用户名: 密码: 验证码:
非互易光波导的若干基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代集成光学的快速发展,需要光学器件向着片上系统(SOC)的方向发展,对器件的小型化(Small),集成化(System-integrated),智能化(Smart)和功能化(Specialized)有了更高的要求。其中作为集成光学不可或缺的非互易光波导器件,也朝着集成光学器件的4S要求方向发展。非互易光学器件主要包括光隔离器和环路器,隔离器可以阻隔反射光进入激光光源,对光源起到保护作用,而环路器可以使得信号在多个端口间流转,实现反射信号和透射信号的分流。传统的光隔离器和环路器体积仍然过大,是实现片上系统(SOC)最大的阻碍。近几年,基于各种原理的非互易光波导器件取得了长足的进步,逐渐朝着4S原则的方向发展。
     本文从光学非互易现象的物理本质出发,在非互易光波导传输特性,数值模拟方法,器件设计和实验工艺等方面开展了研究,具体如下:
     1.从麦克斯韦方程组导出的洛伦兹互易定理出发,在电磁理论的层面上解释了互易系统的原理以及打破互易性的三个基本方法。分析了利用磁光材料打破介电常数对称性而制作非互易光波导器件的方法,并简单介绍了当前主流的磁光材料。
     2.针对目前主流的仿真软件大部分是非磁光的材料,类似于磁光材料在介电常数上有非对角分量和虚数分量的软件很少而且不成熟。因此,本文利用数值方法建立模型,对不同情况下的问题进行分析。从最基本的有效折射率等效方法开始,发展到磁光光束传播法(BPM),磁光有限时域差分法(FDTD),磁光传输矩阵法(TMM)等等,分析了包括马赫增德尔干涉仪(MZI),多模干涉器件(MMI),微环谐振器,周期性结构等一系列磁光器件和结构,为器件的设计研制提供了帮助。
     3.对磁光材料作为芯层和包层两种实现非互易波导的方案进行了评估,进一步讨论了非互易相移公式的本质,并探究了增强非互易相移的方法。设计了若干器件包括基于磁光波导的隔离器,基于硅基波导的隔离器,环路器,同时提出了基于反射型隔离器和环路器的无泄漏光合束器构想。在硅基器件角度上,将磁光材料和微环谐振器,马赫增德尔干涉仪以及光子晶体缺陷波导等器件进行有机结合,设计出了多种非互易光波导器件。同时,进行了磁光波导器件工艺试验的初步探索。设计了硅基的弱耦合光栅器件的版图,在欧洲IMEC进行了流片并对返回来的器件进行了测试;进行了磁光材料溅射实验,磁光光纤拉制实验以及硅基器件和磁光材料键合实验的尝试。
     本工作涵盖了非互易光学的基本工作原理,材料特性,数值模拟方法,器件设计方法和实验,对若干基础问题做了研究,希望能对今后非互易光学器件的研究有指导价值。
In this dissertation, several fundamental problems of concern in nonreciprocal optic waveguides have been studied. The rapid development of integrated Optics is proceeding towards the goal of realizing system on chip (SOC), raising a higher standard of small, system-integrated, smart and specialized (4S standards) to all integrated devices. As a crucial role in integrated photonic circuit, nonreciprocal devices also need to develop towards the4S standard. The most common nonreciprocal devices include optic isolator and circulator. The isolator can protect the laser source from reflecting light while the circulator can circulate the optic signals among its ports, enabling the separation of transmission and reflection signals. Traditional isolators and circulators are still too large to be integrated, becoming big obstacles for realizaing SOC. Recently, novel nonreciprocal devices based on different principles have been greatly developed during these years, moving towards the4S standards.
     Starting from the principle of reciprocity of magnetic-electrics, this dissertation extensively studies the material properties of nonreciprocal device, the light propagation properties, numerical simulation approaches, device design methods and fabrication techniques. The details are presented as follows:
     1. Starting from the Lorentz reciprocal law (LRL) deducted from Maxwell's equations, three basic approaches to break LRL and realize nonreciprocity are concluded. Then the analysis of magneto-optic (MO) material is presented, with properties of the major MO material clarified.
