): 2308~2319. 2001.
    [259] A. Turnin. Optimal Streamwise Vortices Intended for Supersonic Mixing Enhancement. AIAA Journal. 41(8): 1542~1546. 2003.
    [260] B. Parent, J. P. Sislian. Hypersonic Mixing Enhancement by Compression at a High Convective Mach Number. AIAA Journal, 42(4): 787~795. 2004.
    [261] M. G. Mitchell, O. I. Smith, A. R. Karagozian. Passive Fuel/Air Mixing and Emissions Control Via Lobed Injectors. AIAA Journal, 42(1): 61~69. 2004.
    [262] J. C. McDaniel, G. Gauba, T. M. Quagliaroli. Combustion of Hydrogen in Mach 2 Air Using an Unswept Ramp Fuel Injector: A Test Case For CFD Validation. AIAA Paper 94-2521.
    [263] G. Gauba, H. Haj-Hariri, J. C. McDaniel. Numerical and Experimental Investigation of Hydrogen Combustion in a Mach 2 AirFlow with an Unswept Ramp Fuel Injector. AIAA Paper 95-2562.
    [264] R. J. Hartfield, S. D. Hollo, J. C. McDaniel. Experimental Investigation of a Supersonic Swept Ramp Injector Using Laser-Induced Iodine Fluorescence. Journal of Propulsion and Power, 10(1): 129~135. 1994.
    [265] J. M. Donohue, J. C. McDaniel, H. Hai-Hariri. Experimental and Numerical Study of Swept Ramp Injection into a Supersonic Flowfield. AIAA Joutnal, 32(9): 1860~1867. 1994.
    [266] D. R. Eklund, S. D. Stouffer, G. B. Northam. Study of a Supersonic Combustor Employing Swept Ramp Fuel Injectors. Journal of Propulsion and Power, 13(6): 697~704. 1997.
    [267] T. M. Abdel-Salam, S. N. Tiwari, T. O. Mohieldin. Effects of Ramp Side Angle in Supersonic Mixing. Journal of Propulsion and Power, 41(6): 1199~1201. 2003.
    [268] S. K. Cox, R. P. Schetz, R. W. Walters. Vortical Interactions Generated by an Injector Array to Enhance Mixing in Supersonic Flow. AIAA Paper 94-0708.
    [269] S. K. Cox, M. R. Gruber. Effects of Spanwise Injector Spacing on Mixing Characteristics of Aerodynamic Ramp Injectors. AIAA Paper 98-2780.
    [270] R. P. Fuller, P. K. Wu, A. S. Nejad, J. A. Schetz. Comparison of Physical and Aerodynamic Ramps as Fuel Injectors in Supersonic Flow. Journal of Propulsion and Power, 14(2): 135~145. 1998.
    [271] D. R. Eklund, M. R. Gruber. Study of a Supersonic Combustor Employing an Aerodynamic Ramp Pilot Injector. AIAA Paper 99-2249.
    [272] M. R. Gruber, J. Donbar, T. Jackson, T. Mathur. Performance of an Aerodynamic Ramp Fuel Injector in a Scramjet Combustor. AIAA Paper 2000-3708.
    [273] L. S. Jacobsen, J. A. Schetz, W. F. Ng. Flowfield near a Mulitiport Injector Array in a Supersonic Flow. Journal of Propulsion and Power, 16(2): 216~226. 2000.
    [274] L. S. Jacobsen, S. D. Gallimore, J. A. Schetz, W. F. O’Brien. An Improved Aerodynamic Ramp Injector in Supersonic Flow. AIAA Paper 2001-0518.
    [275] L. S. Jacobsen, S. D. Gallimore, J. A. Schetz, W. F. O’Brien. Integration of an Aeroramp Injector/Plasma Igniter for Hydrocarbon Scramjets. Journal of Propulsion and Power, 19(2):170~181. 2003.
    [276] D. D. Glawe, M. Samimy, A. S. Nejad, T. H. Chen. Effect of Nozzle Geometry on Parallel Injection from the base of an Extended Strut into a Supersonic Flow. AIAA Paper 95-0522.
    [277] D. Scherrer, O. Dessornes, N. Montmayeur, O. Ferrandon. Injection Studies in the French Hypersonic Technology Program. AIAA Paper 95-6096.
