用户名: 密码: 验证码:
轴承表面的激光相变硬化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的表面处理有很多种方法,采用先进的表面改性手段可强化轴承工作表面,提高轴承工作可靠性,延长其使用寿命,应用激光对轴承表面实施相变硬化处理(激光淬火)则是一门新技术。本文结合安徽省教育厅自然科学重点资助项目“轴承表面的激光硬化关键技术及应用技术研究”(编号:KJ2009A021),研究GCr15钢试样及轴承滚道表面激光相变硬化的各种关键问题,为轴承滚道表面强化提供了新途径,将基础研究与生产实际相结合,具有实际意义。
     选用CO2激光器进行GCr15轴承滚道表面激光相变硬化处理试验。运用正交试验设计方法对工艺参数进行了优化,用光学显微镜(OM)和扫描电镜(SEM, FEI ESEM XL30)进行GCr15轴承钢激光表面改性后的显微组织和形貌尺寸特征分析。选择合适的激光淬火参数,以保证激光表面改性层有足够的硬化层深度和高的硬度值,有更加细小的马氏体组织。结果表明,经激光相变硬化后轴承滚道表面硬度得到提高,且随着激光功率的增加,淬硬层的深度与硬度增加,硬化层深度最多可以达到0.8~0.9mm。组织细化和过饱和的隐晶马氏体的形成是硬度提高的主要原因。
     对激光相变硬化处理后的GCr15钢试样,使用X射线衍射仪对淬硬层的残余奥氏体含量和残余应力分布进行了分析。结果显示,激光强化区由于碳的溶解形成较多的残余奥氏体和细小的未溶碳化物。激光相变硬化后试样表面为压应力,且随着激光功率的增大而变大。
     对激光相变硬化处理后的GCr15钢试样进行不同温度的回火处理,并与经常规热处理后的GCr15钢试样进行对比分析。结果表明,激光淬火组织的回火稳定性明显提高。借助扫描电镜观察得知,回火稳定性提高的原因是激光淬火后奥氏体和淬火马氏体的合金浓度得到了提高。
     对GCr15钢轴承滚道表面激光淬火处理过程进行数值模拟,讨论激光工艺参数对轴承滚道表面激光淬火处理后相变硬化区宽度和深度的影响,得到与实验比较吻合的结果。模拟结果表明激光工艺参数固定时,激光扫描开始、结束阶段的温度场有明显的不同,导致沿激光扫描方向硬度分布的不均匀性和激光扫描开始、结束阶段淬硬层深度分布的不均匀性。探讨了改善硬化层深度分布均匀性和表面硬度均匀性的方法。
     将激光强化后的GCr15钢和常规热处理的GCr15钢试样在干摩擦条件下的磨损行为进行比较,以评估其磨损行为。激光强化后的GCr15钢相对于常规热处理的GCr15钢,由于其微观结构造成的高的强韧性而导致磨损率的提高。常规热处理试样和激光强化试样的磨损机制相同,同为磨料磨损和氧化磨损,同时拌有粘着磨损存在。激光强化后材料的热稳定性提高,这使激光相变硬化区具有较高的抗回火软化能力。
     在油润滑条件下比较激光强化后试样和常规热处理试样的耐磨性。激光强化GCr15钢的摩擦学特性略好一点,激光硬化层因其组织硬化、高硬度和高韧性而导致磨损率(10-6mg/N·m数量级)低于常规热处理GCr15钢。在稳定状态,激光强化后试样的摩擦系数与常规热处理试样的摩擦系数没有明显的区别。激光强化后试样和常规热处理试样两者的磨损机制基本相同,均为轻微磨料磨损和疲劳磨损。
     研究了不同激光功率对硬化后的最终显微组织、硬度和耐磨性的影响。激光参数变化引起显微组织发生变化,造成表面硬度值和磨损率较大的差异。激光功率增大时,激光硬化层表面未溶碳化物量减少,从而表面马氏体中含碳量增加,表面硬度增高。在干摩擦和油润滑两种条件下,激光功率越大,激光硬化层的抗磨损性性越好。在干摩擦磨损过程中激光表面改性层发现摩擦诱发的马氏体相变。
     对激光相变硬化处理后的GCr15钢试样进行三点弯曲试验,研究激光硬化层对钢件抗弯强度和挠度的影响。弯曲试验时材料的塑性用各试样的最大挠度来表示。结果表明,经激光硬化处理后钢件的抗弯强度和挠度明显下降,断裂机制发生改变,导致了激光硬化层塑性和韧性的下降。对常规热处理试样和激光表面处理试样断口也进行对比分析,常规热处理试样断裂后断裂表面均表现出韧性断裂后的韧窝特征,激光硬化层起裂区呈现脆性断裂特征,断裂方式主要为准解理和沿晶断裂。
     综上所述,轴承表面的激光相变硬化可以产生具有较多残余奥氏体、细小碳化物以及过饱和的隐晶马氏体组织,从而提高轴承滚道表面的硬度和残余压应力,并提高轴承套圈滚道表面的耐磨性能。激光表面强化技术用于轴承滚道表面处理,是一种全新尝试,有利于提高其接触疲劳性能,但因作用机制十分复杂,尚需进一步开展大量的试验工作与理论研究。
There are many means to strengthen the material surface.The surface modification technique is an advanced way to improve the reliability and the service life of working surface of bearing.The laser transformation hardening (LSH) is a newly-developed technology,which is now used for the material surface treatment .In terms of the key project of the Natural Science Research Foundation of Department of Education of Anhui province (No:KJ2009A021)“Research on the key technologies of laser transformation hardening for bearing surface of GCr15 steel”,this dissertation aims to study on the key technologies in the LSH for bearing surface and samples of GCr15 steel.This dissertation will explore the novel approaches for the surface hardening of bearing rings, in which the foundamental theory and practice are combined with actual meaning.