     2. After understanding the physical principles, we need to build mathematic models in order to better solve the design problems. Since the major optic simulation tools are for reciprocal materials, we need to develop specific simulators for nonreicprocal materials. First the effective index method is presented, then beam propagation (BPM), finite-difference-time-difference (FDTD) and transfer matrix method (TMM) combined with MO properties are developed. Several devices including Mach-zehnder interfereror (MZI), Multimode interfereror (MMI) and periodic devices are simulated. Simulation provides good prediction for the device design.
     3. The two profiles for MO devices design are analyzed, with the principle of nonreciprocal phase shift (NPS) clarified and general solution for NPS enhancement proposed. On this basis, a series of devices were designed including MMI isolator, ring isolator and circulator, photonic crystal waveguide MZI isolator as well as a proposal for zero-leakage optic combiner. Several experiments were carried out to realize the nonreciprocal devices including MO material sputtering, MO fiber and silicon waveguide and MO material bonding.
     This research work covers the basic physical principles, material properties, numerical simulation approaches, device design and fabrication techniques of nonreciprocal devices, providing the analysis to several fundamental problems. This dissertation is intended to provide a guidance and reference to the following research of nonreciprocal guided-wave optics.
引文
1. Kao, K.C. and G.A. Hockham, Dielectric-fibre surface waveguides for optical frequencies. Electrical Engineers, Proceedings of the Institution of,1966.113(7):p. 1151-1158.
    2. Jones, M.W. and K.C. Kao, Spectrophotometric studies of ultra low loss optical glasses Ⅱ:double beam method. Journal of Physics E:Scientific Instruments,1969. 2(4):p.331.
    3. Kao, C.K.,1012 bit/s optoelectronics technology. Optoelectronics, IEE Proceedings J,1986.133(3):p.230-236.
    4. Williams, D. and K.C. Kao, Pulse communication along glass fibers. Proceedings of the IEEE,1968.56(2):p.197-198.
    5. Yonezu, H., et al.. Degradation mechanism of (Al [center-dot] Ga)As double-heterostructure laser diodes. Applied Physics Letters,1974.24(1):p.18-19.
    6. Hayashi, I., et al., JUNCTION LASERS WHICH OPERATE CONTINUOUSLY AT ROOM TEMPERATURE. Applied Physics Letters,1970.17(3):p.109-111.
    7. Hayashi, I. and M.B. Panish, GaAs Heterostructure Injection Lasers which Exhibit Low Thresholds at Room Temperature. Journal of Applied Physics,1970. 41(1):p.150-163.
    8.田柄耕,集成光学和光学波导中新的波现象.1981,北京:人民邮电出版社.
    9. Nelson, O.L. and D.E. Anderson, Potential Barrier Parameters in Thin Metal Diodes. Journal of Applied Physics,1966.37(1):p.77-82.
    10. Bell, H., et al., Superconducting Properties of Reactively Sputtered Thin Film. N. Journal of Applied Physics,1968.39(6):p.2797-2803.
    11. Miller, S.E., E.A.J. Marcatili, and T. Li, Research toward optical-fiber transmission systems. Proceedings of the IEEE,1973.61(12):p.1703-1704.
    12. Pole, R.V., et al., Integrated Optics and Guided Waves?a Report of the Topical Meeting. Appl. Opt.,1972.11(8):p.1675-1685.
    13. Miller, S.E., Integrated optics-An introduction(Laser beam circuitry miniaturization facilitating laser circuit assembly isolation from thermal, mechanical and ambient changes). Bell System Technical Journal,1969.48:p.2059-2069.
    14. Miller, S.E. and L.C. Tillotson, Optical Transmission Research. Appl. Opt.,1966. 5(10):p.1538-1549.
    15. Jalali, B., et al., Advances in silicon-on-insulator optoelectronics. Selected Topics in Quantum Electronics, IEEE Journal of,1998.4(6):p.938-947.
