用户名: 密码: 验证码:
激光—电弧相互作用及激光-TIG复合焊接新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光-电弧复合焊接是将物理性质、能量传输机制截然不同的两种热源复合于一体的先进焊接技术。激光电弧复合焊接能够弥补单纯激光焊接的不足,极大地增强工艺适应性,改善焊缝成形,提高接头质量。近年来,该技术在发达国家受到了广泛关注并得到了积极的研究。激光与电弧的复合不是两种热源的简单相加,深入研究激光-电弧的相互作用机理对深刻理解复合焊接过程,优化焊接工艺具有重要意义。
     复合焊接时,激光辐照母材的热效应及光致等离子体对激光-电弧相互作用产生重要影响;同时电弧吸收激光能量后,导致局部电子密度及电子密度梯度升高,引起吸收和折射效应的进一步增强。本文首先在不考虑这些因素的条件下,以激光在等离子体中的传播理论为基础,通过经典电子-离子碰撞理论,计算了电弧等离子体对入射激光的线性逆韧致吸收系数及折射率;在电子能量方程中引入逆韧致吸收项A(z),根据最小电压原理修正了激光作用电弧后的电弧电子能量方程。从理论上分析了激光作用电弧后,光束特性及电弧特性地变化趋势,揭示了激光-电弧相互作用时光束特性及电弧特性变化的物理机制及影响因素。
     随后,采用3500W扩散冷却CO2激光器、4000W Yb:YAG盘片激光器、Fronius TS5000直流数字电源,借助高速摄像仪、瞬态光谱仪、光束光斑诊断仪及功率计,试验研究了高功率聚焦激光束与TIG电弧相互作用时的光束特性和电弧特性的变化规律。试验中为了避免激光作用母材时的热效应,同时直接测量激光穿过电弧后的光束参量及电弧对激光能量的吸收率,采用聚焦光束垂直穿过直流TIG电弧,焦点位于电弧轴线的布置方式;使用高速摄像仪拍摄了激光作用前后的电弧形态变化,瞬态光谱仪分别记录电弧不同部位的局部光谱,通过对电弧局部位置的光谱分析,采用波尔兹曼图法计算了电弧局部温度,并根据Saha方程计算了电弧等离子体局部电子浓度。着重分析了激光功率、电弧电流、激光作用位置对激光能量传输率、光斑直径、光束传输方向及电弧静特性、电弧形态、电弧功率、电弧轴线温度分布及电子数密度的影响规律;探讨了激光作用电弧后,光束特性及电弧特性发生变化的原因;研究了电弧气氛、激光波长对相互作用的影响规律及作用机制。
     最后在激光-电弧相互作用研究的基础上,针对薄板搭接、对接、T型接头及厚壁对接开展了几种激光-TIG填丝复合焊接新工艺研究。为克服填丝复合焊接的飞溅和焊接烟尘对聚焦镜的污染,根据激光焊接时飞溅颗粒的运动状态和运动规律,基于气体动力学原理设计了超音速非对称拉伐尔腔体结构的横向气帘喷嘴;对比激光填丝焊接,研究了激光-TIG填丝复合焊接的工艺特性、焊缝成形、内部缺陷及工艺适应性;通过工艺参数优化,获得了理想的复合焊接薄壁T型接头及厚板对接接头;将激光电弧复合焊接技术与采用辅助电流的激光焊接方法有机结合,开发了强化电流磁流体动力学效应的激光电弧复合焊接方法。
Laser-arc hybrid welding is an advanced welding technology by combining two heat sources with different physical characteristics and energy transfer mechanisms. Laser-arc hybrid welding can make up for the deficiencies of individual laser process and take great effects on increasing the joint fit-up tolerance, enhancing the process stability, eliminating the weld defects, and improving the welding efficiency. Therefore, the laser-arc hybrid welding is receiving intensive study all over the world in recent years. The hybrid of the laser and the arc is not just a simple combination, so the investigation and comprehension on the physical phenomena and mechanism of the interaction between the laser beam and the arc plasma are significant for understanding of the hybrid process essentially.