     The LSH proccess of GCr15 steel bearing rings is conducted using the CO2 laser heat source.The laser processing parameters are optimized using the orthogonal experimental design method.The macromorphology and microstructure of the hardened layers are investigated by the optical microscopy(OM) and scanning electron microscopy(SEM, FEI ESEM XL30).The laser-quenching parameters selected should ensure the quenched zones to provide not only sufficient case depth and higher hardness,but also a suitable profile and finer microstructure.The experimental results show that the hardness of bearing surface is significantly improved after the LSH process,and the depth of harden layer and the hardness increase with the increasing of laser power.The depth of laser tracks of about 0.8~0.9 mm has been obtained. The hardness enhancement of hardened layer is attributed to the grain refining and the formation of supersaturated hidden crystal martensite during the laser quenching.
     The wide-band laser surface quenching for GCr15 steel treated conventionally is carried out by the CO2 laser equipment.Then the content of retained austenite and the distribution of residual stress are analyzed by using the X-ray diffraction(XRD).The tested results imply that the quenched zones have more retained austenite and finer carbides due to a higher degree of carbide dissolution.Compressive stress are detected on the surface of harden layer after the LTH,and it increases with the increasing of laser power.Subsequently the laser-quenched samples are tempered at various levels of temperatures.The results show that they have the good microstructure stability at the relatively high temperature compared with those of conventionally hardening GCr15 steel specimens.The reason to enhance the tempering stability is analyzed by means of SEM observation.
     In this work, the temperature field of laser surface hardened layers for race surface is also analysed numerically in detail. The influences of laser parameters on the widths and depths of LTH zones of GCr15 steel are discussed and the results obtained are proved to coincide with the experiments.From these theoretical results,it is clear that in close proximity to the boundaries(such as beginning and ending boundaries),the temperature field has an obvious change when the laser mean power is kept the constant,which leads to the hardness discrepancy and the case discrepancy between the beginning and ending boundaries of the bearing rings.The paper puts forward feasible methods to improve distribution uniformity of the hardened case and the hardness uniformity of steel surface.
     The characteristics of dry friction wear resistance of hardened GCr15 steel specimens are studied and compared with those of conventionally hardening specimens to evaluate the tribological behaviors.Laser surface hardening GCr15 steel specimens exhibit superior wear resistance to conventionally hardened specimens due to the effects of hardening of microstructure,high hardness, and toughness.The results show that the acting wear mechanism for both the laser quenched layer and the hardened layer with conventional heat treatments are predominantly adhesive ,material transfer ,oxidation and abrasion.The microstructural thermal stability is increased after laser surface treatment. The structures with higher microstructural thermal stability exhibit a good stability to the heat effect of sliding friction and wear.