    16. Bruel, M., Silicon on insulator material technology. Electronics Letters,1995. 31(14):p.1201-1202.
    17. Almeida, V.R., et al., All-optical control of light on a silicon chip. Nature,2004. 431(7012):p.1081-1084.
    18. Blom, F.C., et al., Experimental study of integrated-optics microcavity resonators: Toward an all-optical switching device. Applied Physics Letters,1997.71(6):p. 747-749.
    19. Heebner, J.E. and R.W. Boyd, Enhanced all-optical switching by use of a nonlinear fiber ring resonator. Opt. Lett.,1999.24(12):p.847-849.
    20. Manning, R.J. and D.A.O. Davies, Three-wavelength device for all-optical signal processing. Opt. Lett.,1994.19(12):p.889-991.
    21. Ishida, K., et al., InGaAsP/InP optical switches using carrier induced refractive index change. Applied Physics Letters,1987.50(3):p.141-142.
    22. Ibrahim, T.A., et al., All-optical switching in a laterally coupled microring resonator by carrier injection. Photonics Technology Letters, IEEE,2003.15(1):p. 36-38.
    23. Ito, F., M. Matsuura, and T. Tanifuji, A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55 μm. Quantum Electronics, IEEE Journal of,1989.25(7):p.1677-1681.
    24. Li, B. and S.-J. Chua, High carrier injection optical switch based on two-mode interference in SiGe alloy. Applied Physics Letters,2002.80(2):p.180-182.
    25. Li, B. and S.-j. Chua,2 x 2 optical waveguide switch with bow-tie electrode based on carrier-injection total internal reflection in SiGe alloy. Photonics Technology Letters, IEEE,2001.13(3):p.206-208.
    26. Vlasov, Y., W.M.J. Green, and F. Xia, High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat Photon,2008.2(4):p. 242-246.
    27. Jestel, D., A. Baus, and E. Voges, Integrated-optic interferometric microdisplacement sensor in glass with thermo-optic phase modulation. Electronics Letters,1990.26(15):p.1144-1145.
    28. Schmidt, B., et al. Compact Electro-Optic Modulator on Silicon-on-Insulator Substrates Using Cavities with Ultra-Small Modal Volumes, in Lasers and Electro-Optics Society,2006. LEOS 2006.19th Annual Meeting of the IEEE.2006.
    29. Cutolo, A., et al., Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide. Lightwave Technology, Journal of,1997.15(3):p.505-518.
    30. Camargo, E., H. Chong, and R. De La Rue,2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure. Opt. Express,2004.12(4):p. 588-592.
    31. Chu, T., et al., Compact 1×N thermo-optic switches based on silicon photonic wire waveguides. Opt. Express,2005.13(25):p.10109-10114.
    32. Gardes, F., et al., A sub-micron depletion-type photonic modulator in Silicon On Insulator. Opt. Express,2005.13(22):p.8845-8854.
    33. Ohashi, K., et al., On-Chip Optical Interconnect. Proceedings of the IEEE,2009. 97(7):p.1186-1198.
    34. Haurylau, M., et al., On-Chip Optical Interconnect Roadmap:Challenges and Critical Directions. Selected Topics in Quantum Electronics, IEEE Journal of,2006. 12(6):p.1699-1705.
    35. Chen, G., et al., Predictions of CMOS compatible on-chip optical interconnect. Integration, the VLSI Journal,2007.40(4):p.434-446.
    36. DiGiovanni, R.W.W.K.W.D.J., All-fiber magneto-optic isolator based on the nonreciprocal phase shift in asymmetric fiber, optics letters,1995.20(16).
    37. N.Sugimoto, T.S., A.Tate, Waveguide Polarization-Independent Optical Circulator. IEEE Photonic Technology Letters,1999.11(3).
    38. S.Yamamoto, Y.O., T.Makimoto., Analysis and design of semileaky-type thin-film optical waveguide isolator. IEEE Journal of Quantum ELectronics,1976.12(12).