     In laser-arc hybrid welding process, the thermal effect and the laser-induced plasma which generated during laser radiation on metal have significant influences on laser-arc interaction. At the same time, the local electron density and the grads of electron density increase with more laser energy absorbed by arc, which induces more absorption and the refraction. In this thesis, the theory of laser propagation in arc plasma is described and the inverse bremsstrahlung absorption coefficient and the refractive index of arc for incident laser beam are calculated according to classic electron-ion collision theory without taking the thermal effect and the laser-induced plasma into consideration. At the same time, the electron energy equation of arc is amended by introducing A(z) of inverse bremsstrahlung absorption term. The variation trends of the characteristics of beam and arc in laser-arc interaction are analyzed in theoretical, and the physical mechanism and the influence factors are investigated.
     Then, the characteristics of laser and arc during the interaction between high power laser and DC TIG arc are investigated in many aspects. The heat sources used in the experiment are Rofin DC035 Slab CO2 laser, DS 040 HQ DISC Yb:YAG laser and Fronius TS5000 digital arc welding system. The measurement instruments are Molectron 3sigma laser power meter, Prometec UFF100 beam diagnosis, PHOTRON Fastcam 1024R2 fast camera and Research Spectra Pro 2500i spectrometer. In order to eliminate the influence of the laser-induced thermal effect and directly measure the laser beam parameters and the laser power absorbed by the arc, the laser beam and the TIG arc are vertically set up in the experiment, with the focal spots set at the central axis of the TIG arc. During the experiment, the arc configuration is taken with the high speed camera, the spectrum of the arc plasma is acquired by the spectrograph, the local arc temperature is calculated by Boltzmann plot and the electron density of arc plasma is computed by the Saha equation. The effects of laser power, arc current and laser incident position on the characteristics of beam and arc plasma, such as laser power transmit ratio, beam diameter, laser propagating direction, voltage-current characteristic, arc configuration, arc power, arc temperature and electron density, are investigated in detail and the interaction mechanisms are analyzed. Furthermore, the influences of arc atmosphere and laser wavelength on the laser-arc interaction are analyzed, and the causes for the different interaction phenomena are investigated.
     After the laser-arc interaction experimental investigations, some novel CO2 laser-TIG arc hybrid welding processes for thin walled butt joint, lap joint and T-joint and heavy section butt joint are exploited. In order to protect the optics lens from the welding spatter and smoke in laser-arc hybrid welding process, an aerodynamic theory-based ultrasonic cross-jet with a non-symmetric Laval cavity is designed according to the moving status and the pattern of spatter particles. Compared with laser welding with filler wire, the characteristics of laser-TIG hybrid welding with filler wire are investigated, which include appearance of the welds, the decrease of defects and the tolerance in gap and unfitness. By optimizing the process parameters, sound thin walled T-joint and heavy section butt joint can be obtained by CO2 laser-TIG hybrid welding process. The laser-arc hybrid welding process with magnetohydrodynamics reinforcing is developed with an integration of laser-arc hybrid welding and laser welding with external electrical current.
