用户名: 密码: 验证码:
反馈谐振式激光能量传输理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代卫星技术的发展以及航天应用需求的增长,分离模块卫星系统(System F6)引起了越来越多研究者的兴趣。无线能量传输技术是分离模块卫星系统中的一项关键技术,其中激光能量传输具有传输距离远、设备体积重量小、能量密度高等特点,是一种重要的空间无线能量传输方式。
     激光能量传输在分离模块卫星系统中采用“申请-应答”工作模式,由能源控制中心控制能量的分配与传输。在传统的激光能量传输中,通过刻蚀处理降低接收端光电池表面反射率是提高能量传输效率的重要手段之一,然而刻蚀处理不仅增大了光电池的成本,而且增加了装调和使用难度,太空中使用还容易升温。因此本文提出了一种反馈谐振式激光能量传输方法,将发射端和接收端组成一个激光谐振腔,接收端光电池表面反射的激光仍处于谐振腔内,来回振荡,在反馈回激光器后激发出更多光子,增大受激辐射比率,提高激光器的电-光转换效率,降低激光器的发热量。反馈谐振式激光能量传输要求接收端表面光滑,无需对光电池进行刻蚀处理,既可降低光电池的成本又可提高能量传输效率。
     本文建立了反馈谐振式能量传输的理论模型,对反馈谐振式激光能量传输的效率进行了仿真。通过仿真发现,反馈谐振式能量传输将激光器的阈值电流降低了25%,当激光器驱动电流为30mA,接收模块反射率为10%时,传输的光功率提升了48%。
     在实验室内使用半导体激光器和表面反射率为6%@940nm的硅光电池进行了激光能量传输实验,实验结果表明,反馈谐振式激光能量传输将能量传输总效率从4.7%提升到了6%。
     反馈谐振式能量传输的关键在于将能量限制于谐振腔内,使接收端反射的激光尽量多的反馈回发射端。本文使用ZEMAX软件仿真了在远距离以及失调情况下球面部分反射镜和镀有部分反射膜的角锥棱镜的能量反馈率,仿真结果表明球面部分反射镜的能量反馈率大,然而抗失调性能差,适用于具有高精度姿控能力的模块间能量传输。镀有部分反射膜的角锥棱镜的能量反馈率低,但抗失调性能强,适用于姿控能量弱的模块间能量传输。
System F6attracted more and more interest of researchers with the developmentof satellite technology and aerospace applications growth. Wireless power transmission(WPT) is a key technology of System F6. Laser power transmission which can realizelong-range power transmission is an important method of WPT. It has small systemsand high power density and suitable for space WPT.
     Laser power transmission is working as application-answer mode in System F6.Energy distribution and transmission are controlled by an energy control center. Intraditional laser power transmission, reducing reflection loss of light injected intophotocell by texturing is one of the most important ways to improve powertransmission efficiency. Nevertheless, this way will increase photocell cost anddifficulty of using and adjustment. It will also increase photocell temperature in space.This paper presents a laser power transmission method which can reuse reflection lossby laser feedback and improve laser power transmission efficiency. The main idea ofoptical feedback laser power transmission is forming a laser resonant cavity betweenthe power transmitter and the power receiver. All of the laser light including thereflection light is constrained in the cavity. The reflection light which is feedback intothe laser will excite more photons and improve efficiency of the laser. It will alsodecrease calorific of the laser.
     A theoretical model of laser feedback power transmission is set up in this paper.The efficiency of laser feedback power transmission is simulated. By the simulationresult, the threshold current of the laser is reduced by25%with laser feedback powertransmission. The optical power is increased by48%at laser driving current of30mAand receiver reflection of10%.
     A laser power transmission experiment has been done using a semiconductor laserand a Si photocell with reflection of6%@940nm. The experimental result shows thatthe efficiency of laser power transmission is improved from4.7%to6%with laserfeedback.