    [278] Raman, Ganesh. Supersonic Jet Mixing Enhancement Using Impingement Tones from Obstacles of Various Geometries. AIAA Journal, 33(3): 454~462. 1995.
    [279] S. Tomioka, A. Murakami, K. Kudo, T. Mitani. Effects of Injection Scheme on Performance of a Staged Supersonic Combustor. AIAA Paper 99-2107.
    [280] D. M. Spetman, C. W. Hawk, M. D. Moser. Development of a Strutjet Cold-Flow Mixing Experiment. Journal of Propulsion and Power, 15(1): 155~158. 1999.
    [281] C. Gruenig, V. Avrashkov, F. Mayinger. Fuel Injection into a Supersonic Airflow by Means of Pylons. Journal of Propulsion and Power, 16(1): 29~34. 2000.
    [282] S. Muller, C. W. Hawk, P. G. Bakker, D. Parkinson, M. Turner. Mixing of Supersonic Jets in a Strutjet Propulsion system. Journal of Propulsion and Power. 17(5): 1129~1131. 2001.
    [283] S. Tomioka, K. Kobayashi, K. Kudo, A. murakami, T. Mitani. Distributed Injection for Performance Improvement of a Supersonic Combustor with Multi-Staged Wall-Injections. AIAA Paper 20003-6991.
    [284] O. J. Shreenivasan, R. Kumar, T. S. Kumar, R. I. Sujith, S. R. Chakravarthy. Mixing in Confined Supersonic Flow Past Strut Based Cavity and Ramps. AIAA Paper 2004-4194.
    [285] V. Routovsky. Autoignition Study on Kerosene Combustion in Supersonic Flow. Contract N F 61708-96-WO286, stage I-III,1997.
    [286] M. B. Colket. Scramjet Fuels Autoignition Study. Journal of Propulsion and Power, 17(2): . 2001.
    [287] S. Schnaubelt, O. Moriue. Detailed Numerical Simulations for the Multi-Stage Self-Ignition Process of n-Decane Single Droplets with Complex Chemistry. Microgravity sci. technol. XIII/I: 20~23. 2001.
    [288] L. Bonghi, M. J. Dunlap, M. G. Owens, C. Young, C. Segal., Hydrogen Piloted Energy for Supersonic Combustion of Liquid Fuels, AIAA Paper 95-0730, 1995.
    [289] S. Gallimore, L. Jacobsen. W. O’Brien, J. A. Schetz. Geometric Studies of Anodes for use with low-power, Uncooled Plasma Torches Part A: The Effect of Geometry on Erosion and Stability. AIAA-2003-0832.
    [290] S. Gallimore, L. Jacobsen. W. O’Brien, J. A. Schetz. Geometric Studies of Anodes for use with low-power, Uncooled Plasma Torches Part B: The Effect of Geometry on Ignition Potential.AIAA-2003-0833.
    [291] A. Klimov, V. Byturin, V. Brovkin, A. Kuznetsov. Optimization of Plasma Assisted Combustion. AIAA-2002-2250.
    [292] K. Takita, T. Sato. Effects of Addition of Radicals Supplied by Plasma Torch on Burning Velocity. AIAA-99-2247.
    [293] B. Mader. Scramjet Ignition Technology. ME 8362, 2002.
    [294] A. Klimov, V. Byturin, V. Brovkin, V. Vinogradov, D. M. Vanwie. Plasma Assisted Combustion. AIAA Paper 2001-0491.
    [295] A. Klimov, V. Bityurin, V. Brovkin, N. Vystavkin, N. Sukovatkin. Optimization of plasma generators for plasma assisted combustion. AIAA Paper 2001-2874.
    [296] A. Klimov, V. Byturin, A. Kuznetsov, et al. Plasma-Assisted Combustion. AIAA Paper 2002-0493.
    [297] K. Kobayashi, S. Tomioka, T. Mitani. Ignition by an H2/O2 Microburner in a Supersonic Airflow. AIAA Paper 2001-1763.
    [298] 丁猛, 余勇, 梁剑寒, 刘卫东, 王振国. 碳氢燃料超燃冲压发动机点火技术试验. 推进技术, 25(6): 566~569. 2004.