引文
1 W. W. Duley. Laser Welding. John Wiley & Sons,1999:159~200
    2 P. Seyffarth, I. V. Krivtsun. Laser-Arc Processes and Their Applications in Welding and Material Treatment. Taylor & Francis, 2002:70~71
    3 U. Dilthey, F. Lueder, A. Wieschemann. Technical and Economical Advantages by Synergies in Laser Arc Hybrid Welding, Proceedings IIW International Conference-The Human Factor and It Is Environment.1999:141~152
    4 W. M. Steen, M. Eboo. Arc Augmented Laser Welding. Metal Construction. 1979,11(7):332~335
    5 W. M. Steen. Arc Augmented Laser Processing of Materials. Journal of Applied Physics. 1980, 51(11): 5636~5641
    6 C. Bagger, F. O. Olsen. Review of Laser Hybrid Welding. Journal of Laser Applications. 2005,17(1): 2~14
    7 A. Mahrle, E. Beyer. Hybrid Laser Beam Welding- Classification, Characteristics and Applications. Journal of Laser Applications. 2006,18(3): 169~180
    8 B. Ribic, T. A. Palmer, T. DebRoy. Problems and Issues in Laser-Arc Hybrid Welding. International Materials Reviews. 2009,54(4):223~244
    9 J. Tusek, M. Suban. Hybrid Welding with Arc and Laser Beam. Science and Technology of Welding and Joining. 1999, 4(5):308~311
    10 R. Michael, G. Sergej, L. Marco, et al. Laser-Hybrid Welding of Thick Plates up to 32 mm Using a 20 kW Fiber Laser. Quarterly Journal of the Japan Welding Society. 2009, 27(2): 74s~79s
    11 B. Hu, G. D. Ouden. Synergetic Effects of Hybrid Laser/Arc Welding. Science and Technology of Welding and Joining, 2005, 10(4):427~431
    12康乐,黄瑞生,刘黎明等.低功率YAG激光-MAG电弧复合焊接不锈钢.焊接学报.2007, 28(11):69~72
    13刘黎明,黄瑞生,曹运明.低功率YAG激光-熔化极气体弧焊复合焊接电弧等离子体行为研究.中国激光. 2009,36(2):3167~3173
    14 J. Paulini, G. Simon. A Theoretical Lower Limit for Laser Power in Laser-Enhanced Arc Welding. Journal of Physics D: Applied Physics. 1993,26(9):1523~1527
    15 B. Hu, G. d. Ouden. Laser Induced Stabilization of the Welding Arc. Science and Technology of Welding and Joining. 2005, 10(1): 76~80
    16 I. D. Harris, M. I. Norfolk. Hybrid Laser/Gas Metal Arc Welding of High Strength Steel Gas Transmission Pipelines. Proceedings of the ASME international pipeline conference-2008. 3:61~66
    17 S. l. Yang, R. Kovacevic. Welding of Galvanized Dual-Phase 980 Steel in a Gap-Free Lap Joint Configuration. Welding Journal. 2009, 88(8):168s~178s
    18 G. Shi, P. A. Hilton. Comparison of the Gap Bridging Capability of CO2 Laser and Hybrid CO2 Laser MAG Welding on 8mm Thickness C-Mn Steel Plate. Welding in the World, 2005, 49(7/8): 75~87
    19 K. Shibata, H. Sakamoto, T. Iwase. Laser-MIG Hybrid Welding of Aluminum Alloys. Proceedings of the First International WLT-Conference on Lasers in Manufacturing.2001:436~43
    20 D. Rasmussen, L. Dubourg. Hybrid laser-GMAW Welding of Aluminum Alloys: A Review.ASM Proceedings of the International Conference: Trends in Welding Research. 2005:133~142
    21 T. P. Diebold, C. E. Albright. Laser-GTA Welding of Aluminum Alloy 5052. Welding Journal. 1984, 63(6):18~24
    22 G. Campana, A. Ascari, A. Fortunato, et al. Hybrid Laser-MIG Welding of Aluminum Alloys: The Influence of Shielding Gases. Applied Surface Science. 2009,255(10): 5588~90
    23 T. Shida, M.Hirokawa, N. Fujikura, et al. Welding of Aluminum Alloys by Using High Power CO2 Laser in Combination with MIG Arc. 6th International Conference of Welding and Melting by Electron and Laser beam.1998:399~406
    24 Liu Liming, Wang Jifeng, Song Gang. Hybrid Laser-TIG Welding, Laser Beam Welding and Gas Tungsten Arc Welding of AZ31B Magnesium Alloy. Materials Science and Engineering A, 2004, 381(1-2):129~133