     Constraining all of the laser beam in the laser resonant cavity is the key factor oflaser feedback power transmission and we hope more light can be feedback into the transmitter. The energy feedback rate of a spherical reflector and a cube-corner prismat a situation of long-distance and disorder is simulated by ZEMAX. The simulationresults show that, the spherical reflector has a high reflection rate but pooranti-disorder performance. It is suitable for laser power transmission with high attitudecontrol and orbit control ability. The cube-corner prism has lower reflection rate,however, strong anti-disorder performance. So it is suitable for satellite laser powertransmission with weak attitude control and orbit control ability.
引文
[1]王兆魁.分布式卫星动力学建模与控制研究.长沙:国防科学技术大学,2006.
    [2]朱毅麟.新概念航天器——模块化分离式卫星.中国航天,2008(08).
    [3] Szajnfarber Z, Richards M G, Weigel A L. Implications of DoD acquisition policy forinnovation: The case of operationally responsive space: Space2008Conference, San Diego,CA, United states,2008.
    [4] Saleh J H, Dubos G. Responsive space: Concept analysis, critical review, and theoreticalframework: AIAA Space2007Conference, Long Beach, CA, United states,2007.
    [5] Brown O, Eremenko P. The value proposition for fractionated space architectures: Space2006Conference, San Jose, CA, United states,2006.
    [6] Cornford S, Shishko R, Wall S, et al. Evaluating a fractionated spacecraft system: A businesscase tool for DARPA's F6program:2012IEEE Aerospace Conference, Big Sky, MT, Unitedstates,2012.
    [7] Mathieu C, Weigel A L. Assessing the fractionated spacecraft concept: Space2006Conference, San Jose, CA, United states,2006.
    [8] Jamnejad V, Silva A. Microwave power beaming strategies for fractionated spacecraftsystems:2008IEEE Aerospace Conference, AC, Big Sky, MT, United states,2008.
    [9] Barker D J, Summerer L. Analysis of near-field wireless power transmission for fractionatedspacecraft applications:62nd International Astronautical Congress2011, IAC2011, CapeTown, South africa,2011.
    [10] Landis G A. Re-evaluating satellite solar power systems for earth:2006IEEE4th WorldConference on Photovoltaic Energy Conversion, WCPEC-4, Waikoloa, HI, United states,2007.
    [11] Smith M H, Fork R L, Cole S T. Safe delivery of optical power from space. Optics Express,2001,8(10):537-546.
    [12] Tesla N. The transmission of electric energy without wires. Electrical World and Engineer,1904.
    [13] Tesla N."World system" of wireless transmission of energy. Telegraph and Telephone Age,1927(n20):457-460.
    [14]张茂春,王进华,石亚伟.无线电能传输技术综述.重庆工商大学学报(自然科学版),2009(05).
    [15] Brown W C. The History of Power Transmission by Radio Waves. Microwave Theory andTechniques, IEEE Transactions on,1984,32(9):1230-1242.
    [16]孙跃,卓勇,苏玉刚,等.非接触电能传输系统拾取机构方向性分析.重庆大学学报(自然科学版),2007(04).
    [17] Shinoda H, Terada T. Wireless power transmission using small coupler for mobile devices:20126th IEEE Radio and Wireless Week, RWW2012-2012IEEE Radio and WirelessSymposium, RWS2012, Santa Clara, CA, United states,2012.
    [18] Casanova J J, Low Z N, Lin J. A loosely coupled planar wireless power system for multiplereceivers. IEEE Transactions on Industrial Electronics,2009,56(8):3060-3068.
    [19] Lenaerts B, Puers R. An inductive power link for a wireless endoscope. Biosensors andBioelectronics,2007,22(7):1390-1395.
    [20] O'Brien K, Scheible G, Gueldner H. Design of large air-gap transformers for wireless powersupplies:2003IEEE34th Annual Power Electronics Specialists Conference, Acapulco, NM,United states,2003.
    [21]樊华,郑小林,皮喜田,等.一种用于体内诊疗装置的无线能量传输方案.北京生物医学工程,2004(03).
    [22] Ryu M, Kim J D, Chin H U, et al. Three-dimensional power receiver for in vivo roboticcapsules. Medical and Biological Engineering and Computing,2007,45(10):997-1002.