    [299] D. B. 斯柏尔丁. 燃烧与传质. 国防工业出版社. 1984.
    [300] 何伯述, 张文宏, 许晋源. 锅炉着火稳定性及其有关技术发展. 中国电力, 32(8): 4~7.1999.
    [301] 秦裕琨, 李争起, 吴少化. 旋流煤粉燃烧技术的发展. 热能动力工程, 12(4): 241~316. 1997.
    [302] 徐秀清, 王云山, 曾瑞良, 金茂庐. 直流煤粉燃烧器的煤粉火焰稳定问题. 中国电力, 30(10): 3~5. 1997.
    [303] 丁毅生. 航空涡轮发动机燃烧及燃烧室原理. 西北工业大学出版社. 1984.
    [304] R, M. Stwalley III, A. H. Lefebvre. Flame Stabilizaton Using Large Flameholders of Irregular Shape. AIAA Paper 87-0469.
    [305] N. K. Rizk, A. H. Lefebvre. Influence of Laminar Flame Speed on the Blowoff Velocity of Bluff-Body Stabilized Flames. AIAA Paper 93-1327.
    [306] 王家骅. 带缝隙 V 型火焰稳定器试验研究. 高性能推进系统工程预研论文选集. 1991.
    [307] 王俊民. 涡喷 7 系列发动机加力燃烧室的裙边稳定器设计、试验及应用.
    [308] 王洪卓, 付藻群. 楔型稳定器的应用分析. CSAA-96-PC-101.
    [309] 王家骅. 蒸发式火焰稳定器的稳定机理研究. 中国工程热物理学会第三次学术会议. 1980.
    [310] 王家骅. 一个预燃式火焰稳定器稳定机理研究. 工程热物理学报, 2(4): 373~379. 1981.
    [311] Jing-Tang Yang, Chang-Wu Yen, Flame Stabilization in the Wake Flow behind a Slit V-Gutter. Combustion and Flame, 99(2). 1994.
    [312] 宁晃, 高歌. 燃烧室气动力学. 科学出版社. 1987.
    [313] A. Schaffer, A. B. Cambel. The Effect of an Opposing Jet on Flame Stability. Jet Propulsion, 25(7): 284~287. 1955.
    [314] A. Schaffer, A. B. Cambel. Continued Investigations of an Opposing Jet Flameholder. Jet Propulsion, 26(7): 516~518. 1956.
    [315] L. Bellamy, C. H. Barron, J. R. O’Loughlin. A Critical Zone Analysis of Reverse Jet Flame Stabilization. Combustion and Flame, 12(4): 107~114. 1968.
    [316] R. E. Peck, G. S. Samuelsen. Generalized Stability Criteria for an Opposed-Jet Flameholder. AIAA Paper 82-4229.
    [317] K. Sridhara, M. S. Chidananda. Jet Curtain Flameholder for Aircraft Afterburners. ASME 78-GT-95.
    [318] K. Sridhara, M. S. Chidananda. Fresh Mixture Entrainment in a Jet Curtain Flameholder. 5th International Symposium on Airbreathing Engines. 1981.
    [319] 杨茂林, 全中等. 尾缘吹气式火焰稳定器试验研究. 航空动力学报, 13(2): 185~188. 1998.
    [320] 岳连捷. 尾缘吹气式火焰稳定器研究. 北京航空航天大学博士学位论文. 2000.
    [321] 旋流加力燃烧 R. S. Reilly. Vortex Burning and Mixing Augmentation System. AIAA Paper 76-0678.
    [322] T. R. Clements. Final Report: Effect of Swirling Flow on Augmentor Performance. NASA CR-134639. 1974.
    [323] K. J. Hanloser. Test Verification of Turbofan Partial Swirl Afterburner. AIAA Paper 79-1199.
    [324] J. P. Longwell, R. J. Petrein. Design of Baffle-Type Combustors. APL/JHU TG 154-10, CFSTI AD-36129. 1953.
    [325] F. D. Stull, R. R. Craig. Investigation of dump combustors with Flameholders. AIAA Paper 75-0165.
    [326] N. K. Rizk, A. H. Lefebvre. The Relationship between Flame Stability and Drag of Bluff-Body Flameholders. Journal of Propulsion and Power, 2(4): 361~365. 1986.