    25 L. Cui, K. Muneharua, S. Takao, et al. Fiber Laser-GMA Hybrid Welding of Commercially Pure Titanium. Materials & Design. 2009, 30(1):109~114
    26 C. Huunbyung, K. Cheolhee, J. Jeonghan, et al. The Effect of Process Parameters on the Gap Bridging Capability for CO2 Laser-GMA Hybrid Welding.Proceedings of ICALEO 2005. 2005: 169~173
    27 S. Fujinaga, R. Ohashi, S. Katayama, et al. Improvements of Welding Characteristics of Aluminum Alloys with YAG Laser and TIG Arc Hybrid System. Proceedings of the SPIE. 2003,4831:301~306
    28 S. Katayama, Y. Naito, S. Uchiumi, et al. Physical Phenomena and Porosity Prevention Mechanism in Laser-Arc Hybrid Welding. Transactions of JWRI. 2006,35(1):13~18
    29 D. Petring, C. Fuhrmann, N. Wolf. Investigations and Applications of Laser-Arc Hybrid Welding from Thin Sheets up to Heavy Section Components. Proceedings of ICALEO 2003. 2003:1~10
    30 B. W. Shinn, D. F. Farson, P. E. Denney. Laser Stabilization of Arc Cathode Spots in Titanium Welding. Science and Technology of Welding and Joining. 2005,10 (4):475~481
    31 B. Hu, I. M. Richardson. Hybrid Laser/GMA Welding Aluminum Alloy 7075.Welding in the World, 2006,50(7-8):51~57
    32 L. M. Liu, X. F. Hao. Study of the Effect of Low-Power Pulse Laser on Arc Plasma and Magnesium Alloy Target in Hybrid Welding by Spectral Diagnosis Technique. Journal of Physics D: Applied Physics. 2008, 41(9):205202
    33 C. J. Page, T. Devermann, J. Biffin, et al. Plasma Augmented Laser Welding and Its Applications. Science and Technology of Welding and Joining. 2002,7(1):1~9
    34 A. Wieschemann, H. Kelle, D. Dilthey. Hybrid-Welding and the HyDRA MAG + Laser Processes in Shipbuilding. Welding International. 2003, 17(10): 761~766
    35 E. Beyer, U. Dilthey, R. Imhoff, et al. New Aspects in Laser Welding with an Increased Efficiency. Proceedings of ICALEO’94. 1994:183~192
    36 Y. B. Chen, Y. G. Miao, L. Q. Li, et al. Arc Characteristics of Laser-TIG Double-Side Welding. Science and Technology of Welding and Joining. 2008,13(5):438~444
    37苗玉刚,李俐群,陈彦宾.铝合金激光—电弧双面焊接头特征分析.焊接学报.2007, 28(12):85~88
    38 P. Seyffahrt, B .Anders, and J.Hoffmann. Combination of Laser Beam Arc Welding. Proceedings of ECLAT’94.1994:377~397
    39 S. G. Gornyi, V. D. Redozubov. Examination of the Electrical Characteristics of the Arc in Laser-Arc Welding. Welding International. 1990,4(6):474~476
    40 V. V. Avilov, I. Decker, H. Pursch, et al. Study of a Laser-Enhanced Welding Arc Using Advanced Split Anode Technique. Welding Journal. 1994, 11(2):112~123
    41 M. Ono, Y. Shinbo, A. Yoshitake, et al. Welding Properties of Thin Steel Sheets by Laser-Arc Hybrid Welding: Laser Focused Arc Welding. Proceedings of SPIE. 2002, 4831:369~374
    42 Y. Naito, M. Mizutani, S. Katayama. Penetration Characteristics in YAG Laser and TIG Arc Hybrid Welding, and Arc and Plasma/Plume Behavior during Welding - Welding Phenomena in Hybrid Welding Using YAG Laser and TIG Arc (first report). Quarterly Journal of the Japan Welding Society. 2006, 24(1):32~38
    43 U. Stute, R. Kling, J. Hermsdorf. Interaction Between Electrical Arc and Nd: YAG Laser Radiation. Annals of the CIRP. 2007,56(1):197~200
    44 D. Travis, G. Dearden, K. G. Watkins, et al. Sensing for Monitoring of the Laser-GMAW Hybrid Welding Process. Proceedings of ICALEO 2004. 2004:35~40
    45 Y. B. Chen, Z. L. Lei, L.Q. Li, et al. Experimental Study on Welding Characteristics of CO2 Laser TIG Hybrid Welding Process. Science and Technology of Welding and Jointing. 2006, 11(4):403~411
    46陈彦宾,李俐群,陈凤东.激光维持燃烧波对激光-TIG复合热源的影响.哈尔滨工业大学学报.2003, 35(6):695~697.
