用户名: 密码: 验证码:
红外空心布拉格光纤损耗特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤技术的发展,光纤的传输波段从2μm以下的近红外区域逐渐向更长的中红外甚至远红外区域发展。与普通光纤不同,红外光纤主要用于激光能量的传输。近几十年来,人们在红外光纤领域展开了大量的理论研究工作,并逐渐开始实用化。目前,红外光纤在医学及工业上的CO_2激光能量传输和传感等领域已得到广泛应用。
     本文通过比较分析材料的光学物理等特性,利用平面波展开法(PWM)对材料带隙进行计算,为了获得一种适合于传输10.6μmCO_2激光的Bragg光纤,选取了适合于传输10.6μmCO_2激光的包层材料( As 2Se3/PEI )并确定了其填充率( fμ0.8)。然后采用基于全矢量有限元法(FEM)的COMSOL软件进行仿真,对红外空心Bragg光纤的结构参数进行优化,当结构参数为:纤芯内径为1 50μm,晶格周期为7μm,高低折射率材料厚度分别为1.4μm和5 .6μm,包层周期达到20层时,实现了其在10.6μm处的低损耗传输,损耗可降低到5. 14dB/km,远远优于目前已达到的10 dB /km以下。
     考虑到制作工艺的不完善性,本文分析了在包层中引入单个周期缺陷时对其损耗造成的影响。仿真结果表明,在利用第二带隙导光且完整结构晶格周期为μμ7μm的Bragg光纤中,引入尺寸略大于晶格周期的缺陷有助于减小其在10 .6μm波长处的损耗,反之则会使得损耗变大,而且缺陷越靠近纤芯影响越大。在靠近纤芯的第一层引入μ'μ7.18μm的缺陷对降低光纤损耗效果最明显。研究结果对于红外光纤的制作和应用具有重要意义。
With the development of optical fiber technology, the transmission wavebands gradually become farther and longer, shifting from near-infrared region below 2μm to mid-infrared even far-infrared. Unlike ordinary optical fiber for signal transmission, infrared Bragg fiber is always using transferring laser energy. Recent decades, we have launched a large number of theoretical studies in the field of infrared fiber, and gradually turned into the practical applications.At present, it has already been widely used transferring the CO_2 laser energy in medicine and industry, and sensor applications.
     In this paper, by comparing the material's optical and physical characteristics, and using the plane wave expansion method (PWM) to calculate the band gap, we select suitable materials ( As 2Se3/PEI ) and fill rate ( fμ0.8) in order to get a kinf of Bragg fiber for transmission 10 .6μm CO_2 laser energy. On this basis, combined with the full vector finite element method (FEM) and using COMSOL software simulation to optimize structural parameters of the hollow-core Bragg fiber, and ultimately achieve low-loss transmission of 10.6 laser energy. The specific parameters are as follows, the periodic lattice is 7μm, high and low refractive index material thickness are respectively 1. 4μm and 5 .6μm,together 20 cycles, the radius of the hollow-core is 150μm .The loss value can be reduced to 5. 14dB/km at 10.6μm ,far better than the current 0. 01dB/m.
     Taking into account the imperfections of the production process, the paper also analyzes the impact of the single cycle defect. Simulation results show that, when the complete structure of the periodic lattice is 7μm in the second band gap , defect which size slightly larger than the periodic lattice can help to reduce the loss of Bragg fiber at 10 .6μm. On the contrary, the loss becomes greater. That is,when the defect 7. 18μm appearing in the first layer near the hollow-core,it is best for reducing the loss. The results have great significance to the production and applications of infrared fiber.
引文
[1] Todd Abel, Hariugton J.A. Hollow glass waveguides for broadband infrared transmission [J]. Optical Letters, 1994, 19(14):1034-1036.
    [2] A.D.Kersey, T.A.Berkoff, and W.W.Morey.Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter Optics Letters, Vol. 18, Issue 16: 370-1372 (1993).
    [3]姚建铨,龚跃球,薛建强,刘爱云,赵修建.红外光纤的发展及应用[J].陶瓷科学与艺术,2002,36(3):29-31.
    [4] R.F.Cregan,B.J. Manga n,J.C.Knight,T.A.Birks,P.S.J.Russell,and P.J.Roberts,Single-mode Photonic band gap guidance of light in air[J] ,Science.1999,Vol.285:1537-1539.
    [5] P.Yeh, A.Yariv, andE.Marom, Theory of Bragg fiber [J], Opt.Soe.Am. 1998, 68:1196-1201.
    [6]王文杰,郭林,张宁等.光子晶体光纤的研究进展及应用[J].光通信技术,2004, 7: 12-15.
    [7] Pochi Yeh, Amnon Yariv, and Emanuel Marom, Theory of Bragg fiber[J]. Opt. Soc. Am. 1978,68, 1196-1201.