    [327] D. M. Reuter, U. G. Hedge, B. T. Zinn. Flowfield Measurements in an Unstable Ramjet Burner. AIAA Paper 88-2855.
    [328] E. Gutmark, K. C. Schadow, M. N. R. Nina, G. P. A. Pita. Suppressoin of “Buzz” Instability by Geometrical Design of the Flameholder. AIAA Paper 90-1996.
    [329] S. Hosokawa, Y. Ikeda. Flow Measurements Behind V-Gutter under Non-Combusting Condition. AIAA Paper 93-0020.
    [330] K. J. Wilson, E. Gutmark, K. H. Yu, K. C. Schadow. Active Control of Bluff-Body Flame-Holder Combustor. AIAA Paper 94-0215.
    [331] C. N. Raffoul, A. S. Nejad, S. A. Spring, K. A. Kirkendall, C. E. Smith. Entrainment and Mixing Characteristics of Bluff Body Flameholders; an Experimental and Numerical Study. AIAA Paper 94-0710.
    [332] T. Inamura, M. Sei, M. Takahashi, A. Kumakawa. Combustion Characteristics of Ramjet Combustor. AIAA Paper 96-2665.
    [333] D. Carrier, D. A. Champlain, M. F. Bardon. Direct Fuel injection for Bluff Body Flame Stabilization. AIAA Paper 96-3032.
    [334] S. Hosokawa, Y. Ikeda, T. Nakajima. Effect of Flame Holder Shape on Vortex Shedding. AIAA Paper 96-3130.
    [335] V. Morgenthaler, T. Yamamoto, Y. Kurosawa, K. Suzuki. Comparisons of Combustion Models to Improve the Calculation of the Flow Generated by the Flameholder of a Hypersonic Vehicle. AIAA Paper 2001-1819.
    [336] H. Hasegawa, Y. Shimada, I. Kashikawa. Experimental Study of Compact Ram Combustor with Double-Staged Flameholders for ATR Engine. AIAA Paper 2001-3292.
    [337] C.W. Lee, H. J. Youn, S. Y. Moon, C. H. Sohn. Spray and Combustion Characteristics of a Dump-type Ramjet Combustor. AIAA Paper 2003-5233.
    [338] P. A. O. G. Korting. Combustion of PMMA in a Solid Fuel Ramjet. AIAA Paper 86-1250.
    [339] W. Clauss, K. Vereschagin, H. K. Ciezki. Determination of Temperature Distributions by CARS – Thermometry in a Planar Solid Fuel Ramjet Combustion Chamber. AIAA Paper 98-0160.
    [340] P. J. Elands, P. A. O. G. Korting. Combustion of Polyethylene in a Solid Fuel Ramjet - A Comparison of Computational and Experimental Results. AIAA Paper 88-3043.
    [341] M. Suresh. A Numerical Study of Secondary Fuel Injection Techniques for Active Control of Combustion Instability in a Ramjet. AIAA Paper 92-0777.
    [342] J. W. Humphrey, F. E. C. Culick. Pressure Oscillations and Acoustic-Entropy Interactions in Ramjet Combustion Chambers. AIAA Paper 87-1872.
    [343] U. G. Hegde, D. Reuter, B. R. Daniel, B. T. Zinn. Flame driving of longitudinal instabilities in dump type ramjet combustors. AIAA Paper 86-0371.
    [344] D. Leredo, Y. Levy, Y. M. Timnat. Study of Two-Phase Flow for a Ramjet Combustor. Journal of Propulsion and Power 7(5): 724~731. 1991.
    [345] R. Thangadurai, B. Subhash. Numerical Investigation on Effect of Inlet Dump Angle on Ramjet Combustor Performance. AIAA Paper 2004-3876.
    [346] J. J. Zelinski, L. I. Matthews, E. C. Bagnall. The Design of Combustors for Ramjet Engines. Combustion and Flame, Vol.4: 343~349. 1960.
    [347] 冲压发动机技术. 美国约翰·霍普金斯大学应用物理实验所编.
    [348] P. W. Huber, C. J. Schexnayder, C. R. McClinton. Criteria for Self-Ignition of Supersonic Hydrogen-Air Mixtures. NASA TP 1457. 1979.