    47陈彦斌,陈杰,李俐群等.激光与电弧相互作用时的电弧形态及焊缝特征.焊接学报.2003, 24(1):55~56
    48 M. Aden, E. W. Kreutz and O. Hausen. Influence of the laser radiation on the plasma dynamics during arc-laser welding. Proceedings of ICALEO’98.1998:139~147
    49 Lu Dengping, Zhang Shaobin, Hu Shengsun, et al. Study on Mechanism of Mutual Effect between Laser and Arc & Its Effect on Weld Penetration. Welding Research Abroad. 1995, 41 (3):24~28
    50 T. Ishide, S. Tsubota, M. Nayama, et al. 10 kW Class YAG Laser Application for Heavy Components. Proceedings of SPIE. 2000, 3888: 543~550.
    51 O. B. Bibik, V. N. Brodyaqin, Y. P. Rokladov. Special Features of Interaction of Laser Radiation with the Electric Welding Arc in the Combined Laser-Arc Welding. Physics and Chemistry of Materials Treatment. 1990, 24(2):176~178.
    52陈彦斌,李俐群,吴林.电弧对激光吸收与散焦的定量测量.焊接学报,2003, 24(3):56~58
    53 Y. Naito, M. Mizutani, S. Katayama. Effect of Oxygen in Ambient Atmosphere on Penetration Characteristics in Single Yttrium–Aluminum–Garnet Laser and Hybrid Welding. Journal of Laser Applications. 2006,18(1):21~27
    54 Y. Naito, M. Mizutani, S. Katayama. Electrical Measurement of Arc during Hybrid Welding - Welding Phenomena in Hybrid Welding Using YAG Laser and TIG Arc (third report). Quarterly Journal of the Japan Welding Society. 2006, 24(1): 45~51
    55 Y. Naito, M. Mizutani, S. Katayama. Elucidation of Penetration Characteristics, Porosity Prevention Mechanism and Flows in Molten Pool during Laser-Arc Hybrid Welding - Welding Phenomena in Hybrid Welding Using YAG Laser and TIG Arc (fourth report). Quarterly Journal of the Japan Welding Society. 2006, 24(2):149~161
    56 A. Fellman, A. Salminen. A Study of the Phenomenon of CO2 Laser Welding with Filler Wire and MAG Hybrid Welding. Proceedings of ICALEO 2005.2005:117~126
    57 M. Kutsuna, L. Chen. Interaction of Both Plasma in CO2 Laser-MAG Hybrid Welding of Carbon Steel. The Proceedings of SPIE. 2003:4831:341~346
    58雷正龙,陈彦宾,李俐群等.CO2激光-MIG复合焊接射滴过渡的熔滴特性.应用激光,2004,24(6):361~364
    59 C. Lampa, A. F. H. Kaplan, J. Powell, et al. An Analytical Thermodynamic Model of Laser Welding. Journal of Physics D: Applied Physics. 1997, 30(9):1293~1299
    60 V. V. Semak, W. D. Bragg, B. Damkroger, et al. Transient Model for the Keyhole during Laser Welding. Journal of Physics D: Applied Physics.1999, 32(15):L61~L64
    61 S. Kumar, S. C. Bhaduri. Three-Dimensional Finite Element Modeling of Gas Metal-Arc Welding. Metallurgical and Materials Transactions B. 1994, 25B(6):435~441
