用户名: 密码: 验证码:
铝合金光纤激光及其复合焊接的等离子体行为与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光及激光-电弧复合焊接技术由于其突出的优势,必然会在现代工业领域获得广泛的应用。高功率光纤激光由于其优良特性,一经问世就获得了广泛关注,但是由于出现时间较短,相关研究远不如已经发展多年的CO2激光和YAG激光。综合国内外的研究情况可知,虽然工艺探索研究可以使激光及激光-电弧复合焊接技术的应用范围得到拓展,但是对机理认识的缺乏,大大限制了该项技术在工业实际生产中的推广应用。
     本文在自行构建的系统平台上,通过系统的铝合金光纤激光及其复合焊接工艺实验,采用高速摄像和光谱仪对等离子体行为进行观测,研究了等离子体对激光能量传输的影响、激光与电弧的相互作用等机理问题;并针对实际应用,对铝合金薄板的光纤激光搭接焊缺陷形成机理和预防措施进行研究。主要研究成果与创新工作如下:
     光纤激光焊接铝合金时,等离子体/金属蒸气可以分为两个部分,一部分紧贴小孔,一直存在,但其亮度和体积呈现周期性变化;另一部分浮于熔池的上方,会被侧吹气体吹偏,有一个周期性的长大、脱离熔池并逐渐完全消散的过程。两部分的周期变化基本上是密切同步的,周期为450~600s,侧吹保护气体对等离子体/金属蒸气振荡周期无显著影响。提出了一种新的等离子体/金属蒸气周期振荡机理-小孔和熔池的周期性波动是造成等离子体/金属蒸气周期振荡的主要原因。
     光纤激光焊接铝合金时,随着激光功率的增大、焊接速度的减小,等离子体/金属蒸气增大,与它们对焊缝熔深的影响一致,在一定条件下,等离子体/金属蒸气的大小可以反映焊缝熔深大小;等离子体/金属蒸气对激光传输影响不大,甚至可以说对光纤激光是透明的,通过侧吹保护气吹等离子体/金属蒸气的方法对熔深的影响不明显。
     对2mm厚5754铝合金进行光纤激光搭接焊工艺研究,发现:采用扩张形扁平喷嘴在合适的工艺参数下,可以获得表面成形良好的焊缝;虽然等离子体/金属蒸气对激光传输影响不大,但是使得部分液态金属飞出熔池,形成飞溅,随着激光功率密度的增大,飞溅增多;产生热裂纹的倾向性较小,只有当焊接速度很低时,才会产生热裂纹,随着激光功率的减小,出现热裂纹的临界焊接速度降低;焊缝中低沸点合金元素Mg烧损很少,焊缝组织晶粒细小,显微硬度略低于母材,没有明显的接头软化,焊接接头具有良好的抗拉剪性能。
     发现铝合金激光搭接焊时,会形成一种不同于冶金(氢)气孔和工艺气孔的特殊孔洞-夹层孔洞,尺寸较大、形状不规则,且多有锐角出现,往往内部含有黑色氧化物质。这是由于搭接焊时,上、下两层板之间夹层中存在难熔氧化膜引起的,这种因搭接焊的特殊性而形成的独特气孔对焊接接头力学性能影响很大,通过化学清洗或者机械加工方法清除氧化膜能够有效减少夹层气孔的产生,使焊接接头力学性能大大提高。
     提出一种新的复合等离子体模型:在焊丝端部到小孔之间会形成一个复合等离子体通道,由A和B两部分组成:A部分来源于单激光等离子体/金属蒸气,但是在体积和亮度上都有很大增强;B部分来源于单MIG电弧,但是方向上发生了很大偏转。通过该模型阐释了激光光致等离子体/金属蒸气与电弧的相互作用机理。
It will be widely applied in the modern industrial fields due to prominent advantages oflaser and laser-arc hybrid welding technology. High power fiber laser is becoming moreand more attractive in recent years due to its excellent characteristics, but the relatedresearch was far less than CO2laser and YAG laser because of it appearing in a relativelyshort time. Considering the domestic and foreign research situation, although the appliedscope of laser and laser-arc hybrid welding technology can be expanded with the help ofprocess investigation, it is greatly restricted in industrial practical applications on accountof the lack of understanding mechanisms.
