用户名: 密码: 验证码:
光电电流互感器供能电路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统向高电压、大容量和数字化方向的发展,必然对电力系统的测量装置提出更高的要求。而传统的电磁式电流互感器具有磁饱和、铁磁谐振及易燃易爆的固有缺点,已很难适应电力系统的发展。因此研究以混合式光电电流互感器为代表的可靠的、新型的高精度电流互感器也成了大势所趋。混合式光电电流互感器的高电位侧电路供电问题是其研制技术的一个关键。
    论文在本教研组研制的一种新型的220kV混合式光电电流互感器的基础上,对光电电流互感器的供能问题进行深入的研究。本文对国内外关于光电电流互感器的研究状况,特别是光电电流互感器的供能电路的研究现状作了广泛调研。并在调研和本课题组原有技术的基础上,设计、完善并实现了特制线圈供能和激光供能两种混合式光电电流互感器的设计方案和整体结构。
    论文首先介绍了一种采用特制线圈供能方案的混合式光电电流互感器。该供能方案利用特制线圈的饱和特性,将母线电流大致在10A~720A的电流感应约为8V~40V的电压能量,利用整流桥将交流电变为直流电后,由DC-DC变换器件将其转换为两路不共地的+5V和一组±12V电压供给后端传感头。另外,为了防止在母线大电流情况下,特制线圈感应电压过大导致后端电路烧毁,为电路增加了过电压保护、电压监控保护和能量泄放电路,起到保护器件的作用。为了减小电源的纹波,还专门对电路板进行了优化设计。实验结果表明:该电源部分能够很好地为光电电流互感器的高电位侧电路提供满足要求的约200mW的能量。
    论文还在深入研究大功率激光光源和光电池特性的基础上,实现了一种利用激光供能的混合式光电电流互感器。其供能部分由低电位侧的大功率激光光源产生激光输出,经光纤将激光能量传输到达高电位侧的光电池,再由光电池进行光功率到电功率的光电变换后,由后级DC-DC将光电池输出的电压转换成满足光电电流互感器传感头部分所需的电压输出。通过研究微功耗DC-DC器件,提出了可同时应用于特制线圈供能和激光供能的高性能DC-DC变换方案。
With the development of Power System towards higher voltage, higher capacity and digitization, it is a necessity to put forward a strict requirement for the measurement facilities in Power System. Because the electromagnetic current transformers have such shortcomings as magnetic saturation, ferromagnetic resonance and flammable and explosive traits, it is difficult for them to keep up with the development of Power System. Therefore, it is an inevitable trend to develop new kinds of dependable current transformers for high accuracy measurement such as hybrid optical-electronic current transformer (EOCT). The problem of high potential circuit power supply is the key problem of the research of hybrid optical-electronic current transformer.
    There are some advanced studies on power supplies schemes for EOCT in this thesis, which based on a new type of EOCT for 220kV busbar researched by the laboratory. The thesis survey the realized power supplies schemes at the nation and aboard widely. Designed and realized two types of power supplies for EOCT, which is power supplies on special coil and power supplies on laser source.
    Firstly, the thesis introduced a EOCT scheme that supplied on a special coil. It utilized saturation of special coil to transform form 10A~720A current of busbar to 8V~40V voltage of inductions. After switched to direct current, it supplied the loads of sensor by DC-DC transformations, which is included two +5V voltages with respective ground and a group of ±12V voltage. In addition, in order to protect the circuit in the condition of high current in the busbar, the design plan is added by high voltage protect circuit and voltage monitor and control circuit and power discharge circuit. There are also some devices optimized for the circuit to reduce the ripple. The results showed that the circuit of power supplies can supply the power about 200mW for the high potential circuit of optical current transformer well.
    
    
    Secondly, a EOCT device supplied by laser source was realized base on researching the advanced performance of high power laser source and optical battery. After the optical battery transform the light power to electronic power that generate by laser source, the sensor of EOCT can be supplied well by the voltages that transformed form DC-DC devices. Furthermore, a high performance scheme of DC-DC transformations was introduced after the research of low power waste device.
引文
[1] [苏] B. B. 阿法纳西耶夫. 电流互感器, 陆安业, 肖耀荣, 朱英浩译. 北京: 机械工业出版社, 1989. 297~331
    [2] 管喜康. 光纤在电工领域中的应用. 北京: 水利电力出版社, 1990. 164~174
    [3] T. D. Mafferone, T. M. McClelland. 345kV Substation Optical Current Measurement System for Revenue Metering and Protective Relaying. IEEE Trans. on Power Delivery, 1991, PWRD-6 (4): 1430~1437
    [4] 王廷云. 高压光电式电流互感器的研究. [博士后研究报告]. 北京:清华大学电机系,2000
    [5] 赵修民. 电流互感器. 陕西:陕西人民出版社,1980,15~70
    [6] G. R. Jones, G. Li, J. W. Spencer, et al. Faraday Current Sensing Employing Chromatic Modulation. Optical Communications, 1998, 145: 203~212
    [7] 申烛. 电子式电流互感器数据传输链的研究:[硕士学位论文]. 北京:清华大学电机系,2002
    [8] N. A. Pilling, R. Holmes, G. R. Jones. Optical Fiber Current Measurement System Using Liquid Crystals and Chromatic Modulation. IEE PROCEEDINGS-C, 1993, 140(5): 351~356
    [9] N. A. Pilling, R. Holmes, G. R. Jones. Optically Powered Hybrid Current Measurement System. ELECTRONICS LETTERS. 1993, 29(12): 1049~1051
    [10] Zhang G, Li S H, Qin Y, Zhang Z P. A New Electro-Optic Hybrid Current-Sensing Scheme for Current Measurement at High Voltage. REVIEW OF SCIENTIFIC INSTRUMENTS. 1999, 70(9): 3755~3758
    [11] T. C. Banwell, R. C. Estes, L. A. Reith, P. W. Shumate, Jr. Powering the Fiber Loop Optically-A Cost Analysis. JOURNAL OF LIGHTWAVE TECHNOLOGY. 1993, 11(3): 481~494
    [12] Wang Y T, Wang L T, Shi J S, Zheng L J. A New Optically Powered Ultra Voltage Current Transformer. SPIE. 1998, 3555: 13~17
    [13] C. Svelto, R. Ottoboni, A. M. Ferrero. Optically-Supplied Voltage Transducer for Distorted Signals in High-voltage Systems. IEEE TRANSACTIONS ON INSTRUMNETATION AND MEASUREMENT. 2000, 49(3): 550~554
    [14] 王英健. 新型开关实用技术. 北京:电子工业出版社,1999,25~34
    [15] 张曦,张庆伟. 混合式OCT高压侧电路的供电方式. 高电压技术,2002,28(12): 14~15
    [16] 李芙英. 应用于光电式电流互感器的悬浮式电源的设计. 继电器,1999,27(1): 40~42
    [17] 颜研. 混合式光电电流互感器中的激光供能研究:[硕士学位论文]. 北京:清华大学电机系,2001
    