     The wear resistance under lubricated sliding conditions is compared between specimens treated with laser and those of conventionally hardened.The tribological properties of laser surface-quenched GCr15 steel specimens are slightly better due to the effects of microstructure hardening, high hardness and toughness,with the wear rate (in the order of 10-6mg/N·m) lower than those of the conventionally treated specimens.At the steady state, the frictional coefficient of laser-treated samples has no obvious difference from that of the conventionally treated samples.The wear mechanism for both cases is similar, generally involves surface fatigue wear and slight abrasion wear.
     The effect of laser powers on the final microstructure and the hardness after laser quenching and the wear resistance of the bearing steel GCr15 under sliding wear in air is investigated.The difference of microstructure is produced by changing the laser power, which result in the bigger difference of surface hardness and the wear rate. When the laser power is increased, the amount of undissolved carbides of the laser hardened layer surface is decreased, the average content of carbon of the laser hardened layer surface is increased, thus leads to the increase of the surface hardness. In addition, the retained austenite and its stress induced transformation into martensite takes place in the wear test on the hardened zone surface. The wear resistance of laser hardened layer is increased when the laser power is increased both under the dry sliding wear conditions and lubricated sliding conditions.
     The influence of laser surface hardened layers on the bending strength and flexural deflection of the samples is studied through the three-point bend tests.In the tests,the material plasticity is characterized by the bending deflection.The results show that the bending strength and flexural deflection of the samples are decreased obviously after the laser quenching .Moreover ,the failure mechanism also changes,which causes the decrease of fracture toughness and plasticity.The fractured surfaces of laser surface hardening specimens are analyzed and compared with those of conventionally hardening specimens.Fracture toughness characteristic of dimples is observed on fracture surface of conventionally hardened specimens. The fractured surfaces of the laser surface hardened layers exhibit the brittle fracture in crack initiation zone. The mode of brittle fracture is mainly the intergranular fracture and many cleavage steps in crack initiation zone.
     In conclusion ,the results demonstrates that the LSH can produce a predominantly martensitic microstructure with more retained austenite and finer carbides,with high hardness and wear resistance and residual compressive stress at the surface of GCr15 steel.The wear resistance of bearing assembly is increased after the LSH. In order to apply the LSH process to actual production for the surface hardening process of bearing rings , further experiments and studies requires to be done.
引文
[1]李兴林.滚动轴承材料进步及延寿技术[J].轴承,1995,(11):2~10.
    [2]张伟华,卞玉霞.轴承滚道表面的改性处理方法[J].哈尔滨轴承,2006,27(2):38~42.
    [3]刘耀中.表面工程技术在轴承上的应用[J].轴承,2005,30(12)增刊:45~48.
    [4]宋光顺,戴雅康.铁路客车轴承套圈中频感应加热等温淬火生产线[J].轴承,2002,(5): 12~15.
    [5] G. Radhakrishnan,P.M. Adams,D.M. Speckman.Low temperature pulsed laser deposition of titanium carbide on bearing steels [J]. Thin Solid Films,2000,358:131~138.
    [6]齐效文,杨育林.超硬涂层零件滚动接触疲劳加速实验方法研究[J].润滑与密封,2007,32(8):32~35.
    [7] K.Bobzina,E.Lugscheidera,M.Maesa,etl.High-performance chromium aluminium nitride PVD-coatings on roller bearings [J].Surface & Coatings Technology,2004,188–189:649~ 654.
    [8] Mineo Suzuki,Philippe Prat.Synergism of an MoS2 sputtered film and a transfer film of a PTFE composite [J].Wear,1999,225–229:995~1003.
    [9] L.X.Cao,Z. C. Feng,Y. Liang,etl.Lib. Laser chemical vapour deposition of TIN and TiC films [J].Thin Solid Films,1995,257(6):7~14.