     In this dissertation, systematic process tests of fiber laser welding and its hybridwelding in aluminum alloy were carried out using the self-built test platform. Plasmabehaviors were observed by high-speed video and spectrometer, and the mechanisms werestudied, such as the influence of plasma on the laser energy transmission, the interactionbetween laser induced plasma/vapor and arc plasma, and so on. Aiming at practicalapplications, the formation mechanism and preventive measures of the weld defectsoccurring in fiber laser lap welding of aluminum alloy also were also studied. Thefollowing are the main results:
     The plasma/vapor induced during fiber laser welding of aluminum alloy can be roughlydivided into two parts: the keyhole plasma and the floating plasma. The keyhole plasma isfound close to the keyhole and always exists, but its size and brightness changeperiodically. As its size increases, its brightness also increases. The floating plasma staysabove the weld pool. Its size and brightness also change periodically, and it can be blownaway by the gas flow. The periodic change of the floating plasma synchronizes closelywith that of the keyhole plasma. The laser induced plasma/vapor oscillates periodically atcycles of450to600s. The use of a shielding gas has little effect on the oscillation cycle.A new interpretation about the periodical oscillation of plasma/vapor induced during fiberlaser welding was developed-the periodic oscillation of the plasma/vapor can be largely attributed to the oscillation of the keyhole opening and the molten pool.
     With the increase in the laser power and the decrease in welding speed during fiber laserwelding of aluminum alloy, the size of plasma/vapor increase, and they have the sameeffects on the penetration depth. Under a certain condition, the size of plasma/vapor canreflect the penetration depth. Plasma/vapor has little influence on the laser transmission;the method had a noteless effect on the penetration depth by blowing the plasma/vaporthrough the side shielding gas.
     It can be found in the process research on5754aluminum alloy of2mm thickness infiber laser lap welding: weld joints with good surface appearance can be obtained underthe appropriate process parameters using the flat nozzle with the extended form; thoughplasma/vapor having less effect on the laser transmission, spatters are formed because ofpart of the liquid metal flying out molten pool under the action of plasma/vapor, and thespatters increase with the increase of laser power density; only when welding speed wasvery low, hot cracks would be produced due to less tendency to produce hot cracks, andthe critical welding speed of appearing hot cracks decrease with the decrease of the laserpower; the weld joints with tiny grains and little burning loss of low boiling point alloyelement Mg have good tensile shear performance and have no obvious joint softened zone,micro-hardness of which is slightly lower than the base metal.
     A new kind of cavity was proposed-bi-film cavity, many of this kind of cavity withirregular shape and large size have acute angle and contain black oxide material interiorly.The formation of this kind of cavity can be attributed to the refractory oxide film betweenthe upper and lower sheets in the lap welding. This kind of unique cavity forming due tothe particularity of the lap welding had a prodigious influence on mechanical properties,which can be effectively decreased by means of chemical cleaning or mechanicalprocessing methods to remove the oxide film, the mechanical properties of weld jointsincrease greatly.
     A new hybrid plasma model was developed, by which the mechanism of the interactionbetween laser induced plasma/vapor and arc plasma has been expounded. The hybridplasma forms a channel between the welding wire and the keyhole during the fiberlaser-MIG hybrid welding process. The channel is composed of two parts: region A and region B. Region A is generated by the laser induced plasma/vapor, the most significantchange is that its size and brightness are enlarged. Region B comes from the core of theelectrical arc, the most significant change is that its direction is altered.