    [8] Kapany N.S., Simms R.J. Recent developments of infrared fiber optics [J]. Infrared Physics, 1965, 5(2):69-76.
    [9] Katsuyama T, Matsumura H. Infrared Optical Fibers [M], Bristol: Adam Hilger, 1989:56-89.
    [10]马如璋,蒋民华,徐祖雄主编.功能材料学概论[M].北京:冶金工业出版社,1999:194-219.
    [11] James A. Harrington and Arlie G. Standlee, Attenuation at 10.6μm in loaded and unloaded polycrystalline KRS-5 fibers [J], Appl. Opt. 1983,22, 3073-3078.
    [12]E. Rave, L. Nagli, and A. Katzir, Ordered bundles of infrared-transmitting AgClBr fibers: optical characterization of individual fibers [J], Opt. Lett.2000, 25, 1237-1239.
    [13] Harrington J.A. A review of IR transmitting hollow waveguides [J]. Fiber and Integrated Optics, 2000, 19(3): 211-227.
    [14] M.Ibanescu, Y.Fink, S.Fan, E.L.Thomas, J.D.Joannopoulos, An all-dielectric coaxial waveguide [J], Science, 2000, 289:415-419.
    [15] Y.Fink,D.J.Ripin,S.Fan,C.Chen,J.D.Joannopoulos,E.L.Thomas,Guiding Optical in air using an all-dielectric structure[J] ,Lightwave Technol. ,1999,17:2039-2041.
    [16] T.A.Birks, Endlessly single-mode photonic crystal fiber [J], Opt.Lett. ,1997, 22(13):961-963.
    [17] S.D.Hart,G.R.Maskaly,B.Temelkuran,P.H.Prideaux,J.D.JoannoPoulos,Y.Fink,External reflection from omnidirectional dielectric mirror fibers[J] ,Seienee,2002,296:510-513.
    [18] T.Fujisawa,and M.Koshiba,Finite element characterization of chromatic dispersion in nonlinear holey fibers[J],Opt.Express,2003,11:1481-1489.
    [19]陈鹤鸣,张力,容经雄.PBG光子晶体光纤中空气导光条件的研究[J].南京邮电大学学报,2004,24(4):67-70.
    [20]冀玉领,李曙光,周桂耀等.光子晶体光纤的色散特性[J].激光杂志,2005,26 (1): 40-41.
    [21] Broeng J, Sindergaard T, Barkou S E, et al. Waveguidance by the photonic band gap effect in optical fibers [J]. Journal of Optics, 1999, 1(4):477-482.
    [22] G.ourang,YongXu,A.Yariv,Theoretical study on dispersion compensation in air-core Bragg fibers [J],Opt.Express, 2002, 10:899-908.
    [23] T.D.Engeness,M.Ibanescu,S.G.Johnson,O.Weisberg,M.Skorobogatiy,S.Jacobs,Y.Fink,Dispersion tailoring and compensation by modal interactions in omniguide fibers[J],Opt.Express, 2003, 11:1175-1196.
    [24] Knight J C,Birks T A,Russel P St J,et al. Properties of Photonic crystal fiber and the effective index model[J].OPt.Soc.Am.A, 1998, 15(3):748-752.
    [25] Birks T A,Mogilevtsev D,Kight J C,et al. The analogy between Photonic crystal fibres and step index fibres[J].OFC’1998,FG4:114-116.
    [26] Ho K M, Chan C T, Soukoulis C M. Existence of a photonic gap in periodic dielectric structures [J]. Phys.Rev.Lett, 1990, 65(16):3152-3155.
    [27] S.G.Johnson, and J.D.Joannopoulos , Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis[J],Opt.Express,2000,8:173-190.
    [28] Shangping Guo, Sacharia Albin. Simple Plane Wave Implementation Method for Photonic Crystal Calculations [J]. Opt.Exp, 2003, 11(2):167-175.
    [29] M.Koshiba .Optical Waveguide Theory by the Finite Element Method [M].Tokyo: KTK Scientific Press, 1992:73-111.
    [30] M.A.R.Franco, A.Passaro, J.R.Cardoso. Finite Element Analysis of Anisotropic Optical Waveguide with Arbitrary Index Profile [J]. IEEE Transactions on Magnetics, 1999, 35(3):1546-1549.
    [31] Z.Zhu,and T.G.Brown,Full-vectorial finite-difference analysis of microstructure optical fibers[J].Opt.Express,2002,10:853-864.
    [32] R.Courant, Variational methods for the solutions of problems of equilibrium and vibration [J].Bulletin of the American Mathematical Society, 1943, vol.49, 23: l-23.
    [33] M.Koshiba and K.Saitoh,Numerical verification of degeneracy in hexagonal photonic crystal fibers[J]. IEEE Photonics Technology Letters,2001, 13(385): 1313-1315.
