用户名: 密码: 验证码:
激光表面改性温度场与应力场模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在激光表面改性实验研究的基础上,本文采用ANSYS软件,分别分析了激光淬火、激光-感应复合熔覆的温度场和应力场。
     通过ANSYS有限元软件,分析了不同工艺参数下,45#钢在CO2激光淬火后的温度场与淬火深度的关系,并以实验数据为依据,利用ANSYS有限元分析软件模拟不同转换系数下的温度分布及淬火深度,在与实验数据比较后,得出激光淬火吸光涂料的合理转换系数为0.78。
     分析了CL60钢表面定点高斯圆形光斑激光淬火温度场与淬火深度的关系;对于均匀矩形移动光斑情况下的2Cr13钢激光相变强化,模拟分析了激光功率、光斑大小、激光移动速度等参数对淬火深度的影响规律,并将模拟结果与实验数据进行了对比验证。
     建立了电磁感应和激光双热源的热耦合模型,比较了单纯激光熔覆与激光-感应复合熔覆三维温度场及应力场的差别。模拟结果表明,激光-感应复合熔覆与单纯的激光熔覆相比,不仅效率得到较大提高,而且可以显著降低熔覆层的残余应力。对于厚度50mm的45#钢,数值模拟结果表明,激光-感应复合熔覆层的最大残余应力比单纯激光熔覆层低60%以上;在相同工艺条件下,宽板激光熔覆层的残余应力比窄板激光熔覆层的应力大约14MPa。
On the basis of laser surface modification experiments, the temperature field and the stress field of laser quenching and laser-induction hybrid cladding were analyzed respectively by means of ANSYS software in this paper.
     By way of finite element software ANSYS, the relationship between laser hardening depth and the temperature field of 45# steel was analyzed after laser quenching with different parameters. The temperature distribution and hardening depth upon different transform coefficient were simulated with finite element method software ANSYS, the reasonable transform coefficient of laser quenching absorption coating is obtained as 0.78 after comparison with the experimental data.
     The relation between temperature field and quenching depth was analyzed by fixed-point laser quenching with circular Gaussian beam on the CL60 steel; about the laser transformation hardening of 2Cr13 steel with movable uniform rectangular spot, a simulating analysis was produced about the influencing law of laser quenching parameters such as laser power, spot size and moving speed influence on the hardening depth, and the simulation results were tested and verified with the experimental data.
     Drawing comparisons of the different of three-dimensional temperature field and stress field between simple laser cladding and laser-induction hybrid cladding was conducted, after the heat coupling model of double heat source of electromagnetic induction and laser was found. The simulation results show that, compared with simple laser cladding, the efficiency of laser-induction hybrid cladding is enhanced remarkably, and the residual stress of cladding layer is reduced significantly. For 45# steel of 50mm thickness, numerical simulation results show that the maximum residual stress of laser-induction hybrid cladding is 60% lower than that of simple laser cladding;the residual stress of laser cladding layer of wide plate is 14MPa greater than that of narrow plate under the same technological conditions.
引文
[1] Chan C H, et al.Laser on metal surface modification. Metallurgical Transcations A, April 1984, 15: 718-727
    [2]徐滨士,刘世参.表面工程新技术. (第二版).北京:国防工业出版社, 2002. 178~180
    [3]中国机械工程学会焊接学会编.焊接手册第3卷焊接结构.北京:机械工业出版社, 1992, 136~141
    [4] Sasaki, K., Kishida, M., Itoh,T.. The accuracy of residual stress measurement by the hole-drilling method. Experimental Mechanics, 1997, 37(3): 250~258
    [5] R. Komanduri, Z. B. Hou.Thermal analysis of laser surface transformation hardening optimization of process parameters. International Journal of Machine Tools & Manufacture, 2004. 991~1008
    [6]刘志儒.金属感应热处理.北京:机械工业出版社, 1985. 28~47
    [7]管一弘.激光淬火温度场及材料性能的数值模拟.中国激光, 1999, 26(3): 263~267
    [8]吴刚.激光相变硬化纵向层深分布模拟与均匀性控制.金属热处理, 2006, 31(10): 24~28
    [9] Jong-Do KIM, Myeong-Hoon LEE. Laser transformation hardening on rod-shaped carbon steel by Gaussian beam. Trans. Nonferrous Met. Soc. China 19(9): 941~945
    [10] T. Miokovic. Influence of cyclic temperature changes on the microstructureof AISI 4140 after laser surface hardening. Acta Materialia, 2007, 589~599
    [11] Hitoshi Hiraga, Takashi Inoue, Akira Matsunawa, Hirofumi Shimura. Effect of laser irradiation condition on bonding strength in laser plasma hybrid spraying. Surface & Coatings Technology, 2001, 138(2-3): 284~290
    [12] Hitoshi Hiraga, Takashi Inoue, Shigeharu Kamado, Yo Kojima, Akira Matsunawa,Hirofumi Shimura. Fabrication of NiTi intermetallic compound coating made by laser plasma bybrid spraying of mechanically alloyed powders. Surface & Coatings Technology, 2001, 139(1): 93~100
    [13]王长贵.轧辊激光表面强化研究及数值模拟: [硕士学位论文].武汉:华中科技大学图书馆, 2004
    [14] S. Kumar, S. Roy. A parametric study of a blown powder laser cladding and alloying process using a two dimensional conduction model mechanical Engineering science, 2004, 218: 703~708