引文
[1] Schubert E, Klassen M, Zerner I, et al. Light–weight structures produced by laserbeam joining for future applications in automobile and aerospace industry. Journalof Materials Processing Technology,2001,115:2-8
    [2] Uddin M N. How laser welding is changing the auto industry. Industrial LaserReview,1991,6(7):11-14
    [3] Riches S T. Laser welding in automobile manufacture. Welding&MetalFabrication,1993:79-83
    [4] Yang Y S, Lee S H. A study on the joining strength of laser spot welding forautomotive applications. Journal of Materials Processing Technology,1999,94:151-156
    [5] Quintino L, Vilaca P, Rodrigues R, et al. Laser beam welding of automobile hinges.Welding Research Supplement,2001:261s-267s
    [6] Ribolla A, Damoulis G L, Batalha G F. The use of Nd:YAG laser weld for largescale volume assembly of automotive body in white. Journal of MaterialsProcessing Technology,2005,164-165:1120-1127
    [7] Mei L, Chen G, Jin X, et al. Research on laser welding of high-strength galvanizedautomobile steel sheets. Optics and Lasers in Engineering,2009,47(11):1117-1124
    [8] Coste F, Fabbro R, Allais C, et al. Laser and hybrid welding of high strength steelapplication to pressure vessel manufacturing. In: Processing of ICALEO,2005:174-182
    [9] Mcpherson N A, Suarez N, Moon D W, et al. Laser and laser assisted arc weldingprocesses for DH36microalloyed steel ship plate. Science and Technology ofWelding and Joining,2005,10(4):460-467
    [10] Wu Q, Gong J K, Chen G Y, et al. Research on laser welding of vehicle body.Optics&Laser Technology,2008,40:420-426
    [11] Bachmann F. High power laser sources for industry and their applications. In:Processing of SPIE,2007:67350T1-67350T13
    [12] Chaminade C, Fogarassy E, Boisselier D. Diode laser soldering using a lead-freefiller material for electronic packaging structures. Applied Surface Science,2006,252:4406–4410
    [13] Quintino L, Costa A, Miranda R, et al. Welding with high power fiber lasers–apreliminary study. Materials&Design,2007,8:1231-1237
    [14] Shiner B. Fiber lasers for material processing. In: Processing of SPIE,2005,5706:60-68
    [15] Brown R T. Keyhole studies with a moderate–power, high–brightness fiber laser.Journal of Laser Applications,2008,20(4):201-208
    [16]左铁钏等.高强铝合金的激光加工.北京:国防工业出版社,1981
    [17] Finke B R, Kapadia P D, Dowden J M. A fundamental plasma based model forenergy transfer in laser material processing. Journal of Physics D: Applied Physics,1990,23:643-654
    [18] Finke B R, Simon G. On the gas kinetics of laser–induced evaporation of metals.Journal of Physics D: Applied Physics,1990,23:64-74
    [19] Miyamoto I, Maruo H. Spatial and temporal characteristics of laser–inducedplasma in CO2laser welding. In: Processing of LAMP,1992:311-316
    [20] Funk M, Belher K, Herziger G. Plasma absorption effects in welding with CO2lasers. In: Processing of SPIE,1988,1020:84-95
    [21] Locke E, Hoag E, Hella R. Deep penetration welding with high power CO2laserwelding. Welding Journal,1986,51(6):312-313
    [22]肖荣诗,梅汉华,左铁钏.辅助气体对CO2激光焊接等离子体屏蔽的影响.中国激光,1998,25(11):1045-1050