    [34] M.A.R.Franco, H.T.Hattori, ESireilli,A.Passaro, andN.M.Abe, Finite element analysis of photonic crystal fibers [M].Belem, Brazil, 2001:5-7.
    [35] K.Saitoh and M.Koshiba,Full-vectorial imaginary-distance beam propagation method based on a finite element scheme:Application to Photonic crystal fibers [J]. IEEE Journal of Quantum Electronics,2002, 38:927-933.
    [36] Fink, Y., et al., A dielectric omnidirectional reflector[J]. Science, 1998. 282(5394): 1679.
    [37] S.S.A.Obayya, B.M.A.Rahman, and K.T.VGrattan, Accurate finite element modal solution of photonic crystal fibres [J]. IEEE Proceedings: Optoelectronics, 2005, vol.152, 364:241-246.
    [38]顾秉林,王喜坤.固体物理学[M].北京:清华大学出版社,1989.
    [39] K.M.Leung .Plane Wave Calculation of Photonic Band Structures in Photonic Band Gaps and Locations [M]. New York: Plenum Press, 1993:89-119.
    [40] Shangping Guo .A Simple Plane Wave Implementation Method for Photonic Crystal Calculations [J]. Opt.Exp, 2003, 11(2):167-175.
    [41] M.Koshiba,K.Hayata,andM.Suzuki,Improved finite-element formulation in terms of magnetic field vector for dielectric waveguides[J].IEEE Transactions on Microwave Theory and Techniques, 1985, vol.MTI-33:227-233.
    [42] Berengr J.P. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics, 1994, vol.ll4, 2:185-200.
    [43] H.P.Uranus and H.J.W.M.Hoekstra, Modelling of microstruetured wave guides using a finite-elemen-based vectorial mode solver with transparent boundary conditions [J].Optics Express, 2004, vol.12, 267:2795-2809.
    [44] G.Vienne, Y.Xu, C.Jakobsen, H.J.Deyer, T.P.Hansen, etal. First demonstration of air-silica Bragg fiber [C], Proe.OFCZOO4, 2004, 95B:715-717.
    [45] G.Vienne, Y.Xu, C.Jakobsen, H.J.Deyerl, J.B.Jensen, etal. Ultr-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports [J],2004,12(15):3500-3508.
    [46]陈研.红外光子晶体光纤传输特性的研究[D] .南京邮电大学,2009.
    [47]王晶晶.Bragg光纤的传输特性研究及其结构设计[D],北京交通大学,2006.
    [48] A.W.Snyder, Optical waveguide theory[C], (NewYork: Chapman and Hall, 1983.
    [49] R.Guobin, W.Zhi, L. Shuqin, and J.Shuisheng, Mode classification and degeneracy in photonic crystal fibers [J], Opt.Express, 2003, 1310-1321.
    [50] J.A.Monsoriu, E.Silvestre, A.Ferrando, P.Andres, andJ.J.Miret, High-index-core Bragg fibers: dispersion properties [J], Opt.Express, 2003, 11:1400-1405.
    [51]吕百达.强激光的传输与控制[M].北京:国防工业出版社,1999.
    [52] M.A.R.Franco, A.Passaro, J.R.Cardoso. Finite Element Analysis of Anisotropic Optical Waveguide with Arbitrary Index Profile [J]. IEEE Transactions on Magnetics, 1999, 35(3):1546~1549.
    [53] Saitoh K, Koshiba M. Leakage loss and group velocity dispersion in air-core photonic band gap fibers [J]. Opt. Express, 2004, 11(23):3100~3109.
    [54]王雯.中红外传输空心Bragg光纤.清华大学[D],2009.
    [55] E.Pone,C.Dubois,N.Guo,Y.Gao,A.DuPuis,F.Boismenu,S.Laeroix,M.Skorobogatiy,Drawing of the hollow all-polymer Bragg fibers[J],Opt.Express, 2006, 14(13):5838-5852.
    [56] Gao, Y., et al., Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication[J]. Journal of Materials Research, 2006. 21(9): 2246-2254.
    [57] Temelkuran, B., et al., Wavelength-scalable hollow optical fibres with large photonic band gaps for CO2 laser transmission[J]. Nature, 2002. 420(6916): 650-653.
    [58] Katagiri, T., Y. Matsuura, and M. Miyagi. Single-mode operation in silica-core Bragg fibers[J]. Optical Fiber Communication Conference, 2005.vol.3,2:453-456.
    [59] Croitoru, N., et al., Broad band and low loss mid-IR flexible hollow waveguides[J]. Optics Express, 2004. 12(7): 1341-1352.
    [60] Katagiri, T., Y. Matsuura, and M. Miyagi, Photonic bandgap fiber with a silica-core and multilayer dielectric cladding[J]. Optics letters, 2004. 29(6): 557-559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700