用户名: 密码: 验证码:
激光束扫描方式对40Cr表面改性层组织性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以正火态40Cr钢为基体,利用HL-1500无氦横流CO2激光加工机在基体表面形成激光束斜角度入射扫描改性层及大面积间距和交叉网格扫描的改性层,研究激光相变硬化改性层的组织、性能和工艺参数对组织性能的影响。研究结果表明:试样的横截面由表及里分为相变硬化区、过渡区和基体区;相变硬化区的组织为细小针状马氏体+残余奥氏体,过渡区的组织为马氏体+残余奥氏体+铁素体+碳化物,基体区保持原有组织不变。激光不同入射角度扫描时,随着入射角度的增加,改性层深度逐渐减小,显微硬度值和相对耐磨性也逐渐下降;当入射角度低于40°时,改性层表现出较高的硬度值及相对耐磨性,当入射角度高于40°时,改性层的硬度值及相对耐磨性下降幅度加剧,不利于表面改性,故当入射角度大于40°时激光表面改性效果不明显;改性层的维钝电流密度明显升高,钝化区间也有所减小。不同间距扫描时,间距12mm的试样平均硬度最高,为61.1HRC,耐磨性最好,是基体的2.9倍,耐盐腐蚀性能最好;间距16mm的试样耐酸腐蚀性能最好,其致钝电流密度和维钝电流密度最小,钝化区间为1200mV。交叉网格扫描时,改性层表面平均硬度达到59.6~60.7HRC,约为基体的2~3倍,相对耐磨性比基体提高1.6~1.9倍;耐酸腐蚀性能明显优于基体;当网格间距为12mm时其硬度、耐磨性和耐酸腐蚀性能最佳。
In this paper, with HL-1500 helium-free transverse flow CO2 laser processing machine,on normalized 40Cr steel substrate,modified layers are formed by laser beam obliquely incident scaning, large acreage and staggered mesh scanning. The microstructure and properties of modified layers by laser transformation hardening and the effects of process parameters on them were studied. Results indicate that the microstructure from the outside to the inside of samples is respectively phase hardened region, transition region and substrate region. The phase hardened region are fine acicular martensites and retained austenites, the transition region are tempered martensites, retained austenites, ferrites and carbides. The substrate region remains unchanged. When the laser incidents with different angle, the depth of hardened layer decreases with the increase of incident angle. The microhardness and wear resistance alse reduces accordingly. When the incident angle is below 40°, the microhardness and wear resistance are high, when over 40°, they decrease remarkably, so not good for surface modified, the maintaining passivity current density increases obviously and the passivation region minishes in some degree. Properties change as scaning space changes. When the scaning space is 12mm, the average hardness gets the highest, of which the value is 61.1HRC; the wear resistance is the best as 2.9 times as the substrate; the salt corrosion resistance is alse the best. When the scaning space is 16mm, the acid corrosion resistance gets the best with the smallest maintaining and critical passive current density and a passivation region, of which the value is 1200mV. When staggered mesh scaning, the average hardness reaches 59.6~60.7HRC, which is 2~3 times as the substrate; the wear resistance is 1.6~1.9 times more than the substrate; the acid corrosion resistance is obviously better than the substrate. When the staggered mesh space is 12mm, the wear and corrosion resistance is the best.
引文
[1]钱苗根,姚寿山,张少宗.现代表面技术[M].北京:机械工业出版社,2003.
    [2]徐滨士,刘世参.表面工程新技术[M].北京:国防工业出版社,2002.
    [3]曾晓雁,吴鼓平.表面工程学[M].北京:机械工业出版社,2001.
    [4] J DUTTA MAJUMDAR, I MANNA. Laer processing of materials[M]. Bangalore: Sadhana,2003,(7):495-562.
    [5]黄健.激光金属表面淬火热场仿真研究[D].武汉:华中科技大学,2007.
    [6]张素芳.GCr15轴承钢激光表面改性的试验研究[D].大连:大连理工大学,2005.
    [7] Folkes JA. Developments in laser surface modification and coating [J].Surface and Coating Technology, 1994, 22(4):63-65.
    [8]谢发勤,关丽.NdFeB合金表面激光非晶化的改性技术[J].材料导报,2003,17(3):16-19.
    [9]张成军,宋雪峰,马建国,等.激光在材料表面改性中的应用及进展[J].中国激光,2006,(5):18.
    [10]李泉华.激光表面改性在汽车零件生产中的应用[J].激光集锦,1997,(5):16-24.
    [11]程国义,程念贫.硅基片材料激光表面改性的实验研究[J].中国激光,1994,21(8):688-692.