    [10] M.Kuhn,P.W.Gold,J.Loos.Wear and friction characteristics of PVD-coated roller bearings [J]. Surface & Coatings Technology,2004,177~178:469~476.
    [11]邓四二,滕弘飞,周彦伟,等.航空发动机主轴轴承滚道表面光饰强化处理[J].航空动力学报,2006,21(3):541~543.
    [12] Hong-xi Liu,Xiao-feng Wang,Lang-ping Wang,Bao-yin Tang.Rolling contact fatigue and mechanical properties of titanium carbide film synthesized on bearing steel surface[J].Surface & Coatings Technology,2007,201:606~610.
    [13] S.Ma¨ndl,B.Rauschenbach.Comparison of expanded austenite and expanded martensite formed after nitrogen PIII [J]. Surface & Coatings Technology,2004,186:277~281.
    [14]曾照明. 9Cr18轴承套圈PIII处理工艺及注入均匀性研究[D].哈尔滨:哈尔滨工业大学,1999.
    [15]周智慧,樊琳.高能束热处理及其在工业中的应用[J].机械制造与自动化,2004,33(3):42~44.
    [16]毛红兵,罗纬.表面工程技术在牙轮钻头滑动轴承上的应用与试验研究[J].第二届表面工程国际会议论文集:94~96.
    [17]严彪,唐人剑,王军.金属材料先进制备技术[M].北京:化学工业出版社,2005:120~129.
    [18]王续跃,杨金奎.先进激光加工技术[M].北京:机械工业出版社,2000:27~29.
    [19]石娟.齿轮激光表面处理的若干关键技术研究[D].上海:同济大学,2006.
    [20]柴田正道等.各种因素对滚动接触疲劳寿命的影响[J].国外内燃机车,1996,309(3):6~9.
    [21] H.Visscher,M.B.de Rooij.The influence of laser line hardening of carbon steel AISI 1045 on the lubricated wear against steel AISI 52100[J]. Wear, 1995,181-183:638~647.
    [22] T. Miokovic′,V. Schulze,O. Vo¨hringer,D. Lo¨he. Influence of cyclic temperature changes on the microstructure of AISI 4140 after laser surface hardening [J].Acta Materialia, 2007,55:589~599.
    [23]向宏.大型环件滚道表面淬火工艺研究及应用[D].南京:南京理工大学,2007.
    [24]姚成武.轧辊表面激光强化与修复技术的应用现状[J].热加工工艺,2007,36(8): 69~72.
    [25]孔德军,张永康,冯爱新. H13热作模具钢激光表面改性处理技术[J].材料导报,2005,19(8):63~65.
    [26] A.Basu,J.Chakraborty.Laser surface hardening of austempered (bainitic) ball bearing steel[J]. Scripta Materialia, 2007,56:887~890.
    [27] R.Colaco,R.Vilar.Stabilisation of retained austenite in laser surface melted tool steels [J].Materials Science and Engineering,2004,385:123~127.
    [28]周仲荣.摩擦学发展前沿[M].北京:科学出版社,2005:120~129.
    [29] Y.Wang,M.Hadfield.Rolling contact failure modes of lubricated silicon nitride in relation to ring crack defects [J].Wear,1999:1284~1292.
    [30] A.T.斯别克托尔.轴承钢的组织与性能[M].北京:上海科学技术文献出版社,1985:85~120.
    [31]赵民.矫直辊表面激光硬化机理及磨损性能研究[D].沈阳:东北大学,2002.
    [32]王伯栋. GCr15轴承钢的激光表面改性[J].轴承,1994,(7):14~18.
    [33]王志奇,刘长瑛. GCr15钢激光表面改性硬化层残余奥氏体测定与研究[J].天津理工学院学报,2003,19(1):65~68.
    [34]张素芳. GCr15轴承钢激光表面改性的试验研究[D].大连:大连理工大学,2006.
    [35] Henrikki Pantsar.Relationship between processing parameters of alloy atom diffusion distance and surface hardness in laser hardening of tool steel [J].Journal of Materials Processing Technology,2007,(189):435~440.
    [36]郦振声,杨明安.现代表面工程技术[M].北京:机械工业出版社,2007:424~440.