    [349] A. Ben-Yakar, R. K. Hanson. Experimental Investigation of Flame-Holding Capability of a Transverse Hydrogen Jet in Supersonic Cross-Flow. Proceeding of the 27th International Symposium on Combustion:2173~2180. 1998.
    [350] A. Ben-Yakar, R. K. Hanson. Supersonic Combustion of Cross-Flow Jets and the Influence of Cavity Flame-Holders. AIAA Paper 99-0484.
    [351] O.V. Gouskov, V. I. Kopchenov. Investigation of Ignition and Flame Stabilization behind the Strut in Supersonic Flow. AIAA-2002-5227.
    [352] A. Brandstetter, S. R. Denis, H. –P. Kau, D. Rist. Flame Stabilization in Supersonic Combustion. AIAA Paper 2002-5224.
    [353] T. R. A. Bussing, E. M. Murman. Numerical Investigation of 2-Dimensional H2-Air Flame Holding over Ramps and Rearward Facing Steps. AIAA Paper 85-1250.
    [354] N. D. Donel, D. S. Thompson. A Two-Dimensional Numerical Simulation of Shock-Enhanced Mixing in a Rectangular Scramjet Flowfield with Parallel Hydrogen Injection. AIAA Paper 91-0377.
    [355] S. N. Tiwari, A. A. Taha, T. O. Mohieldin. Effect of Pilot Injection and Combustor Configuration on the Flame Holding and Stability of Ethylene in Scramjet Engines. AIAA Paper 2002-0806.
    [356] A. Thakur, C. Segal. Flameholding Analyses in Supersonic Flow. AIAA Paper 2004-3831.
    [357] G. B. Northam, C. R. McClinton, T. C. Wagner, W. F. O’Brien. Development and Evaluation of a Plasma Jet Flameholder for Scramjets. AIAA Paper 84-1408.
    [358] V. A. Sabel’nikov, Y. P. Korontsvit, A. K. Ivanyushkin, V. V. Ivanov. Experimental Investigation of Combustion Stabilization in Supersonic Flow Using Free Recalculating Zone. AIAA Paper 98-1515.
    [359] L. W. Huellmantel, R. W. Ziemer, A. B. Cambel. Stabilization of Premixed Propane-Air Flames in Recessed Ducts. Jet Propulsion, 27(1): 31~34. 1957.
    [360] V. A. Vinagradov, V. Grachev, M. D. Petrov. Experimental Investigation of 2-D Dual Mode Scramjet with Hydrogen Fuel at Mach 4-6. AIAA Paper 90-5269.
    [361] V. Vinagradov, S. Kobigsky, M. Petrov. Experimental Investigation of Liquid Carbonhydrogen Fuel Combustion in Channel at Supersonic Velocities. AIAA Paper 92-3429.
    [362] V. A. Vinagradov, S. A. Kobigsky, M. D. Petrov. Experimental Investigation of Kerosene Fuel Combustion in Supersonic Flow. Journal of Propulsion and Power. 11(1): 130~134. 1995.
    [363] M. R. Gruber. Fundamental Investigations of an Integrated Fuel Injector/Flameholder Concept for Supersonic Combustion. AFRL-PR-WP-TR-1998-2111.
    [364] M. R. Gruber, R. A. Baurle, T. Mathur, K. –Y. Hsu. Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustors. Journal of Propulsion and Power, 17(1): 146~153. 2001.
    [365] T. Mathur, G. Streby, M. Gruber, K. Jackson, J. Donbar, W. Donaldson, T. Jackson, C. Smith, F. Billig. Supersonic Combustion Experiments with a Cavity-Based Fuel Injector. AIAA Paper 99-2102.
    [366] T. Mathur, K. –C. Lin, P. Kennedy, M. Gruber, J. Donbar, T. Jackson, F. Billig, Liquid JP-7 Combustion in a Scramjet Combustor. AIAA Paper 2000-3581.
    [367] T. Mathur, M. Gruber, K. Jackson, J. Donbar, W. Donaldson, T. Jackson, F. Billig. Supersonic Combustion Experiments with a Cavity-Based Fuel Injector. Journal of Propulsion and Power, 17 (6): 1305~1312. 2001.