    39. Yokoi, H. and T. Mizumoto. Integration of terraced laser diode and optical isolator by wafer direct bonding, in Lasers and Electro-Optics Europe,2000. Conference Digest.2000 Conference on.2000.
    40. Yokoi, H., et al., Demonstration of an Optical Isolator with a Semiconductor Guiding Layer that was Obtained by Use of a Nonreciprocal Phase Shift. Appl. Opt., 2000.39(33):p.6158-6164.
    41. Yokoi, H., et al., Interferometric Optical Isolator Employing a Nonreciprocal Phase Shift Operated in a Unidirectional Magnetic Field. Appl. Opt.,2004.43(24):p. 4745-4752.
    42. Shoji, Y., et al., Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Applied Physics Letters,2008.92(7):p.071117-071117-3.
    43. Dotsch, H., et al., Applications of magneto-optical waveguides in integrated optics:review. J. Opt. Soc. Am. B,2005.22(1):p.240-253.
    44.沈德芳,刘.乐.,磁光学.2001:上海科学与技术出版社.
    45.王维,刘公强,黄.,高磁场下顺磁性NdF_3介质的磁特性.上海交通大学学报,2005.08.
    46.张文康,刘公强,陈永康,双磁性层结构中静磁后向体波的传播特性.上海交通大学学报,2004.11:p.34-36.
    47.张怀武,刘颖力,王豪才,紫蓝磁光材料的量子法拉第效应.电子科技大学学报,1997.6.
    48.文岐业,杨.张.刘.,Bi:YIG纳米薄膜的磁光特性.硅酸盐学报2007学术年会摘要集,2007.
    49. Xie, K., et al., Simulation of longitudinally magnetized three-dimensional magneto-optical devices by a full-vectorial beam propagation method. Optics Communications,2008.281(12):p.3275-3285.
    50.程立伟,磁光光纤光栅的偏振相关特性研究.2010,电子科技大学:成都.
    51.程立伟,武保剑,磁光光纤Bragg光栅中偏振淜光比特性分析.激光与红外,2010.40(3):p.03-0272-05.
    52.陈凯,光束传输法模拟磁光材料光波导.2007,电子科技大学:成都.
    53. Chen, R., et al., Enhancement of nonreciprocal phase shift by using nanoscale air gap. Opt. Lett.,2010.35(9):p.1335-1337.
    54. Chen, R., et al., Asymmetric multimode interference isolator based on nonreciprocal phase shift. Optics Communications,2009.282(5):p.862-866.
    55. Ruiyi, C., et al., A Proposal of Zero Leakage-Loss Passive Optical Combiner Based on Nonreciprocal Waveguide. Photonics Technology Letters, IEEE,2009. 21(20):p.1493-1495.
    56. Zhou, H., et al., Wavelength-Selective Optical Waveguide Isolator Based on Nonreciprocal Ring-Coupled Mach?Zehnder Interferometer. J. Lightwave Technol., 2008.26(17):p.3166-3172.
    57.刘仕景,基于磁光非互易效应的光波导器件研究.2008,浙江大学:杭州.
    58.陶栋杰.多模干涉型非互易光波导器件研究.2007,浙江大学:杭州.
    59.姜国敏,磁光波导器件的若干基础研究.2011,浙江大学:杭州.
    60. Haifeng, Z., et al.. Analysis of an MMI-Based Six-Port Circulator by Using 3-D Magneto-Optical Beam Propagation Method. Lightwave Technology, Journal of,2009. 27(21):p.4660-4666.
    61. Castera, J., and G. Hepner, Isolator in integrated optics using the Faraday and Cotton-Mouton effects. Magnetics, IEEE Transactions on,1977.13(5):p.1583-1585.
    62. Kirsch, S.T., et al., Semileaky thin film optical isolator. Journal of Applied Physics,1981.52(5):p.3190-3199.
    63. Ando, K., T. Okoshi, and N. Koshizuka, Waveguide magneto-optic isolator fabricated by laser annealing. Applied Physics Letters,1988.53(1):p.4-6.
    64. Levy, M., et al.. Integrated optical isolators with sputter-deposited thin-film magnets. Photonics Technology Letters, IEEE,1996.8(7):p.903-905.