    [23] Waffenschmidt E. Wireless power for mobile devices:201133rd InternationalTelecommunications Energy Conference, INTELEC2011, Amsterdam, Netherlands,2011.
    [24] Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magneticresonances. SCIENCE,2007,317(5834):83-86.
    [25]张小壮.磁耦合谐振式无线能量传输距离特性及其实验装置研究.哈尔滨:哈尔滨工业大学,2009.
    [26]任立涛.磁耦合谐振式无线能量传输功率特性研究.哈尔滨:哈尔滨工业大学,2009.
    [27] Kurs A, Moffatt R, Soljacic M. Simultaneous mid-range power transfer to multiple devices.Applied Physics Letters,2010,96(4).
    [28] Karalis A, Joannopoulos J D, Soljacic M. Efficient wireless non-radiative mid-range energytransfer. ANNALS OF PHYSICS,2008,323(1):34-48.
    [29] Sun T, Xie X, Li G, et al. Indoor wireless power transfer using asymmetricdirectly-strong-coupling mechanism. Microwave and Optical Technology Letters,2013,55(2):250-253.
    [30] Brown W C. The history of wireless power transmission. Solar Energy,1996,56(1):3-21.
    [31] Glaser P E. Power from the Sun: Its Future. Science,1968,162(3856):857-861.
    [32] Little F E, Chang K, Fink R J, et al. A Space to Earth Demonstration of Wireless PowerTransmission.2009-h-27,2009.
    [33] Chiou H, Chen I S. High-efficiency dual-band on-chip rectenna for35-and94-GHz wirelesspower transmission in0.13-μm CMOS technology,2010.
    [34] Mateu L, Moll F. Review of energy harvesting techniques and applications formicroelectronics: VLSI Circuits and Systems II, Seville, Spain,2005.
    [35] Sodano H A, Inman D J, Park G. A review of power harvesting from vibration usingpiezoelectric materials. Shock and Vibration Digest,2004,36(3):197-205.
    [36] Paradiso J A, Starner T. Energy scavenging for mobile and wireless electronics. IEEEPervasive Computing,2005,4(1):18-27.
    [37] Sasaki S, Tanaka K. Wireless power transmission technologies for solar power satellite:20111st IEEE MTT-S International Microwave Workshop Series on Innovative Wireless PowerTransmission: Technologies, Systems, and Applications, IMWS-IWPT2011, Kyoto, Japan,2011.
    [38]徐君书.中小功率的整流天线技术研究.上海:上海大学,2005.
    [39] Cougnet C, Sein E, Celeste A, et al. Solar power satellites for space applications: InternationalAstronautical Federation-55th International Astronautical Congress2004, Vancouver,Canada,2004.
    [40] Japan Aerospace Exploration Agency. http://www.isas.jaxa.jp/e/enterp/tech/st/14.shtml.
    [41] Mori M, Kagawa H, Saito Y. Summary of studies on space solar power systems of JapanAerospace Exploration Agency (JAXA): International Astronautical Federation-56thInternational Astronautical Congress2005, Fukuoka, Japan,2005.
    [42] Lunar Solar Power Generation-LUNA RING.http://www.shimz.co.jp/english/theme/dream/lunaring.html.
    [43] Masychev V I, Sysoev V K, Pichkhadze K M, et al. Laser remote power transmission in space.Analysis of using a channel power transmission for information-measuring whole: Free-SpaceLaser Communication Technologies XIII, San Jose, CA, United states,2001.
    [44] Kare J T. Laser power beaming infrastructure for space power and propulsion: Sensors forPropulsion Measurement Applications, Kissimmee, FL, United states,2006.
    [45] Takeda K, Tanaka M, Miura S, et al. Laser power transmission for the energy supply to therover exploring ice on the bottom of the crater in the lunar polar region: Laser and BeamControl Technologies, San Jose, CA, United states,2002.
    [46] Kawashima N, Takeda K, Matsuoka H, et al. Laser energy transmission for a wireless energysupply to robots:22nd International Symposium on Automation and Robotics in Construction,ISARC2005, Ferrara, Italy,2005.