    [12]秦拯,梁少强,张书新.中吨位柴油机气门推杆的磨损与激光表面改性研究[J].广西机械,1994,(6):30-34.
    [13]林子光,王恩鸿.YAG激光表面改性[J].金属表面改性,1998,(10):3-4.
    [14]王志齐,刘长瑛,马玉春.GCr15钢激光表面改性表面硬化层残余奥氏体测定及研究[J].天津理工学院学报,2003,19(1):65-68.
    [15]陈子利,雄波,姚建华.基于二维传热数值分析模型的激光处理专家系统[J].浙江工业大学学报,2003,31(3):301-305.
    [16]付青峰,罗军明.H13钢激光表面改性组织与性能研究[J].江西科学, 2004,22(4):242-245.
    [17]董必达,何晓雄.激光表面改性新技术的应用与工艺研究[J].合肥工业大学学报(自然版),2001,24(6):1119-1123.
    [18] Ritesh S. Lakhkar , Predictive modeling of multi-track laser hardening of AISI 4140 steel[J]. Materials Science and Engineering, 2008,480:209-217.
    [19] WuW, LiangNG, GanCH, etal. Numerical investigation on laser transformation hardening with different temporal pulse shapes[J]. Surface and Coatings Technology, 2005(1):1-9.
    [20]谢志余,潘钰娴.激光热处理相变机理及应用[J].机械制造与自动化,2003,(4):38-39.
    [21]杨柳青,丁阳喜.激光相变硬化技术的研究现状及进展[J].热加工工艺, 2006,35(4):68-70.
    [22]代毅.4Cr13不锈钢阀芯激光相变强化技术研究[D].四川:四川大学,2002.
    [23] Sirilath J.DeSliva, Cho Lik Chan.Coupled boundary element method and finite difference method for the heat conduction in laser processing[J].Applied Mathematical Modelling,2007,(9):1-30.
    [24]刘晓魁.激光相变硬化的数值模拟[D].西安:西北工业大学,2003.
    [25]朱祖昌,俞少罗,李健,等.激光相变硬化热处理的数值解及组织性能预测[A],第六届全国热处理大会论文集[C].北京:机械工业出版社,1995:109-115.
    [26]燕展.基于硬化层均匀的激光相变硬化工艺参数优化研究[D].上海:上海海事大学,2006.
    [27]程愿应,刘顺洪.汽车缸体激光表面改性生产线成套设备[J].激光技术,2002,26(3):223-224.
    [28]许巧玉,于青,李铸刚.70Mn2Mo铸钢热轧辊的激光表面强化[J].金属热处理,2002,45(8):32-34.
    [29]李双寿,陆劲昆,边庆月,等.球墨铸铁凸轮轴的激光表面熔凝处理[J].金属热处理,2005,(2):18.
    [30]毛先礼.激光表面处理技术在齿轮加工中的应用[J].工业炉与热处理特别策划专辑,2006,(4):45
    [31]欧阳家虎,裴宇韬,雷廷权.钢表面镍基Zr2(2Y)陶瓷激光熔覆层的研究[J].理化检验—物理分册,1994,30(1):11-13.
    [32]晁名举.金属材料表面激光淬火和熔覆若干关键技术研究[D].郑州:郑州大学,2003.
    [33] Pantsar H, Kujanpaa V Diode laser beam absorption in laser transformation hardening of low alloy steel [J]. Journal of Laser Application ,2004,16(3):147-152.
    [34]表斌,龚知本,沈书泊,等.新型廉价CO2激光热处理涂料的研究[J].激光技术,1999,23(6): 364-368.
    [35]李新力,李安忠,万军.金属磷化技术的回顾与展望[J].材料保护,2000,33(1):71.
    [36]刘宝.激光相变硬化工艺参数自动选择模型及其程序开发[D].上海:上海海事大学,2005.
    [37] Pang Youxia, Lu Younan, Yin Xiyun. The influence of sediment concentration and particle size on the erosion wearing characteristics of QTS00 [J]. Materials for Mechanical Engineering, 2006, 30(4): 51-53.
    [38]孙建英.激光表面强化中的工艺问题[J].工艺装备,2006,(5):126-127.
    [39]许伯藩,史华忠,张细菊.金属表面涂敷陶瓷技术[J].金属热处理,1995,20(9):37-38.
    [40]刘其斌,李海,李珊,等.激光热处理用新型吸光涂料与碳素墨汁的比较研究[J].现代机械,2003, (5):89-91.
    [41]国玉军,刘常升,贺春林,等.激光表面硬化预涂层用89-1涂料的研究[J].激光技术,2002,26(4):252-254.