    [23] Arata Y. Laser advanced materials processing. Transaction of JWRI,1987,16(2):181-190
    [24] Beyer E, Bakowsky L, Loosen P, et al. Development of optical absorptionproperties of a laser induced plasma during CO2laser processing. In: Processing ofSPIE,1983,455:75-80
    [25] Dumord E, Jouvard J M, Grevey D. Modeling of high power cw Nd:YAG laserwelding. In: Processing of SPIE,1995,2889:26-33
    [26] Essien M, Fuerschbach P W. Beam characterization of a materials processing CO2lasers. Welding Journal,1996,75(2):47s-54s
    [27]刘金合,杨德才,陆开静.激光焊接的等离子体负透镜效应.激光与光电子学进展,1999,9:138-141
    [28] Dixon R D, Lewis G K. Electron emission and plasma formation during laserwelding. Welding Journal,1985,50(3):71-78
    [29]肖荣诗,陈铠,陈继民,等. CO2激光焊接等离子体屏蔽机制的实验研究.激光技术,2001,25(3):238-241
    [30] Fabbro R. Beam–plasma coupling in laser material processing. In: Processing ofLAMP,1992:305-310
    [31] Bermejo D, Fabbro R, Sabatier, et al. Spectroscopic studies of iron plasmasinduced by continuous high power CO2laser. In: Processing of SPIE,1990,1279:118-126
    [32] Aragón C, Aguilera J A. Characterization of laser induced plasmas by opticalemission spectroscopy: a review of experiments and methods. SpectrochimicaActa Part B,2008,63:893-916
    [33] Szymański Z, Kurzyna J. Spectroscopic measurements of laser induced plasmaduring welding with CO2laser. Journal of Application Physics,1994,76(12):7750-7756
    [34] Beck M, Berger P, Hügel H. The effect of plasma formation on beam focusing indeep penetration welding with CO2lasers. Journal of Physics D: Applied Physics,1995,28:2430-2442
    [35] Wang C M, Meng X X, Huang W, et al. Role of side assisting gas on plasma andenergy transmission during CO2laser welding. Journal of Materials ProcessingTechnology,2011,211:686-674
    [36] Arata Y, Abe N, Oda T. Fundamental phenomena in high power CO2laser welding.Transaction of JWRI,1985,14(1):5-11
    [37] Ishide T, Shono S, Ohmae T, et al. Fundamental study of laser plasma reductionmethod in high power CO2laser welding. In: Processing of LAMP,1987:187-191
    [38] Katayama S, Kobayashi Y, Mizutani M. Effect of vacuum on penetration anddefects in laser welding. Journal of Laser Applications,2001,13(5):187-192
    [39] Tse H C, Man H C, Yue T M. Effect of magnetic field on plasma control duringCO2laser welding. Optics&Laser Technology,1999,31:363-368
    [40] Steen W M, Eboo M. Arc augmented laser welding. Metal Construction,1979,7:332-335
    [41] Steen W M. Arc augmented laser processing of materials. Journal of ApplicationPhysics,1980,11(11):5653-5641
    [42]陈彦宾,徐庆鸿,苏彦东.激光-同轴电弧复合热源焊接.焊接学报,1995,16(4):239-242
    [43] Ishide T, Tsubota S, Watanabe M. Latest MIG, TIG arc–YAG laser hybrid weldingsystems for various welding products. In: Processing of SPIE,2002:347-352
    [44] Tsubota S, Ishide T, Watanabe M. Laser welding system for various3–D weldingdevelopment of coaxial laser welding head. Mitsubishi Heavy Industries, LtdTechnology Review,2005,42(2):1-5
    [45] Tusek J, Suban M. Hybrid welding with arc and laser beam. Science andTechnology of Welding and Joining,1999,4(5):308-311
    [46] Bagger C, Olsen F O. Comparision of plasma, MIG and TIG processes for laserhybrid welding. In: Processing of ICALEO,2003:11-20