    [47] Parise R J. Future all-electric transportation communication and recharging via wirelesspower beam: Optical Wireless Communications III, Boston, MA, United states,2001.
    [48] U O, W F H. PowerSphere: A Novel Photovoltaic Cavity Converter Using Low BandgapTPV Cells for Efficient Conversion of High Power Laser Beams to Electricity: AIPConference Proceedings, Freiburg (Germany),2004.
    [49] Ortabasi U, Friedman H. Powersphere: A photovoltaic cavity converter for wireless powertransmission using high power lasers:2006IEEE4th World Conference on PhotovoltaicEnergy Conversion, WCPEC-4, Waikoloa, HI, United states,2007.
    [50] NASA: Beamed Laser Power For UAVs.http://www.nasa.gov/centers/dryden/news/FactSheets/FS-087-DFRC.html.
    [51] From gas-powered to laser-powered! NASA research team successfully flies firstlaser-powered aircraft.http://www.nasa.gov/centers/marshall/news/news/releases/2003/03-180.html.
    [52] Blackwell T. Recent demonstrations of laser power beaming at DFRC andMSFC//MELVILLE: AMER INST PHYSICS,2005:73-85.
    [53] Becker D E, Chiang R, Keys C C, et al. Photovoltaic-Concentrator Based Power Beaming ForSpace Elevator Application: AIP Conference Proceedings, Scottsdale (Arizona),2010.
    [54] Treusch G, Koenning T, Shelef B. High-power diode lasers boost power-beaming competition.Laser Focus World,2008,44(3):75-79.
    [55] Guo J, Maessen D C, Giii E. Fractionated spacecraft: The new sprout in distributed spacesystems:60th International Astronautical Congress2009, IAC2009, Daejeon, Korea,Republic of,2009.
    [56] Green M A, Zhao J, Wang A, et al.45%efficient silicon photovoltaic cell undermonochromatic light. Electron device letters,1992,13(6):317-318.
    [57]李相银,姚敏玉,李卓,等.激光原理技术及应用.哈尔滨工业大学出版社,2004.
    [58]陈家璧,顾铮先,余重秀,等.激光原理及应用.北京:电子工业出版社,2004.
    [59]魏彪,盛新志.激光原理及应用.重庆:重庆大学出版社,2007.
    [60]杜宝勋.半导体激光器原理.北京:兵器工业出版社,2001.
    [61]安毓英,刘继芳,曹长庆.激光原理与技术.科学出版社,2010.
    [62]陈晓燕.光纤激光器的发展与应用.电子元器件应用,2004,6(11):1-3.
    [63]刘馨阳.太阳光泵浦紫翠宝石激光器研究.哈尔滨:哈尔滨工业大学,2007.
    [64] P C, J W, T C, et al.>360W and>70%efficient GaAs-based diode lasers: Lasers andApplications in Science and Engineering. International Society for Optics and Photonics,2005.
    [65] Crump P, Wang J, Crump T, et al. Optimized Performance GaAs-Based Diode Lasers:Reliable800-nm125W Bars and83.5%Efficient975-nm Single Emitters.NLIGHTPHOTONICS CORP VANCOUVER WA,2005.
    [66] Li H, Towe T, Chyr I, et al. Near1kW of continuous-wave power from a singlehigh-efficiency diode-laser bar. IEEE Photonics Technology Letters,2007,19(13):960-962.
    [67] Raible D E. HIGH INTENSITY LASER POWER BEAMING FOR WIRELESS POWERTRANSMISSION. Cleveland State University,2008.
    [68] Morales R A L. PERFORMANCE OF ADVANCED TRIPLE-JUNCTION (ATJ) SOLARCELLS. Santiago de Chile: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE,2005.
    [69] Bennett H E, Rather J D G, Montgomery E E I. Free-electron laser power beaming tosatellites at China Lake, California. Nuclear Instruments and Methods in Physics Research,Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,1994,A341(1-3):124-131.
    [70] T J N, J T K, L C L L. Laser Power for UAVs. Laser Motive White Paper-Power Beaming forUAVs, NWEN,2010.