    65. Sugimoto, N., et al., A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit. Lightwave Technology, Journal of,1996.14(11):p. 2537-2546.
    66. Shintaku, T, Integrated optical isolator based on efficient nonreciprocal radiation mode conversion. Applied Physics Letters,1998.73(14):p.1946-1948.
    67. Zaets, W. and K. Ando, Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer. Photonics Technology Letters, IEEE,1999.11(8):p.1012-1014.
    68. Fujita, J., et al., Waveguide optical isolator based on Mach Zehnder interferometer. Applied Physics Letters,2000.76(16):p.2158-2160.
    69. Amemiya, T., et al., Semiconductor waveguide optical isolator based on nonreciprocal loss induced by ferromagnetic MnAs. Applied Physics Letters,2006. 89(2):p.021104-3.
    70. Shoji, Y., et al., Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Applied Physics Letters,2008.92(7):p.071117-3.
    71. Pintus, P., T. Ming-Chun, and J.E. Bowers, Design of Magneto-Optical Ring Isolator on SOI Based on the Finite-Element Method. Photonics Technology Letters, IEEE,2011.23(22):p.1670-1672.
    72. Bi, L., et al., On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat Photon,2011.5(12):p.758-762.
    73. Ghosh, S., et al., Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding. Opt. Express,2012.20(2):p.1839-1848.
    74. Wang, Z. and S. Fan, Optical circulators in two-dimensional magneto-optical photonic crystals. Opt. Lett.,2005.30(15):p.1989-1991.
    75. Yu, Z. and S. Fan, Complete optical isolation created by indirect interband photonic transitions. Nat Photon,2009.3(2):p.91-94.
    76. Lira, H., et al., Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip. Physical Review Letters,2012.109(3):p.033901.
    77. Fan, L., et al. A CMOS Compatible Microring-Based On-Chip Isolator with 18db Optical Isolation.2010:Optical Society of America.
    78. Fan, L., et al., An All-Silicon Passive Optical Diode. Science,2012.335(6067):p. 447-450.
    1. Lorentz, H.A., The theorem of Poynting concerning the energy in the electromagnetic field and two general propositions concerning the propagation of light. Amsterdammer Akademie der Wetenschappen,1896.4:p. 176.
    2. Lifshitz, L.D.L.a.E.M., Electrodynamics of Continuous Media Vol.69.1960, MA:Wesley:Reading.
    3. J.R.Carson, A generalization of reciprocal theorem. Bell System Technical Journal 1930.3(3):p.393-399.
    4. R.J.Potton, Reciprocity in Optics. Reports on Progress in Physics,2004.67:p. 717-754.
    5. Dillon, J.J.F., Origin and Uses of the Faraday Rotation in Magnetic Crystals. Journal of Applied Physics,1968.39(2):p.922-929.
    6. Castera, J., and G. Hepner, Isolator in integrated optics using the Faraday and Cotton-Mouton effects. Magnetics, IEEE Transactions on,1977.13(5):p. 1583-1585.
    7. Shoji, Y., et al., Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Applied Physics Letters,2008.92(7):p.071117-3.
    8. Amemiya, T., et al., Semiconductor waveguide optical isolator based on nonreciprocal loss induced by ferromagnetic MnAs. Applied Physics Letters, 2006.89(2):p.021104-3.
    9. Shintaku, T., Integrated optical isolator based on efficient nonreciprocal radiation mode conversion. Applied Physics Letters,1998.73(14):p. 1946-1948.
    10.沈德芳,刘.乐.,磁光学.2001:上海科学与技术出版社.
    11. Fujita, J., et al., Waveguide optical isolator based on Mach Zehnder interferometer. Applied Physics Letters,2000.76(16):p.2158-2160.
    12. Fan, L., et al., An All-Silicon Passive Optical Diode. Science,2012.335(6067): p.447-450.
    13. Yariv, A., Critical coupling and its control in optical waveguide-ring resonator systems. Photonics Technology Letters, IEEE,2002.14(4):p. 483-485.