    [47] Dilthey U, Wieschemann A. Prospects by combining and coupling laser beam andarc welding processes. Welding in the World,2000,44(3):37-46
    [48] Chen Y B, Miao Y G, Li L Q, et al. Joint performance of laser–TIG double–sidewelded5A06aluminum alloy. Transactions of Nonferrous Metals Society of China,2009,19:26-31
    [49] Miao Y G, Li L Q, Chen Y B, et al. Study on heat efficiency of laser–TIG double–side welding. China Welding,2008,17(1):64-70
    [50]樊丁,中田一博,牛尾诚夫. YAG激光与脉冲MIG复合焊接.焊接学报,2002,23(5):81-83
    [51] Matsuda J, Utsumi A, Katsumura M, et al. TIG or MIG augmented laser welding ofthick mild steel plate. Joining of Material,1988,1(1):31-34
    [52]芦凤桂,唐新华,姚舜,等.铝合金MIG+激光复合焊接工艺研究.现代制造工程,2006,3:71-73
    [53] Shinn B W, Farson D F, Denney P E. Laser stabilization of arc cathode spots intitanium welding. Science and Technology of Welding and Joining,2005,10(4):475-481
    [54] Kelly S M, Brown S W, Tressller J F, et al. Using hybrid laser–arc welding toreduce distortion in ship panels. Welding Journal,2009,88(3):32-36
    [55] Jamau U, Hoffmann J, Seyffarth P L. Nd:YAG–laser–GMA–hybrid welding inshipbuilding and steel construction. Lecture Notes in Control and InformationSciences,2004,299(1):14-24
    [56]高明,曾晓雁,严军,等.激光-电弧复合焊接的坡口间隙桥接能力.中国机械工程,2008,19(20):2496-2500
    [57] Kim Y P, Alam A, Bang H S, et al. Observation of hybrid (cw Nd:YAG laser+MIG) welding phenomenon in AA5083butt joints with different gap condition.Science and Technology of Welding and Joining,2006,11(3):295-307
    [58] Yan J, Zeng X Y, Gao M, et al. Effect of welding wires on microstructure andmechanical properties of2A12aluminum alloy in CO2laser–MIG hybrid welding.Applied Surface Science,2009,255:7307-7313
    [59] Walduck R P, Biffin J. Plasma arc augmented laser welding. Welding and MetalFabrication,1994,62(4):172-174
    [60] Jokinen T, Viherv T, Riikonen H, et al. Welding of ship structural steel A36usinga Nd:YAG laser and gas–metal arc welding. Journal of Laser Applications,2000,12(5):55-60
    [61]刘黎明,王继锋,宋刚.激光电弧复合焊接AZ31B镁合金.中国激光,2004,31(12):1523-1526
    [62]吴圣川,刘建华,胡伦骥. ZL114铝合金激光-电弧的复合焊接.电焊机,2004,34(9):10-12
    [63] Graf T, Staufer H. Laser–hybrid welding drives VW improvements. WeldingJournal,2003,82(1):42-48
    [64] Moore P L, Howse D S, Wallach E R. Development of laser, and laser/MAG hybridwelding for land pipeline applications. Welding and Cutting,2004,3(3):186-191
    [65] Johne P. Combination laser–MIG welding method reaches maturity for industrialuse. Aluminum,2002,78(1-2):94-96
    [66] Bagger C, Sondrup L C, Olsen F O. Laser/TIG hybrid welding of pot for inductionheater. In: Processing of ICALEO,2004:60-69
    [67] Jernstrom P. Hybrid welding of hollow section beams for a telescopic lifter. In:Processing of SPIE,2002:353-356
    [68] Kaierle S, Bongard K, Dahmen M. Innovative hybrid welding process in aindustrial application. In: Processing of ICALEO,2000:91-98
    [69] Hu B, Ouden G den. Laser induced stabilisation of the welding arc. Science andTechnology of Welding and Joining,2005,10(1):76-81
    [70]吴世凯,肖荣诗. CO2激光对直流TIG电弧温度的影响.焊接学报,20011,32(2):101-104