    [368] R. A. Baurle, T. Mathur, M. R. Gruber, K. R. Jackson. A Numerical and Experimental Investigation of a Scramjet Combustor for Hypersonic Missile Applications. AIAA Paper 98-3121.
    [369] R. A. Baurle, D. R. Eklund, Analysis of Dual-Mode Hydrocarbon Scramjet Operation at Mach 4-6.5. Journal of Propulsion and Power, 18 (5): 990~1002. 2002.
    [370] K. –Y. Hsu, L. P. Goss, D. D. Trump, W. M. Roquemore. Performance of a Trapped Vortex Combustor. AIAA Paper 95-0810.
    [371] G. J. Sturgess, K. –Y. Hsu. Entrainment of Mainstream Flow in a Trapped-Vortex Combustor. AIAA Paper 97-0261.
    [372] K. –Y. Hsu, L. P. Goss. Characteristics of a Trapped-Vortex Combustor. Journal of Propulsion and Power, 14(1): 57~65. 1998.
    [373] V. R. Katta, W. M. Roquemore. Study on Trapped-Vortex Combustor – Effect of Injection on Flow Dynamics. Journal of Propulsion and Power, 14(3): 273~281. 1998.
    [374] A. Ben-Yakar, R. K. Hanson. Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview. Journal of Propulsion and Power, 17(4): 869~877. 2001.
    [375] K. Krishnamutry. Acoustic Radiation from Two-Dimensional Cutout in Aerodynamic Surface. NACA TN-3487. 1955.
    [376] O. W. McGregor, R. A. White. Drag of Rectangular Cavities in Supersonic and Transonic Flow Including the Effects of Cavity Resonance. AIAA Journal, 4(11): 1959~1964. 1970.
    [377] M. E. Franke, D. L. Carr. Effect of Geometry on Open Cavity Flow-Induced Pressure Oscillations. AIAA Paper 75-0492.
    [378] D. Rockwell, E. Naudascher. Review—Self-Sustaining Oscillations of Flow Past Cavities. Journal of Fluids Engineering, 100(6): 152~165. 1978.
    [379] R. L. Clark, L. G. Kaufmann. Aeroacoustic Measurements for Mach 0.6 to 3.0 Flows PastRectangular Cavities. AIAA Paper 80-0036.
    [380] W. L. Hankey, J. S. Shang. Analyses of Pressure Oscillations in an Open Cavity. AIAA Journal, 18(8): 892~898. 1980.
    [381] J. A. Edwards, X. Zhang. Some Aspects of Supersonic Flow Over a Cavity. AIAA Paper 86-2025.
    [382] R. L. Stalling, F. J. Wilcox. Experimental Cavity Pressure Distributions at Supersonic Speeds. NASA TP-2683. 1987.
    [383] N. M. Komerath, K. K. Ahuja, F. W. Chambers. Prediction and Measurement of Flows Over Cavities—A survey. AIAA Paper 87-0166.
    [384] O. Baysal, R. L. Stallings. Computational and Experimental Investigation of Cavity Flowfields. AIAA Journal, 26(1): 6~7. 1988.
    [385] D. P. Rizzetta. Numerical Simulation of Supersonic Flow Over a Three-Dimensional Cavity. AIAA Journal, 26(7): 799~807. 1988.
    [386] X. Zhang, J. A. Edwards. Computational Analysis of Unsteady Supersonic Cavity Flows Driven by Thick Shear Layers. Aeronautical Journal, 92(919): 365~374. 1988.
    [387] X. Zhang, J. A. Edwards. An Investigation of Supersonic Oscillatory Cavity Flows Driven by Thick Shear Layers. Aeronautical Journal, 94(940): 355~364. 1990.
    [388] X. Zhang, J. A. Edwards. Experimental Investigation of Supersonic Flow over Two Cavities in Tandem. AIAA Journal, 30(5): 1182~1190. 1992.
    [389] A. Morgenstern, N. Chokani. Hypersonic Flow Past Open Cavities. AIAA Journal, 32(12): 2387~2393. 1994.
    [390] X. Zhang. Compressible Cavity Flow Oscillation due to Shear Layer Instabilities and Pressure Feedback. AIAA Journal, 33(8): 1404~1411. 1995.