    [15]陈静,杨海欧等.激光快速成形过程中熔覆层的两种开裂行为及其机理研究.应用激光. 2002, 22(3): 300~304
    [16] Ehsan Toyserkani, Amir Khajepour, Steve Corbin. Three-dimensional finite element modeling of laser cladding by powder injection: Effects of powder feedrate and travel speed on the process. Journal of Laser Applications, 2003, 15(3): 153~160
    [17] Fathi. A, Toyserkani.E, Prediction of melt pool depth and dilution in laser powder deposition. Journal of physics D:Applide Physics, 2006, 39: 2613~2623
    [18] Jagdheesh, R. Laser cladding of Si on austenitic stainless steel.Surface Engineering, 2005, 21(2): 113~118
    [19] Kadolkar. P. B, Watkins.T.R, De Hosson. J. Th.M, et al. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys. Acta Materialia, 2007, 55(4): 1203~1214
    [20] Sue. J. A, Schajer. Gs. Stress determination for coatings. In: Lampman SR, Reidenbach F, editors. Surface engineering. ASM handbook. Materials Park: ASM International, 1998, 647~657
    [21]楼凤娟.激光熔覆的温度及应力分析和数值模拟: [硕士学位论文].浙江:浙江工业大学图书馆, 2009
    [22]周圣丰.激光感应复合熔覆金属陶瓷层技术研究: [博士学位论文].武汉:华中科技大学图书馆, 2010
    [23] J. P. Sandifer, G. E. Bowie. Residual stress by blind-hole method with off-center hole[J]. Experimental Mechanics, 1978, 18(5): 173~179
    [24]莫春立,钱百年,国旭明.焊接热源计算模式的研究进展.焊接学报, 2001, 22(03): 93~96
    [25] Huang Yanlu, Li Jianguo. effect of Powder Feeding Rate on Interaction between Laser Beam and Powder Stream in Laser Cladding Process. Rare Metal Materials and Engineering, 2005, 34(10): 1520~1523
    [26]汤景明.感应加热技术设备应用及其设备设计经验.北京:机械工业出版, 1975. 194~199
    [27]约翰.戴维斯.感应加热手册.北京:国防工业出版社, 1985. 145~154
    [28]王硕桂,翟超.等离子表面淬火过程的简化算法和淬硬相变温度计算.金属热处理, 1998, 50(3): 50~52.
    [29]姜士林,赵长汉.感应加热原理与应用.天津:天津科技翻译出版社, 1993. 10~26
    [30]刘志儒.金属感应热处理.北京:机械工业出版社, 1985. 28~47
    [31]董显平. 2Cr13材质整铸式喷嘴环叶片组织和性能的模拟研究.机械工程材料, 1997, 21(5): 16~18
    [32]拉达伊著.熊第京,郑朝云,史耀武译.焊接热效应-温度场及残余应力变形.北京:机械工业出版社, 1997, 271~277
    [33]马庆芳等,实用热物理性质手册,中国北京:中国农业机械出版社, 1986. 123~132
    [34] Polnov V G.. Determination of the Condition of Vibrational Treatment of Weld Structures Ai med at Reducing Residual Srtess . WeldProd, 1984, 31 (2) : 201~213
    [35]范雪燕等.激光淬火能量转换系数的ANSYS分析.激光技术, 2005, 29(5): 546~548
    [36]田应涛.激光重熔修复镍基合金微裂纹应力应变场的数值模拟: [硕士学位论文].哈尔滨:哈尔滨工业大学图书馆, 2006
    [37]石娟.齿轮激光表面处理的若干关键技术研究.同济大学, 2006, (4): 17~21
    [38]陈磊.大功率激光焊接熔池特性数值模拟: [硕士学位论文].兰州:兰州理工大学图书馆, 2008
    [39]党沙沙. ANSYS 12.0多物理耦合场有限元分析从入门到精通,北京:机械工业出版社, 2010. 74~85
    [40]郝南海,陆伟.激光熔覆过程热力耦合有限元应力场分析.中国表面工程, 2005, 1(70): 20~23
    [41] R. Komanduri, Z. B. Hou. Thermal analysis of laser surface transformation hardening optimization of process parameters. International Journal of Machine Tools & Manufacture, 2004, 991~1008
    [42]刘珍峰.送粉式激光熔覆温度场的三维有限元模拟: [硕士学位论文].武汉:华中科技大学图书馆, 2006
    [43] K.Suganuma, et al. .influence of shape and size on residual stress in ceramic/metal joining. J. Materials Science, 1987, 22: 3561~3565
    [44]鹿安理,石清宇,赵海燕.厚板焊接过程中温度场及应力场的三维有限元数值模拟.中国机械工程, 2001, 12(2): 183~186
    [45] K. S. Alfredsson, B. L. Josefson. Harmonic Response of a Spot Welded Box Beam-Influence of Welding Residual Stresses and Deformations. IUTAM Symposium on the Mechanical Effects of Welding. Lulea, Sweden, June, 1991: 1~8
    [46] K. asubuchi. Prediction and control of residual stresses and distortion in welded structures. Proc. Theoretical Prediction in Joining and Welding, Osaka, Japan, 1996: 71~78
    [47] Baker, M. S., de Boer, M.P., Smith, N. F., et al.. Integrated measurement-modeling approaches for evaluating residual stress using micromachined fixed-fixed beams. Microelectron mechanical Systems, 2002, 11(06): 743~753
    [48] Buchmayr, B., Kirkaldy, J. S. Modeling of the temperature field, transformation behaviour, hardness and mechanical response of low alloy steels during cooling from the austenite region. J. Heat Treat, 1990, 08(2): 90~94
    [49] Chang Doo Jang, Sung Choon Moon. An algorithm to determine heating lines for plate forming by line heating method. Journal of Ship Production, 1998, 14(4): 238~245
    [50] Jong G S, Jang H L, Sung K P. A numerical thermo plastic analysis of line heating processes for saddle-type shells with the application lf an artificial neural network. Journal of Ship production, 1999, 15(1): 10~20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700