    [37]晁拥军.工模具材料强化处理应用技术[M].北京:机械工业出版社,2008:177~182.
    [38]庞国星.工程材料与成形技术基础[M].北京:机械工业出版社,2005:50.
    [39] Neil S. Bailey,Wenda Tan,Yung C.Predictive modeling and experimental results for residual tresses in laser hardening of AISI 4140 steel by a high power diode laser [J].Surface & Coatings Technology,2009,203:2003~2012.
    [40]代毅. 4Cr13不锈钢阀芯激光相变强化技术研究[D].成都:四川大学,2007.
    [41]李俊昌.激光热处理现状分析[J].昆明理工大学学报,1997,22(1):146~149.
    [42]王扬.管材内表面激光硬化机理及技术的研究[D].哈尔滨:哈尔滨工业大学,1999.
    [43]刘永镇.激光表面强化技术[J].机械工艺师,1999,5:13~15.
    [44]巴发海,宋巧玲.激光表面强化相关问题的研究进展[J].郑州大学学报(工学版),2004,25(3): 85~88.
    [45]应小东,李午申,冯灵芝.激光表面改性技术及国内外发展现状[J].焊接,2003,(1):6~8.
    [46]夏新涛,马伟.滚动轴承制造工艺学[M].北京:机械工业出版社,2004:33~35.
    [47]徐帆.碳、铬含量对不锈轴承钢组织和接触疲劳寿影的影响[D].昆明:昆明理工大学,2007.
    [48]王志奇,刘长瑛.残余奥氏体定量分析的特殊方法[J].福州大学学报(自然科学版),2002,30(3):385~388.
    [49]温宗胤,冯树强,李宝灵,等.激光相变硬化在CrMo铸铁汽车模具中的应用[J].金属热处理,2007,32(1):40~42.
    [50]周健,李新华,晏红辉,等.H11模具钢激光宽带相变硬化处理[J].安徽大学学报(自然科学版),2008,32(1):58~62.
    [51]吴健.金属材料的激光相变硬化机理及其工艺参数优化[J].热加工工艺,2004,(7):57~59.
    [52]杨毅,陈从桂,李必文,等.浮封环激光相变硬化的实验研究[J].热加工工艺,2008,37(8):47~50.
    [53]曾晓雁,吴懿平.表面工程学[M].北京:机械工业出版社,2001:49~60.
    [54]赵会友,谢玉江,马向东,等. 32SiMnMoVA低合金超高强度钢激光相变硬化机理[J].金属热处理,2005,30(5):20~24.
    [55]孙业英.光学显微分析[M].北京:清华大学出版社,2003:80~81.
    [56]刘江龙,邹至荣.激光相变硬化后的残余奥氏体分析[J].机械工程材料,1989,71(3):35~38.
    [57]杨慧香,王晖,董辉跃,等.激光淬火齿轮和渗碳淬火齿轮X射线衍射分析[J].长春工业大学学报(自然科学版),2007,28(2):187~189.
    [58]李明生,姜维荣.碳工钢激光淬火马氏体形态与亚结构变化的研究[J].安徽工学院学报,1991,10(4):58~63.
    [59]魏金山.激光淬火对GCrl5钢残余奥氏体的影响[J].河南冶金,1995,(2):33~36.
    [60]舒炳生,钱经亮,胡小刚,等.光淬火在高压空气压缩机曲轴中的应用[J].金属热处理,2008,33(9):114~118.
    [61]丁阳喜. Cr12MoV钢宽带激光淬火组织回火稳定性研究[J].热加工工艺,2007,36(18):65~68.
    [62]郭俊.轮轨滚动接触疲劳损伤机理研究[D].成都:西南交通大学,2006.
    [63]王春亮,刘乐,杨力.轴承套圈开裂原因分析[J].理化检验-物理分册,2008,44(11):632~635.
    [64]郭婧.滚动轴承疲劳寿命综述[J].甘肃科技,2006,22(4):133~136.
    [65]李兴林,张永恩,张仰平,等.滚动轴承疲劳寿命强化试验评估方法研究[J].轴承,2003,(4):26~9.