    [71] Schafer C A. Continuous adaptive beam pointing and tracking for laser power transmission.Optics Express,2010,18(13):13451-13467.
    [72] Sch fer C A, Gray D. Transmission media appropriate laser-microwave solar power satellitesystem,2012.
    [73] Cho Y J, Chang H S. Reduction of surface reflectivity in multi-crystalline silicon solar cellsby wet nano-texturing. Physica Status Solidi (C) Current Topics in Solid State Physics,2012,9(10-11):2097-2100.
    [74] Xu J, Yin Y, Ma H, et al. A novel trilayer antireflection coating using dip-coating technique.Chinese Optics Letters,2011,9(7).
    [75] Jiao F, Huang Q, Ren W, et al. Enhanced performance for solar cells with moth-eye structurefabricated by UV nanoimprint lithography. Microelectronic Engineering,2012,103:126-130.
    [76] Han K, Shin J, Yoon W, et al. Enhanced performance of solar cells with anti-reflection layerfabricated by nano-imprint lithography,2011.
    [77] Hocine D, Belkaid M S, Pasquinelli M, et al. Improved efficiency of multicrystalline siliconsolar cells by TiO(2) antireflection coatings derived by APCVD process. MATERIALSSCIENCE IN SEMICONDUCTOR PROCESSING,2013,16(1):113-117.
    [78] Jing L, Ashmkhan M, Gangqiang D, et al. Fabrication of micro-nano surface texture by CsCllithography with antireflection and photoelectronic properties for solar cells. Solar EnergyMaterials and Solar Cells,2013,108:93-9797.
    [79] Markvart T, Castaner L. Solar cell: Materials, Manufacture and Operation.梁骏吾等,译.机械工业出版社,2009.
    [80] Sivakov V, Andra G, Gawlik A, et al. Silicon nanowire-based solar cells on glass: Synthesis,optical properties, and cell parameters. Nano Letters,2009,9(4):1549-1554.
    [81]乔忠良.高亮度大功率半导体激光器研究.吉林长春:长春理工大学,2011.
    [82] Kakiuchida H, Ohtsubo J. Characteristics of a semiconductor laser with external feedback.IEEE Journal of Quantum Electronics,1994,30(9):2087-2097.
    [83]刘崇,葛剑虹,陈军.外腔反馈对半导体激光器振荡特性的影响.物理学报,2006,55(10):5211-5215.
    [84] Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laserproperties. IEEE Journal of Quantum Electronics,1980,QE-16(3):347-355.
    [85] Langley L N, Shore K A, Mork J. Dynamical and noise properties of laser diodes subject tostrong optical feedback. Optics Letters,1994,19(24):2137-2139.
    [86] Abdulrhmann S G, Ahmed M, Okamoto T, et al. An Improved Analysis of SemiconductorLaser Dynamics Under Strong Optical Feedback: IEEE Journal on Selected Topics inQuantum Electronics,2003.
    [87] Kallimani K I, O'Mahony M J. Relative intensity noise for laser diodes with arbitrary amountsof optical feedback. IEEE Journal of Quantum Electronics,1998,34(8):1438-1446.
    [88] Kallimani K, O'Mahony M J. Calculation of optical power emitted from a fibre grating laser.IEE Proceedings: Optoelectronics,1998,145(6):319-324.
    [89] Ahmed M, Mahmoud S W Z, Yamada M. Numerical analysis of optical feedbackphenomenon and intensity noise of fibre-grating semiconductor lasers. International Journalof Numerical Modelling: Electronic Networks, Devices and Fields,2007,20(3):117-132.
    [90] Koechner W. Solid-State Laser Engineering.孙文,江泽文,程国祥,译.科学出版社,2002.
    [91]江剑平.半导体激光器.北京:电子工业出版社,2000.
    [92] Sigg J. Effects of optical feedback on the light-current characteristics of semiconductor lasers.IEEE Journal of Quantum Electronics,1993,29(5):1262-1270.
    [93] Ahmed M, Yamada M. Field fluctuations and spectral line shape in semiconductor laserssubjected to optical feedback. Journal of Applied Physics,2004,95(12):7573-7583.