    [71] Liu L M, Hao X F. Study of the effect of low–power pulse laser on arc plasma andmagnesium alloy target in hybrid welding by spectral diagnosis technique. Journalof Physics D: Applied Physics,2008,41:1-10
    [72] Li Z Y, Wang W, Wang X Y, et al. A study of the radiation of a Nd:YAG–MIGhybrid plasma. Optics&Laser Technology,2010,42:132-140
    [73] Paulini J, Simon G. A theoretical lower limit for laser power in laser-enhanced arcwelding. Journal of Physics D: Applied Physics,1993,26:1523-1527
    [74] Bibik O B, Brodyaqin V N, Rokladov Y P. Special features of interaction of laserradiation with the electric welding arc in the combined laser–arc welding. Physicsand Chemistry of Materials Treatment,1990,24(2):176-178
    [75]陈彦宾,李俐群,吴林.电弧对激光吸收与散焦的定量测量.焊接学报,2003,24(3):56-58
    [76] Ishide T, Tsubota S, Nayama M.10kW class YAG laser application for heavycomponents. In: Processing of SPIE,2000,3888:543-550
    [77] Naito Y, Mizutani M, Katayama S. Penetration characteristics in YAG laser andTIG arc hybrid welding, and arc plasma/plume behaviour during welding. WeldingInternational,2006,20(10):777-784
    [78]陈俐,董春林,吕高尚,等. YAG/MAG激光电弧复合焊工艺研究.焊接技术,2004,33(4):21-23
    [79]高明,严军,曾晓雁,等.激光-电弧复合焊接的热源相互作用.激光技术,2007,31(5):465-468
    [80]许飞,陈俐,巩水利,等.焊接电流对铝锂合金激光-MIG复合焊焊缝成形的影响.热加工工艺,2009,38(7):103-105
    [81]王续跃.先进激光加工技术.北京:机械工业出版社,1995
    [82] Dilthey U, Lueder F, Wieschemann A. Technical and economic advantages bysynergies in laser arc hybrid welding. Welding in the World,1999,43(4):141-152
    [83] Chen Y B, Lei Z L, Li L Q. Study of welding characteristics in CO2laser–TIGhybrid welding process. In: Processing of ICALEO,2003:41-47
    [84] Gao M, Zeng X Y, Hu Q W. Effects of welding parameters on melting energy ofCO2laser–GMA hybrid welding. Science and Technology of Welding and Joining,2006,11(5):517-522
    [85] Ouden G den, Hu B. Physical aspect of laser assisted arc welding. In: Processing ofJWS,2001:69-76
    [86]宋刚.镁合金低功率激光-氩弧复合焊接技术的研究.大连理工大学博士论文,2006
    [87] Hu B, Ouden G den. Synergetic effects of hybrid laser/arc welding. Science andTechnology of Welding and Joining,2005,10(4):427-431
    [88] Avilov V V, Decker I, Pursch H, et al. Study of a laser–enhanced welding arcusing advanced split anode technique. Welding Journal,1994,11(2):112-123
    [89] Lu D P, Zhang S B, Hu S S, et al. Study on mechabsim of mutual effect betweenlaser and arc&its effect on weld penetration. Welding Research Abroad,1995,41(3):24-28
    [90]张绍彬,赵家瑞,孙栋,等.焊接电弧与激光相互作用机理的研究.焊接技术,1991,4:6-8
    [91]胡绳荪,张绍彬,赵家瑞.电弧强化激光焊.焊接学报,1993,14(3):159-163
    [92] Chen Y B, Lei Z L, Li L Q. Experimental study on welding characteristics of CO2laser TIG hybrid welding process. Science and Technology of Welding and Joining,2006,11(4):403-411
    [93] Chen Y B, Lei Z L, Li L Q, et al. Welding characteristics in different laser–TIGhybrid manners. China Welding,2004,13(1):41-45
    [94] Gao M, Zeng X Y, Hu Q W. Effects of gas shielding parameters on weldpenetration of CO2laser–TIG hybrid welding. Journal of Materials ProcessingTechnology,2007,184:177-183
    [95]高明,曾晓雁,胡乾午,等. CO2激光-TIG复合焊接气体的保护方式.中国激光,2006,33(10):1422-1427