    [66]苗学问,王大伟,洪杰.动轴承寿命理论的发展[J].轴承,2008,(3):47~52.
    [67]韩金华,鲁华宾.滚动轴承寿命理论的发展[J].科技情报开发与经济,2009,19(18):212~213.
    [68]徐跃进.滚动轴承的疲劳可靠性计算[J].轴承,2007,41(8):27~30.
    [69]濑户浩藏(日).轴承钢[M].北京:冶金工业出版社,2003:27~30.
    [70]钱坤,陶姗. Cr15钢轴承残留奥氏体、尺寸精度及疲劳寿命试验研究[J].金属热处理,2007,32(9):65~8.
    [71]鄢建辉,李兴林,蒋万里,等.轴承疲劳寿命理论的新进展[J].轴承,2005,(11):78~80.
    [72]张永康,周立春,任旭东,等.激光冲击TC4残余应力场的试验及有限元分析[J].江苏大学学报,2009,30(1):10~13.
    [73]汪诚,任旭东,周鑫,等.激光冲击对GH742镍基合金疲劳短裂纹扩展的影响[J].金属热处理,2009,34(7):57~59.
    [74] Zaretsky E V,Poplawski J V,Peters SM. Comparision of life theories for rolling-elementbearing[J ] . Trib. Trans.,1996,39(2):237~248.
    [75] Tallian T E. Data -fitted bearing life prediction model-partIV: Model implementation for current engineering use [J ].Trib. Trans.,1996,39(4):957~963.
    [76] Tallian T E. Data fitted bearing life prediction model for variable operating conditions [J ] . Trib. Trans.,1999,42 (1):141~249.
    [77]骆有东.球墨铸铁曲轴激光淬火试验研究[J].激光杂志,2009,30(3):55~57.
    [78]李伟,李应红,何卫锋,等.激光冲击强化对镍基高温合金疲劳寿命的研究[J].新技术新工艺,2008,(8):70~73.
    [79]叶健,高元安,谢倩. Cr4与GCr15钢冲击韧性和接触疲劳寿命对比分析[J].轴承,2003,(2):30-32.
    [80]周井玲.氮化硅陶瓷球的滚动接触疲劳寿命研究[D].上海:上海大学,2006.
    [81]马莉,王毛球,时捷.微合金渗碳齿轮钢的接触疲劳性能[J].材料研究导报,2009,23(3):251~256.
    [82]高玉魁.疲劳断裂失效分析与表面强化预防[J].金属加工,2008,(17):25~29.
    [83] j j c hoo. Rolling Contact Fatigue Testing of Bearing Steels.ASTM STP771,1982:358~379.
    [84]范雪燕.激光表面淬火瞬态温度场的有限元模拟及硬化层深预测[D].上海:上海海事大学,2004.
    [85]魏利霞.轴对称体激光相变硬化过程温度场和应力场的数值模拟[D].大连:大连理工大学,2000.
    [86]李俊昌,陈庆华,MERLIN J.合非完整光束辐照过程的激光热处理瞬态温度场半解析计算[J].中国激光,1998 ,25(8):753~758.
    [87]管一弘,陈铁力,陈君若,等.激光淬火温度场及材料性能的数值模拟[J ].中国激光,1999,26(3):263~267.
    [88]石娟,吴钢,戴忠森.激光热处理硬化带简易实用模型[J].金属热处理,2000,(2):33~37.
    [89] T.R.Anthony,H.E.Cline. Surface rippling included by surface-tension gradients during laser surface melting and alloying,J.Appl.Phys,1977,48(9):3888.
    [90] T.Chande,J.Mazumder. Two-dimensional transient model for mass transport in laser surface alloying,J.Appl.Phys,1985,57(6):2226.
    [91] Michael K.H.,Leung H.C. Man,J.K. Yu Theoretical and experimental studies on laser transformation hardening of steel by customized beam [J].International Journal of Heat and Mass Transfer , 2007,50: 4600-4606.
    [92] K.-K.Yoon,W.-B.Kim,S.-J. Na.Shape deformation of a piston ring groove by laser surface hardening[J].Surface and Coatings Technology,1996,78(6) :157~167.