    [94] Hammer J M. CLOSED FORM THEORY OF MULTICAVITY REFLECTORS AND THEOUTPUT POWER OF EXTERNAL CAVITY DIODE LASERS. IEEE Journal of QuantumElectronics,1984,QE-20(11):1252-1259.
    [95] Osmundsen J H, Gade N. INFLUENCE OF OPTICAL FEEDBACK ON LASERFREQUENCY SPECTRUM AND THRESHOLD CONDITIONS. IEEE Journal of QuantumElectronics,1983,QE-19(3):465-469.
    [96] Annovazzi Lodi V, Merlo S, Moroni S. Power efficiency of a semiconductor laser with anexternal cavity. Optical and Quantum Electronics,2000,32(12):1343-1350.
    [97] Lawrence J S, Kane D M. Determination of external cavity coupling-coefficient for diodelaser with phase-conjugate feedback. Electronics Letters,2000,36(6):535-537.
    [98] Miyakawa H, Tanaka Y, Kurokawa T. Photovoltaic cell characteristics for high-intensity laserlight. Solar Energy Materials and Solar Cells,2005,86(2):253-267.
    [99] Green M A. Solar Cells Operating Prinicples, Technology and System Applications.曹昭陽,狄大衛,李秀文,译.五南圖書出版公司,2009.
    [100] Nelson J. The Physics of Solar Cells.高扬,译.上海:上海交通大学出版社,2011.
    [101]濱川圭弘.光電太陽電池設計與應用.張紅梅,译.五南圖書出版公司,2009.
    [102] Qingwen D, Xiaoliang W, Hongling X, et al. Theoretical investigation of efficiency of ap-a-SiC:H/i-a-Si:H/n-μc-Si solar cell. Journal of Semiconductors,2010,31(10).
    [103] Veissid N, Nubile P, Beloto A F. Results of the solar cell experiment of the first Braziliansatellite. Solar Energy Materials and Solar Cells,1997,46(1):1-16.
    [104] Carr T W, Pieroux D, Mandel P. Theory of a multimode semiconductor laser with opticalfeedback. Physical Review A. Atomic, Molecular, and Optical Physics,2001,63(3):338171-3381715.
    [105] Houlihan J, Huyet G, Mcinerney J G. Dynamics of a semiconductor laser with incoherentoptical feedback. Optics Communications,2001,199(1-4):175-179.
    [106] Kuznetsov I A, Greenfield M J, Mehta Y U, et al. Increasing the solar cell power output bycoating with transition metal-oxide nanorods. Applied Energy,2011,88(11):4218-4221.
    [107] Raible D E. HIGH INTENSITY LASER POWER BEAMING FOR WIRELESS POWERTRANSMISSION. Cleveland State University,2008.
    [108] Dennler G, Forberich K, Scharber M C, et al. Angle dependence of external and internalquantum efficiencies in bulk-heterojunction organic solar cells. Journal of Applied Physics,2007,102(5).
    [109] Queisser H J. Detailed balance limit for solar cell efficiency. Materials Science andEngineering B: Solid-State Materials for Advanced Technology,2009,159-160(C):322-328.
    [110] Tolker-Nielsen T, Oppenhaeuser G. In orbit test result of an operational optical intersatellitelink between ARTEMIS and SPOT4, SILEX: Free Space Laser Communication TechnologiesXIV, San Jose, United states,2002.
    [111] Sodnik Z, Lutz H, Furch B, et al. Optical satellite communications in Europe: Free-SpaceLaser Communication Technologies XXII, San Francisco, CA, United states,2010.
    [112]姜会林,佟首峰,张立中,等.空间激光通信技术与系统.北京:国防工业出版社,2010.
    [113]王平,孙威.深空光通信.北京:清华大学出版社,2009.
    [114] Li T. Diffraction loss and selection of modes in maser resonators with circular mirrors. BellSystem Technical Journal,1965,v44(n5):917-932.
    [115] Currie D, Dell'Agnello S, Delle Monache G. A Lunar laser ranging retroreflector array for the21st century. Acta Astronautica,2011,68(7-8):667-680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700