    [391] H. T. Banks, D. Rubio, R. Smith. Modeling of Acoustic Fields Generated by Flow Past an open Cavity. AIAA Paper 99-1913.
    [392] C. W. Rowley, T. Colonius, R. M. Murray. POD Based Models of Self-Sustained Oscillations in the Flow Past an Open Cavity. AIAA Paper 2000-1969.
    [393] J. Zhang, E. morishita, T. Okunuki, H. Itob. Experimental and Computational Investigation of Supersonic Cavity Flows. AIAA Paper 2001-1755.
    [394] A. Gangwar, B. Lukovic, P. D. Orkwis. Model Unsteadiness in Steady Cavity Simulations Part I: Parametric Solutions. AIAA Paper 2001-0153.
    [395] T. Colonius. An Overview of Simulation, Modeling, And Active Control of Flow/Acoustic Resonance in Open Cavities. AIAA Paper 2001-0076.
    [396] C. K. Kim, K. S. Im, S. T. John. Yu. Direct Calculation of High-Speed Cavity Flows in a Scramjet Engine by the CESE Method. AIAA Paper 2002-1084.
    [397] J. E. Rossiter. Wind-Tunnel Experiments on the Flow over Rectanglar Cavities at Supersonic and transonic Speeds. Reports and Memo-randa No.3438, 1964.
    [398] H. H. Heller, D. B. Bliss., The Physical Mechanism of Flow-Induced Pressure Fluctuations in Cavities and Concepts for Their Sup-pression. AIAA Paper 75-0491.
    [399] Y. Watanabe. Characteristics of Pressure Oscillations in a Supersonic Flow around Cavities, Doctor Thesis of Tokyo Noko University , 1997.
    [400] N. Chokani, I. Kim. Suppression of Pressure Oscillations in an Open Cavity by Passive Pneumatic Control. AIAA Paper 91-1729.
    [401] I. Kim, N. Chokani. Navier-Stokes Study of Supersonic Cavity Flowfield with Passive Control. Journal of Aircraft, 29(2): 217~223. 1992.
    [402] S. W. Perng, D. S. Dolling. Passive Control of Pressure Oscillations in Hypersonic Cavity Flow. AIAA Paper 96-0444.
    [403] X. Zhang, A. Rona, J. A. Edwards. The Effect of Trailing Edge Geometry on Cavity Flow Oscillation Driven by a Supersonic Shear Layer. Aeronautical Journal, 102(1013): 129~136. 1998.
    [404] R. L. Sarno, M. E. Franke. Suppression of Flow-Induced Pressure Oscillations in Cavities. Journal of Aircraft, 31(1): 90~96. 1994.
    [405] X. Zhang, J. A. Edwards. A Computational Analysis of Supersonic Jet and Instability Wave Interaction. AIAA Paper 94-2194.
    [406] A. D. Vakili, R. Wolfe, T. Nagle, E. Lambert. Active Control of Cavity Aeroacoustics in High Speed Flows. AIAA Paper 95-0678.
    [407] A. M. Lamp, N. Gauthier. Control of Cavity Flows with Suppression Using Jet Blowing. Journal of Aircraft, 34(4): 545~551. 1997.
    [408] J. Majdalani. A Novel Flowfield Solution in a Rectangular Cavity Subject to Small Amplitude Oscillations. AIAA Paper 98-2693.
    [409] T. Kestens, F. Nicond. Active Control of an Unsteady Flow over a Rectangular Cavity. AIAA Paper 98-2348.
    [410] D. L. Davis, R. D. W. Bowersox. Computational Fluid Dynamics Analysis of Cavity Flame Holders for Scramjets. AIAA Paper 97-3270.
    [411] D. L. Davis, R. D. W. Bowersox. Stirred Reactor Analysis of Cavity Flame Holders for Scramjets. AIAA Paper 97-3274.
    [412] R. A. Baurle, M. R. Gruber. A Study of Recessed Cavity Flowfields for Supersonic Combustion Applications. AIAA Paper 98-0938.
    [413] R. A. Baurle, C. –J. Tam, S. Dasgupta. Analysis of Unsteady Cavity Flows for Scramjet Applications. AIAA Paper 2000-3617.
    [414] K. Y. Hsu, C. Carter, J. Crafton, et al. Fuel Distribution about a Cavity Flameholder in Supersonic Flow. AIAA Paper 2000-3585.