    [93]张家荣,赵廷元.工程常用物质的热物理性质手册[M].北京:新时代出版社,1987:146~195.
    [94]刘江龙等.高能束热处理[M].北京:机械工业出版社,1997:66~98.
    [95]管一弘,陈铁力,陈劲波,等.激光相变硬化过程中温度场及马氏体相变的数值分析[J].金属热处理学报,1998,19(4):20~22.
    [96]花银群,杨继昌,胡涛,等.应用ANSYS5.7软件模拟激光淬火曲轴温度场的研究[J].金属热处理,2002,27(8):37~39.
    [97] R.Komanduri,Z.BHou.Thermal analysis of the laser surface transformation hardeningprocess[J]. International Journal of Heat and Mass Transfer,2001,44(6):2845~2862.
    [98]任恩扬,陈铁力,林渝,等.激光相变硬化工艺参数的选择[J].昆明理工大学学报,1997,21(4):34~37.
    [99]单际国,任家烈等.合金铸铁光束相变硬化层的组织和硬度[J].应用激光,1999,19(5):265~268 .
    [100]张立文,王晓晖,王富岗,等.圆柱体激光相变硬化三维温度场数值计算[J].材料科学与工艺,2002,10(1):62~65.
    [101]吴凯令,车丽晶.齿轮的激光相变强化处理[J].电动工具,2009,(1):10~11 .
    [102] Q B Liu.Experimental study of the laser quenching of 40CrNiMoA steel[J]. Journal of Materials Processing Technology,1999,(88):77~82.
    [103]陈跃勤,唐英. GCr15钢激光表面改性硬化层残余奥氏体测定与研究[J].金属热处理,2000,19(11):18~22.
    [104]雷声,刘全坤,薛正堂,等.轴承滚道表面激光强化处理[J].轴承,2009,359(10):30~33.
    [105] T Reti. Prediction of as-quenched hardness after rapid austenitization and cooling of surface hardened steels[J]. Computational Materials Science,1999,(44):111~112.
    [106] K H Loa. Effects of laser treatments on cavitation erosion and corrosion of AISI 440C martensitic stainless steel[J]. Materials Letters,2003,(58):88~ 93.
    [107] R Kaul. Characterization of dry sliding wear resistance of laser surface hardened En 8 steel[J]. Journal of Materials Processing Technology,2005,(167):83~90.
    [108] F C Zhang. A study of friction-induced martensitic transformation for austenitic manganese steel[J]. Wear,1997,(76):195~198.
    [109] R Komanduri,Z Influence of the Processing Conditions on the Abrasive Wear Behaviour of a Laser Surface Melted Tool Stell[J]. Scripta Materialia,1999,(44): 715~721.
    [110] Y Q Xia. Comparative study of the tribological properties of various modified mild steels under boundary lubrication conditions[J]. Tribology International,2005,(38):508~514.
    [111] Liu Qingbin. Experimental study of the laser quenching of 40CrNiMoA steel[J]. Journal of Materials Processing Technology,1999,(88):77~82.
    [112]徐洪烟等.激光相变硬化提高模具寿命的探讨[J].金属成形工艺,2001,19(3):48~50.
    [113]王秀彦,安国平,李栋,等.模具及模具材料激光相变硬化的初步探索与实验[J].锻压机械,2002,(2):57~60.
    [114]王恒海,虞钢,党刚,等.冲压模具激光表面强化的搭接工艺研究[J].材料热处理学报,2008,29(6):168~172.
    [115]周建忠,等.激光强化技术提高模具使用寿命[J].电加工与模具,2000,29(1):41~45.
    [116] Wang Yong,Zhu Hua,LI Gang,Wu Zhao– hong. Study on Wear Behavior of GCr15 Ster under Coupling of Rolling and Sliding[J]. bearing,2005,(8):24~26.
    [117]左铁钏,等. 21世纪的先进制造-激光技术与工程[M].北京:科学出版社,2007:202~212.
    [118] Wang Yong.Tribo-metallographic behavior of high carbon steels in dry slidingII.Microstructure and wear [J]. wear,1999,(231):12~19.