    62 B. R. Finke, P. D. Kapadia, J. M. Dowden. A Fundamental Plasma Based Model for Energy Transfer in Laser Material Processing. Journal of Physics D: Applied Physics.1990, 23(6):643~654
    63 J. Zhou, H. L. Tsai, P. C. Wang, et al. Modeling of Hybrid Laser-MIG Keyhole Welding Process. Proceedings of ICALEO 2003. 2003: 135~141
    64 J. Zhou, H. L. Tsai. Modeling of Transport Phenomena in Hybrid Laser-MIG Keyhole Welding. International Journal of Heat and Mass Transfer. 2008,51(17-18):4353~4366
    65胥国祥,武传松,秦国梁等.激光+GMAW复合热源焊焊缝成形的数值模拟Ⅰ–表征激光作用的体积热源分布模式.金属学报.2008,44(4):478~482
    66胥国祥,武传松,秦国梁等.激光+GMAW复合热源焊焊缝成形的数值模拟Ⅱ-组合式体积热源的作用模型.金属学报.2008,44(6):641~646
    67胥国祥,武传松,秦国梁等.激光+GMAW复合热源焊焊缝成形的数值模拟Ⅲ—电弧脉冲作用的处理与热源模型的改进.金属学报. 2009,45(1):107~112
    68李志宁,都东,常保华等.激光-等离子弧复合焊接熔池流动和传热的数值分析.焊接学报.2007,28(7):37~40
    69 V. Goncalves, A. Salema. Laser/TIG Hybrid Welding-Program for the Calculation of Welding Parameters and Pre-heating Temperature in Alloy Steels. International Journal for the Joining of Materials.2002, 14(3-4): 33~37
    70 B. Ribic, R. Rai, T. DebRoy. Numerical Simulation of Heat Transfer and Fluid Flow in GTA/Laser Hybrid Welding. Science and Technology of Welding and Joining. 2008,13(8):683~693
    71 P. Denney, D. Harwig, L. Brown. Hybrid Laser Weld Development for Shipbuilding Applications. Proceedings of Ship Production Symposium and Expo. 2001:1~18
    72 T. Jokinen, M. Karhu, V. Kujanpaa. Welding of Thick Austenitic Stainless Steel Using Nd:Yttrium-Aluminum-Garnet Laser With Filler Wire and Hybrid Process. Journal of Laser Applications. 2003,15(4):220~224
    73 T. Jokinen, V. Kujanpaa. High Power Nd:YAG Laser Welding in Manufacturing of Vacuum Vessel of Fusion Reactor. Fusion Engineering and Design.2003, 69(1-4): 349~353
    74 M. Gao, X. Y. Zeng, Q. W. Hu. Effects of Welding Parameters on Melting Energy of CO2 Laser-GMA Hybrid Welding. Science and Technology of Welding and Joining. 2006,11(5): 517~522
    75 Gao Ming, Zeng Xiaoyan, Hu Qianwu. Effects of Gas Shielding Parameters on The Weld Penetration of CO2 Laser-TIG Hybrid Welding. Journal of Materials Processing Technology. 2007, 184(1-3): 177~183
    76高明,曾晓雁,胡乾午等.CO2激光-TIG电弧复合焊接中气体保护方式的研究.中国激光. 2006, 33(10): 1422~1427
    77高明,曾晓雁,胡乾午等.低碳钢CO2激光-脉冲MAG电弧复合焊接工艺研究.激光技术.2006, 30(5):498~500
    78高明,曾晓雁,胡乾午等.CO2激光MAG电弧复合焊接保护气体的影响规律.焊接学报.2007,28(2):85~88
    79高明,曾晓雁,胡乾午等.激光-电弧复合焊接咬边缺陷分析及抑制方法.焊接学报.2008, 29(6):85~88
    80王威,王旭友,赵子良.激光-MAG电弧复合热源焊接过程的影响因素.焊接学报. 2006,27(2):6~10
    81秦国梁,雷振,王旭友等. Nd : YA G激光+脉冲MA G电弧复合热源焊接规范参数对焊缝表面成形的影响.应用激光. 2006,26(2):97~100
    82秦国梁,雷振,王旭友等. Nd:YAG激光+脉冲MAG电弧复合热源焊接参数对焊缝熔深的影响.机械工程学报. 2007,43(1):225~228