    
    [18] Adolfsson M etc. Optical current transducers for power systems: A review[J]. IEEE Trans PD, 1994, 19(4): 1778~1788
    [19] Donaldson E F, etc. Hybrid optical current transformer with optical and power-line energisation[J]. IEE ProcGender Trans Distrib, 2000, 147(5): 304~309
    [20] Yakum C N. Electric current measurements in power systems using optical fiber techniques. PhD Thesis. University of Liverpool, 1996
    [21] 张涛. 电子式电流互感器的研制:[硕士学位论文]. 北京:清华大学电机系,2002
    [22] 周箎声. 光纤通讯. 广州:广东高等教育出版社, 1992,146~158
    [23] 顾畹仪. 光纤通讯系统. 北京:人民邮电出版社, 1989,117~119
    [24] [日]木村磐根. 光通讯与无线电通讯系统. 北京:科学出版社,2001,83~84
    [25] 顾选能. 变压器铁心制造. 北京:机械工业出版社,1997,1~15
    [26] 李树棠. 变压器基础知识. 西安:陕西科学技术出版社,1980,15~22
    [27] 王瑞华, 王乔. 电子变压器及应用. 北京:国防工业出版社,1990,37~39
    [28] 高兴耀. 变压器线圈制造. 北京:机械工业出版社,1983,153~190
    [29] 李发海, 朱东起. 电机学. 北京:科学出版社,1997,6~30
    [30] 张广明, 张汝海. 稳压变压器. 北京:人民邮电出版社,1983,16~25
    [31] 李湘生, 陈乔夫. 变压器的理论计算与优化设计. 武昌:华中理工大学出版社,1990,75~100
    [32] 钱启录. 变压器. 北京:第一机械工业部科学技术情报研究所,1978,103~109
    [33] 柴玉华,赵学涛. 低温环境下小电流检测传感器的研究. 电测与仪表,2002,39(442), 35~38
    [34] 王红霞,刘宗滨,等. 超微晶合金在测量用电流互感器铁心中的应用. 变压器,1999,36(4),42~46
    [35] 赵良炳. 现代电力电子技术基础. 北京:清华大学出版社,1995,48~60
    [36] 张节容. 高压电器原理和应用. 北京:清华大学出版社, 1989,351~356
    [37] 尚振球. 高压电器. 西安:西安交通大学出版社, 1992,163~172
    [38] [美]I.M.戈特利布. 稳压电源. 北京:科学出版社,1993. 227~239
    [39] 诸绑田. 电子电路实用抗干扰技术. 北京:人民邮电出版社,1996,17~33
    [40] 黄德锋. 半导体激光器及其应用. 北京:国防工业出版社,1999,35~47
    [41] 靳钱全. 光电检测技术. 浙江大学出版社,1995,35~47
    [42] Wolf. T, Photovoltaic Power Convertor for Sensor Systems. Elektronik Praxis, 1995, 31(24): 123~130
    [43] 何竟易. 光纤偏振态自动补偿的电流互感器. 光学学报,1999,12,35~47
    [44] 雷式湛. 激光技术手册. 科学出版社,1992,113~127
    [45] 黄德修. 半导体激光器及其应用. 科学出版社,1999,25~43
    
    
    [46] [美]G.凯泽著.于耀明译. 光纤通讯原理. 北京:人民邮电出版社,1988,102~140
    [47] 王延恒. 光纤通讯技术基础. 天津:天津大学出版社,1993,182~186
    [48] 黄章勇. 光电子器件和组件. 北京:北京邮电大学出版社,2001,8~22
    [49] 刘恩科. 光电池及其应用. 北京:科学出版社,1989,102~112
    [50] [美] 汉斯 · S · 劳申巴赫. 太阳电池阵列设计手册-光电能转换原理及其应用. 北京:宇航出版社,1987,125~131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700