    [119]雷声,刘全坤,薛正堂,等.轴承滚道激光淬火的温度场数值拟[J].兵器材料科学与工艺,2010,33(1):21~24.
    [120]燕展.基于硬化层均匀的激光相变硬化工艺参数优化研究[D].上海:上海海事大学,2006.
    [121]季忠.板料激光弯曲成形及其数值模拟[D].西安:西北工业大学材料科学与工程系,1997:64~69.
    [122]朱祖昌,李培耀,俞少罗.相变硬化激光热处理的数值解及组织性能的预测[J].金属学报,1996,32(1):105~108.
    [123]王秀凤,蔡友贵,陈光南.模具刃口的激光淬火试验与数值模拟[J].现代制造技术与装备,2009,189(2):46~48.
    [124] K.K.YOON. Shape deformation of a piston ring groove by laser surface hardening[J]. Surface and Coatings Technology,1996,(78): 157~167.
    [125]陈蓬. AerMet100超高强度钢激光相变硬化的研究[D].西安:西北工业大学,2007.
    [126]罗虹,刘家浚.残余奥氏体对GCr15钢强韧性的影响[J].热加工工艺,1993,(5):14~17.
    [127]王荣贵等. Cr12钢残余奥氏体应变诱发马氏体相变增韧[J].兵器材料科学与工程,1996,19(6):22-26.
    [128] Zhang Fucheng. A study of friction-induced martensitic transformation for austenitic manganese steel [J]. WEAR ,1997,385: 195-198.
    [129]赵庆.材料的表面强化技术及其在滚动轴承中的应用[J].轴承,2000,(9):22~28
    [130]陈华辉等.耐磨材料应用手册[M].北京:机械工业出版社,2006:34.
    [131]赵玉珍等.高碳高合金钢的激光表面熔凝处理的耐磨性研究[J].材料工程,2003,(2):37-40.
    [132]陈岁元,刘常升等.材料的激光制备与处理技术[M].北京:冶金工业出版社,2006:61.
    [133]晁明举.金属材料表面激光淬火和激光熔覆若干关键技术研究[D].郑州:郑州大学,2003.
    [134]王淮英.表面修饰MoS<,2>纳米微粒的制备与摩擦学性能的研究[D].北京:北京交通大学,2005.
    [135] R.W.卡恩,等.材料的相变[M].北京:科学出版社,1998:352.
    [136] Tamas Reti. On the influence of retained austenite in the abrasive wear behaviour [J]. Wear,2005,258:225~31.
    [137]石娟,吴钢,范雪燕,等.激光淬火齿轮的疲劳寿命和耐磨性试验研究[J].上海海运学院学报,2004,25(1):92~96.
    [138]徐颖强,赵宁,吕国志.航空齿轮表面硬化层断裂性能研究[J].西北工业大学学报,2002,20(3): 356~359.
    [139]郑修麟.材料的力学性能[M].西安:西安工业大学出版社,1996:98~100.
    [140]王建忠等.表面渗铬渗碳后力学性能的研究[J].新技术新工艺,2006,35(1):118~120.
    [141]王建忠等. Q235钢表面复合强化处理后的拉伸强度[J].中国表面工程,2005,12(6): 21~24.
    [142]孙茂才.金属力学性能[M].哈尔滨:哈尔滨工业大学出版社,2003:66~92.
    [143] Mehmet Erdogan. The effect of martensite particle size on tensile fracture of surface carburised AISI 8620 steel with dual phase core microstructure [J]. Materials and Design,2002,23(6): 597~604.
    [144]薛蕾,陈静,等.激光快速修复Ti-6Al-4V合金的显微组织与力学性能[J].稀有金属材料与工程,2007,36(6):990~992.
    [145]王海棠,等.负压铸渗法制备铸铁表面Ni/WC复合渗层三点弯曲性能测试[J].稀有金属材料与工程,2008,21(4):21~24.
    [146]郭乃国.激光冲击处理钢及其残余应力场数值模拟[D].镇江:江苏大学,2007.
    [147]尹晨. QT600球墨铸铁激光淬火相变层机械性能的研究[J].激光杂志,2006,27 (4):74~78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700