    83秦国梁,李小宇,王旭友等. Nd:YAG激光+脉冲GMAW复合热源焊接参数对焊缝熔宽的影响.焊接学报.2006,27(9):73~76
    84雷振,于宁,游爱清等. 5A02/Q235钢Nd∶YAG激光-脉冲MIG复合热源熔-钎连接.焊接学报.2008,29(6):21~25
    85雷振,秦国梁,王旭友等.铜/镀锌钢异种金属Nd :YAG激光脉冲MIG复合热源钎接焊.焊接学报.2007, 28(12):18~21
    86王旭友,王威,林尚扬.焊接参数对铝合金激光-MIG电弧复合焊缝熔深的影响.焊接学报. 2008, 29(6):13~16
    87 H. Staufer. Laser Hybrid Welding in the Automotive Industry. Welding Journal. 2007, 86(10):36~40
    88 S. Herbert. Laser-Hybrid Welding of Ships. Welding Journal, 2004,83(6):39~43
    89 P. L. Moore, D.S. Howse, E. R. Wallach. Development of Laser, and Laser/MAG Hybrid Welding for Land Pipeline Applications [J]. Welding and Cutting, 2004, 3(3): 186~191
    90 P. Jernstrom. Hybrid Welding of Hollow Section Beams for a Telescopic Lifter.Proceeding of SPIE.2002,4831:353~356
    91 C. Bagger, L.C. Sondrup, F. O. Olsen. Laser/TIG Hybrid Welding of Pot for Induction Heater. Proceedings of ICALEO 2004.2004: 60~69
    92 [日]安藤弘平,长谷川光雄著,施雨湘(译).焊接电弧现象.机械工业出版社, 1985, 56~57, 75~76, 93
    93 A. Nicholas, W. K. Alvin. Trivelpiece.黄林,邱孝明(译). Principles of Plasma Physics. McGraw-Hill Book Company, 1973, 4~5
    94过增元,赵文华.电弧和热等离子体.科学出版社, 1986:260~307
    95 T. P. Hughes. Plasmas and Laser Light. Adam Hilger, 1975:1~23
    96常铁强.激光等离子体相互作用与激光聚变.湖南科学技术出版社, 1991:1~34
    97 L. K. William. The Physics of Laser Plasma Interactions. Addison- Wesley Publishing Inc., 1988:27~32
    98 A. Poueyo-Verxaerde, R. Fabbro, G. Deshors, et al. Experimental Study of Laser-Induced Plasma in Welding Conditions with Continuous CO2 laser. Journal of Applied Physics. 1993, 74(9):5773~5780
    99 M. H. Glowacki. The Effects of the Use of Different Shielding Gas Mixtures in Laser Welding of Metals. Journal of Physics D: Applied Physics. 1995, 28(6):2051~2059
    100 C. Tix, U. Gratzke, G. Simon. Absorption of the Laser Beam by the Plasma in Deep Laser Beam Welding of Metals. Journal of Applied Physics. 1995, 78(11): 6448~6453
    101 M. Tanaka, S. Tashiro. Electron Temperature Measurement of Tungsten Inert Gas Arcs. Thin Solid Films.2008,516 (19) : 6628~6633
    102 M. Tanaka, M. Ushio. Plasma State in Free-Burning Argon arc and Its Effect on Anode Heat Transfer. Journal of Physics D: Applied Physics. 1999,32(10):1153~1162
    103 H. N. Olsen. Thermal and Electrical Properties of an Argon plasma. The Physics of Fluids. 1959,2(6):614~623
    104 Q. Wang, D. J. Economou, V. M. Donnelly. Simulation of a Direct Current Micro Plasma Discharge in Helium at Atmospheric Pressure. Journal of Applied Physics. 2006, 100(2):023301
    105 D. P. Lymberopoulos, D. J. Economou. Fluid Simulations of Glow Discharges: Effects of Metastable Atoms in Argon. Journal of Applied Physics. 1993,73(8):3668~3679