    [42]张光钧.激光热处理吸收涂层的研究[J].金属热处理,2000,(8):3-5.
    [43]冯端,师昌绪,刘治国.材料科学导论[M].北京:化学工业出版社,2002:444.
    [44]翁铸,陆文雄,伍丽峰.激光表面硬化处理工艺参数的确定[J].广西机械,2002,(3):18-20.
    [45] Pang Youxia,Lu Younan,Yin Xiyun. The influence of sediment concentration and particle size on the erosion wearing characteristics of QTS00 [J]. Materials for Mechanical Engineering, 2006,30(4):51-53.
    [46]张永康,周建忠,叶云霞.激光加工技术[M].北京:化学工业出版社,2004,9:113-118.
    [47] Fei Wang, Zhenqiang Yao, Qilin Deng.Experimental study on laser shock processing of brass[J].Materials,2007(14):529-532.
    [48]左铁钏.21世纪的先进制造—激光技术与工程[M].北京:科学出版社,2007.
    [49]刘江龙.高能束热处理[M].北京:机械工业出版社,1997.
    [50]吴健.金属材料的激光相变硬化机理及其工艺参数优化[J].热加工工艺,2004,(7):57-59.
    [51]葛俊.激光相变硬化最大硬化层深的研究[D].上海:上海海事大学,2007.
    [52] Katsamas AI and Hai demenopoulosGN. Laser beam carburizing of low alloy steel[J]. Surface and Coatings Technology,2001,139(2-3):183-191.
    [53]陈绮丽,黄诗君,张宏超.激光技术在材料加工中的应用现状与展望[J].机床与液压,2006,(8):178-223.
    [54] Wang Zemin, Zeng Xiaoyan and Huang Weiling. Parameters and surface performance of laser removal of rust layer on A3 steel[J].Surface and Coatings Technology,2003,166(1):10-16.
    [55]罗玉梅.激光淬火工艺的现状及应用[J].邵阳学院学报(自然科学版),2004,3(l):49-51.
    [56] Jun Xie, Lide You, Shubuai Huang etal. Real-focus control in broad flat field laser material processing[J]. Optics&Technology, 2008(40):330-336.
    [57] F.E.Livingston, L.F.Steffeney, H.Helvajian. Tailoring light pulse amplitudes for optimal laser processing and material modification[J]. Applied Surface Science,2007,253:8015-8021.
    [58]丁阳喜,杨柳青,付伟.激光热处理技术的研究现状及发展[J].机械工程师,2006,(1):19-21.
    [59]温宗胤,冯树强,李宝灵,等.激光相变硬化在CrMo铸铁汽车模具中的应用[J].金属热处理,2007,32(1):40.
    [60] B.S.Yilbas, M.Kalyon. Analytical solution for multilayer assembly including heating and cooling cycles with laser pulse parameter variation[J]. Optics and lasers in Engineering. 2006,(4):1219-1234.
    [61]陈庆华.激光与材料相互作用及热场模拟[M].昆明:云南科技出版社,2001:41-62.
    [62] Diniz Neto O O ,Vilar R.Physical-computation model to describe the interaction between a laser beam and powder to jet in laser surface processing [J].Journal of Laser Applicationgs. 2002,14(1):46-51.
    [63]王秀彦,安国平,李栋,等.模具表面的激光非熔凝加工的应用研究综述[J].北京工业大学报,2001,27(4):415-419.
    [64] Pantsar H,KujanpaV. Diode laser beam absorption in laser transformation hardening of low alloy steel[J].Journal of Laser Applications,2004,16(3):147.
    [65]王从曾.激光淬火技术的应用现状及发展[J].机械工人(热加工),2004,(7):14-16.
    [66]张立文,裴继斌.连续YAG激光相变硬化三维瞬态温度场数值模拟[J].大连理工大学学报,2003,43(2):191-195.
    [67] E. J. Liang,P. Ding, H. R. Zhanget al. Synthesis and correlation study on the morphology and Raman spectra of CNxnanotubes by thermal decomposition of ferrocene/ethylenediamine[J]. Diamond and Related Materials, 2004, 13: 69-73.
    [68]王清波.38CrMoAi激光淬火及镍基合金激光熔覆研究[D].郑州:郑州大学,2005.
    [69]王华明,Bergaman Hw.球铁激光表面重熔组织热处理植被新型铁基耐磨材料[J].材料研究学报,1998,12(l):99-101.
    [70]尹延西,李安,张凌云,等.Cr-Cu-Si金属硅化物合金组织与耐磨性[J].稀有金属材料与工程,2006,35(3):391-394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700