    [96]吴世凯,肖荣诗,张寰臻.电弧气氛对CO2激光与TIG电弧相互作用的影响.焊接学报,2009,30(10):81-85
    [97] Zhao H, White D R, Debroy T. Current issues and problems in laser welding ofautomotive aluminium alloys. International Materials Review,1999,44(6):238-266
    [98] Li Z, Gobbi S L. Laser welding for lightweight structures. Journal of MaterialsProcessing Technology,1997,70:137-144
    [99] Behler K, Berkmanns J, Ehrhardt A, et al. Laser beam welding of low weightmaterials and structures. Materials&Design,1997,18:261-267
    [100]孙成伟,陆启生,范正修,等.激光辐照效应.北京:国防工业出版社,2002
    [101]陈彦宾,曹丽杰.铝合金激光焊接研究现状.焊接,2001,3:9-12
    [102] Galantucci L M, Tricarico L, Spina R. A Quality Evaluation Method for LaserWelding of Al Alloys through Neural Networks. CIRP Annals-ManufacturingTechnology,2000,49(1):131-134
    [103] Malek G F, Sheikhi M, Torkamany M J, et al. The relation between liquation andsolidification cracks in pulsed laser welding of2024aluminium alloy. MaterialsScience and Engineering,2009,519:167-171
    [104] Kutsuna M, Yan Q. Study on porosity formation in laser welds in aluminiumalloys (Report1): Effects of hydrogen and alloying elements. Welding International,1998,12(12):937-949
    [105] Kutsuna M, Suzuki J, Suqiyama S, et al. CO2laser welding of A2219,A5083and A6063aluminium alloys. Welding in theWorld,1993,31(2):126-135
    [106] Matsunawa A, Kim J D, Seto N, et al. Dynamics of keyhole and molten pool inlaser welding. Journal of Laser Applications,1998,10(6):247-254
    [107] Haboudou A, Peyre P, Vannes A B, et al. Reduction of porosity content generatedduring Nd: YAG laser welding of A356and AA5083aluminium alloys. MaterialsScience and Engineering A,2003,363:40-52
    [108] Song G, Liu L M, Wang P C. Overlap welding of magnesium AZ31B sheets usinglaser–arc hybrid processing. Materials Science&EngineeringA,2006,429:312-319
    [109]梅丽芳,陈根余,金湘中,等.车用铝合金光纤激光搭接焊的研究.中国激光,2010,37(8):2091-2097
    [110] Ye N Q, Moan T. Fatigue and static behaviour of aluminum box–stiffener lapjoints. International Journal of Fatigue,2002,24:581-589
    [111] Moraitis G A, Labeas G N. Residual stress and distortion calculation of laser beamwelding for aluminum lap joints. Jouanal of Materials ProcessingTechnology,2008,198:260-269
    [112]蔡艳,李国华,赵良磊,等.国产船用钢板高功率激光焊接等离子体行为及过程稳定性分析.焊接,2007,5:50-53
    [113] Dausinger F, Ruβ A. Benefits of strong focus ability for laser welding. In:Processing of IFWT,2004:96-105
    [114] Weberpals J, Dausinger F, Gobel G, et al. Role of strong focusability on thewelding process. Journal of Laser Applications,2007,19:252-258
    [115]过增元等.电弧和热等离子体.北京:科学出版社,1986
    [116]陆同兴,赵献章,崔执凤.用发射光谱测量激光等离子体的电子温度与电子密度.原子与分子物理学报,1994,11(2):120-127
    [117] Griem H R. Spectral line brodening by plasama. New York:Academic,1974
    [118] Griem H R. Plasama spectroscopy. New York:MCG raw-Hill,1964
    [119] Corney A. Atomic and laser spectroscopy. Oxford:Oxford University Press,1977
    [120] Thorne A P. Spectrophysics. London:Chapman and Hall,1988
    [121] Jean E S, Martin W C. Handbook of basic atomic spectroscopic data. NIST,1991
    [122]贝克非G.激光等离子体原理.上海:上海科技出版社,1981
    [123] Moon D W. Some factors affecting penetration in laser welding. MaterialsProcessing,1985,44:53-59