    106 J. F. Lancaster. The Physics of Welding-2nd Edition. Great Britation, 1986, 13~15,23~27, 78
    107刘金合,朱石刚.CO2激光焊接等离子体高速摄影照片图像处理.应用激光.2002,22(3):342~344
    108 P. G. Slada, E. Schulz-Gulde. Spectroscopic Analysis of High-Current Free-Burning ac Arcs Between Copper Contacts in Argon and Air. Journal of Applied Physics. 1973,44(1):157~162
    109 P. Vervisch, B. Cheron, J. F. Lhuissier. Spectroscopic Analysis of a TIG Arc Plasma. Journal of Physics D: Applied Physics. 1990,23(8):1058~1063
    110 Z. Szymanski, J. Kurzyna. Spectroscopic Measurement of Laser Induced Plasma during Welding with CO2 Laser. Journal of Applied Physics.1994,76(12):7750~7756
    111 H. R. Griem. Principles of Plasma Spectroscopy. Cambridge University Press, 1997:187~212
    112 L. J. Radziemski, D. A. Cremers. Laser Induced Plasmas and Applications. Marcel Dekker,1989:69~76
    113 M. C. Fowler, D. C. Smith. Ignition and Maintenance of Subsonic Plasma Waves in Atmospheric Pressure Air by cw CO2 Laser Radiation and Their Effect on Laser Beam Propagation. Journal of Applied Physics, 1975,46(1):138~150
    114曹娜.钛合金激光焊接工作头研制.北京工业大学硕士学位论文. 2006:11~17
    115 X.D.Zhang, W.Z.Chen, P. Jiang, et al. Modeling and Application of Plasma Charge Current in Deep Penetration Laser Welding. Journal of Applied Physics. 2003,93(11):8842~8847
    116 M. Kern, P. Berger, H. Hugel. Magneto-Fluid Dynamic Control of Seam Quality in CO2 Laser Beam Welding. Welding Journal. 2000,79(3):72s~78s
    117 F.Vollertsen, C.Thomy. Magnetic Stirring during Laser Welding of Aluminum. Journal of Laser Application.2006,18(1):28~34
    118 C. Thomy, F. Vollertsen. Influence of Magnetic Fields on Dilution during Laser Welding of Aluminum. Advanced Materials Research. 2005,6-8:179~186
    119 G. Ambrosy, V. Avilor, P. Berger, et al. Laser Induced Plasma as a Source for an Intensive Current to Produce Electromagnetic Forces in the Weld Pool. Proceedings of SPIE. 2007, 6346:63461
    120 G. Ambrosy, P. Berger, H. Hugel, et al. Improvement of Laser Beam Welding by Electromagnetic Forces in the Weld Pool. Proceedings of SPIE.2003,4831:175~179
    121 R.S.Xiao, G. Ambrosy, T.C.Zuo, et al. New Approach to Improve the Laser Welding Process of Aluminum by Using an External Electrical Current. Journal of Materials Science Letters.2001,20:2163~2165
    122 G. Ambrosy, P. Berger, H. Hugel, et al. The Use of Electromagnetic Body Forces to enhance the Quality of Laser Welds. Proceedings of SPIE.2003,5120:596~600

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700