    [415] O. W. McGregor, R. A. White. Drag of Rectangular Cavities in Supersonic and Transonic Flow Including the Effects of Cavity Resonance. AIAA Journal, 4(11): 1959-1964. 1970.
    [416] O. Baysal, R. L. Stallings. Computational and Experimental Investigation of Cavity Flowfields. AIAA Journal 26(1): 6-7. 1992.
    [417] E. Q. Jason, A. D. Cutler, G. B. Northam. Drag Reduction of Supersonic Cavities via Mass Injection with Applications to Scramjets. AIAA Paper 97-0550.
    [418] T. Niioka, K. H. Terada, S. Kodayashi, et al. Flame Stabilization Characteristics of a Strut Divided into Two Parts in Supersonic Airflow. Journal of Propulsion and Power. 11(1):112~116. 1995.
    [419] K. Yu, K. J. Wilson, R. A. Smith, K. C. Schadow. Experimental Investigation on Dual-Purpose Cavity in Supersonic Reacting Flows. AIAA Paper 98-0723.
    [420] K. Yu, K. J. Wilson, K. C. Schadow. Effect of Flame-Holding Cavities on Supersonic Combustion Performance. AIAA Paper 99-2638.
    [421] S. N. Tiwari, A. A. Taha, T. O. Mohieldin. Effect of Pilot Injection and Combustor Configuration on the Flame Holding and Stability of Ethylene in Scramjet Engines. AIAA Paper 2002-0806.
    [422] M. G. Owens, S. Tehranian, C. Segal, V. A. Vinogradov. Flame-Holding Configurations for Kerosene Combustion in a Mach 1.8 Airflow. Journal of Propulsion and Power. 14(4):456~461. 1998.
    [423] M. Situ, C. Wang, H. P. Lu, G. yu, X. Y. Zhang. Hot Gas Piloted Energy for Supersonic Combustion of Kerosene with Dual-Cavity. AIAA Paper 2001-0523.
    [424] M. Situ, C. Wang, F. G. Zhuang, Investigation of Supersonic Combustion of Kerosene Jets with Hot Gas Piloted Energy and Dual-Cavity. AIAA Paper 2002-0804.
    [425] C. C. Rasmussen, J. F. Discoll, K. Y. Hsu, et al. Blowout Limits of Supersonic Cavity-Stabilized Flames. AIAA Paper 2004-3660.
    [426] R.C. Rogers, W. Chinitz. Using a Global Hydrogen-Air Combustion Model in Turbulent Reacting Flow Calculation. ,AIAA Journal. 21(4): 586~592,1983.
    [427] D. M. Harradine, J. L.Layman. Hydrogen/Air Combustion Calculations: The Chemical Basis of Efficiency in Hypersonic Flows. AIAA Paper 1988-2713.
    [428] J. S. Evans, C. J. Schexnayder. Influence of Chemical Kinetics and Unmixedness on Burning in Supersonic Hydrogen Flames. AIAA Journal. 18(2): 188~193, 1980.
    [429] C. J. Jachimowski. An Analytical Study of the Hydrogen-Air Reaction Mechanism With Application to Scramjet Combustion. NASA TP 2791, 1988.
    [430] T. -S. Wang. Thermophysics Characterization of Kerosene Combustion. AIAA Paper 2000-2511.
    [431] G. S. Settles, D. R. Willians, B. K. Baca, S. M. Bogdonoff. Reattachment of a Compressibel Turbulent Free Shear Layer. AIAA Journal. 20(1):60~67, 1982.
    [432] C. C. Horstman, G. S. Settles, D. R. Williams, S. M. Bogdonoff. A Reattaching Free Shear Layer in Compressible Turbulent Flow. AIAA Journal. 20(1):79~85, 1982.
    [433] M. Ali, T. Fujiwara, J. E. Leblanc. Influence of Main Flow Inlet Configuration on Mixng and Flameholding in Transverse Injection into Supersonic Airstream. International journal of Engineering Science. 38(2000): 1161~1180, 2000.
    [434] J. R. Howell, R. O. Buckius. Fundamentails of Engineering Thermodynamics. McGraw-Hill, Inc. 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700