    [124] Kawahito Y, Kinoshita K, Matsumoto N, et al. Effect of weakly ionised plasma onpenetration of stainless steel weld produced with ultra high power density fibrelaser. Science and Technology of Welding and Joining,2008,13(8):749-753
    [125]段爱琴,陈俐,王亚军,等. CO2激光焊接不锈钢光致等离子体动态特征分析.焊接学报,2005,26(11):17-22
    [126] Kroos J, Gratzke U, Simon G. Towards a self-consistent model of the keyhole inpenetration laser beam welding. Journal of Physics D:Applied Physics,1993,26:474-480
    [127] Kleint T, Vicanek M, Kroos J, et al. Oscillations of the keyhole in penetration laserbeam welding. Journal of Physics D:Applied Physics,1994,27(10):2023-2030
    [128]余阳春.激光填丝焊的焊丝熔入行为及工艺研究.华中科技大学博士论文,2010
    [129] Matsunawa A, Seto N, Kim J D, et al. Dynamics of keyhole and molten pool inhigh power CO2laser welding. In: Processing of SPIE,2000,3888:34-45
    [130] Mizutani M, Katayama S, Matsunawa A. Observation of molten metal behaviorduring laser irradiation–Basic experiment to understand laser welding phenomena.In: Processing of SPIE,2002,4831:208-213
    [131] Kawahito Y, Mizutani M, Katayama S. Elucidation of high–fibre laser weldingphenomena of stainless steel and effect of factors on weld geometry. Journal ofPhysics D: Applied Physics,2007,40:5854-5859
    [132]高志国,黄坚,李亚玲,等.激光-MIG复合焊中激光与电弧前后位置对焊缝成形的影响.焊接学报,2008,29(12):70-73
    [133]高明. CO2激光-电弧复合焊接工艺、机理及质量控制规律研究.华中科技大学博士论文,2007
    [134] Rayes M EL, Walz C, Sepold G. The influence of various hybrid weldingparameters on bead geometry. Welding Journal,2004,83(5):147s-153s
    [135]雷振,秦国梁,林尚扬.激光与MIG/MAG复合热源焊接工艺发展概况.焊接,2005,9:9-13
    [136]王威,王旭友,赵子良.激光-MAG电弧复合热源焊接过程的影响因素.焊接学报,2006,27(2):6-11
    [137] Beyer E, Dilthey U, Imhoff R, et al. New aspects in laser welding with an increasedefficiency. In: Processing of ICALEO,1994:183-192
    [138]姜焕中.电弧焊及电渣焊.北京:机械工业出版社,1988
    [139] Li J Y, Song Y L. Spectral information of arc and welding automation. Welding inthe world,1994,34(9):317-324
    [140] Chen F F. Introduction to plasma physics. New York:Plenum press,1974
    [141]陆建等.激光与材料相互作用物理学.北京:机械工业出版社,1996
    [142] Kutsuna M, Chen L. Interaction of both plasmas in CO2laser–MAG hybridwelding of carbon steel. In: Processing of SPIE,2003,4831:341-346
    [143] Nilsson S E, Andersen M M, Kristensen J K, et al. Hybrid welding of thick sectionC/Mn steel and aluminium. IIW Doc,2003, XII1731-02
    [144]严军,曾晓雁,高明,等.316L不锈钢激光-钨极惰性气体复合焊接工艺研究.激光技术,2007,31(5):489-492
    [145]高明,谭兵,冯杰才,等.工艺参数对AZ31镁合金激光-MIG复合焊缝成形的影响.中国有色金属学报,2009,19(2):222-227
    [146] Fujinaga S, Ohashi R, Katayama S, et al. Improvements of welding characteristicsof aluminum alloys with YAG laser and TIG arc hybrid system. In: Processing ofSPIE,2002,4831:301-306
    [147]许良红,彭云,田志凌,等.激光-MIG复合焊接工艺参数对焊缝形状的影响.应用激光,2006,26(1):5-9
    [148] Ishide T, Nayama M, Watanabe M, et al. Coaxial TIG-YAG&MIG-YAG weldingmethods. Welding International,2001,15(12):940-945
    [149] Jokinen T, Jernstr m P, Karhu M, et al. Optimisation of parameters in hybridwelding of aluminum alloy. In: Processing of SPIE,2003,4381:307-312

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700