    14. Akahane, Y., et al., High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature,2003.425(6961):p.944-947.
    15. Fan, L., et al. A CMOS Compatible Microring-Based On-Chip Isolator with 18db Optical Isolation.2010:Optical Society of America.
    16. Yu, Z. and S. Fan, Complete optical isolation created by indirect interband photonic transitions. Nat Photon,2009.3(2):p.91-94.
    17. Lira, H., et al., Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip. Physical Review Letters,2012.109(3): p.033901.
    18.刘仕景,基于磁光非互易效应的光波导器件研究.2008,浙江大学:杭州.
    19. Tsukahara, S., Detection of Magnetic Domain Walls by Deflection Pattern of Transmission Lorentz Microscopy. Magnetics in Japan, IEEE Translation Journal on,1985.1(4):p.511-513.
    20. Sage, J.P., Optical detection of magnetic domains in birefringent crystals. Journal of Applied Physics,1973.44(8):p.3803-3804.
    21.陶栋杰,多模干涉型非互易光波导器件研究.2007,浙江大学:杭州.
    22. Inoue, M., et al., Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers. Journal of Applied Physics,1998.83(11):p.6768-6770.
    23. Sirdeshmukh, L., et al., Dielectric properties and electrical conduction in yttrium iron garnet (YIG). Bulletin of Materials Science,1998.21(3):p. 219-226.
    24. Gyorgy, E.M., R.C. Le Craw, and M.D. Sturge, Influence ofJahn Teller Ions on the Acoustic and Magnetic Properties of YIG. Journal of Applied Physics, 1966.37(3):p.1303-1309.
    25. Zhang, W., et al., Enhancement of nonreciprocal phase shift by magneto-optical slot waveguide with a compensation wall. Applied Physics Letters,2011.98(17):p.171109-3.
    26. Zhuromskyy, O., et al., Analysis of nonreciprocal light propagation in multimode imaging devices. Optical and Quantum Electronics,2000.32(6-8): p.885-897.
    27.王豪才,王.兰.姬.,YIG石榴石磁光薄膜材料的最新进展.电子元件材料,2002.21(6):p.23-25.
    28.肖效光,于.孟.,BiG磁光膈离器的研制.山东师大学报(自然科学版)1994.9(3).
    29.马昌贵,磁光器件及其在光通信中的应用.磁性材料及器件,2001:p.35.
    30. 尹自强,史磊,文歧业,磁光波导型器件研览进展.应用技术,2009:p.172.
    31.张怀武,薛刚,新一代磁光材料及器件研究进展.中国材料进展,2009.28(5):p.45-51.
    32.黄强,冯则坤,何华辉,RF溅射淀积Ce:YIG磁光薄膜的热处理结晶化研究.功能材料,1998.29(1):p.24-26.
    33. Kucera, M., J. Bok, and K. Nitsch, Faraday rotation and MCD in Ce doped yig. Solid State Communications,1989.69(11):p.1117-1121.
    1. Yokoi, H., Calculation of nonreciprocal phase shift in magneto-optic waveguides with Ce:YIG layer. Optical Materials,2008.31(2):p.189-192.
    2. Gerhardt, R., et al., Optical properties of bismuth and gallium substituted thulium iron garnet films. Optics Communications,1993.102(1-2):p.31-35.
    3. Nur-E-Alam, M., et al., Highly bismuth-substituted, record-performance magneto-optic garnet materials with low coercivity for applications in integrated optics, photonic crystals, imaging and sensing. Opt. Mater. Express, 2011.1(3):p.413-427.
    4. Schmidt, J.D., Numerical Simulation of Optical Wave Propagation With Examples in MATLAB. Vol. pm199.2010:SPIE.
    5. Peaceman, D.W.R.J., H. H., The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial and Applied Mathematics 1955.3(1):p.28-41.
    6. Haifeng, Z., et al.. Analysis of an MMI-Based Six-Port Circulator by Using 3-D Magneto-Optical Beam Propagation Method. Lightwave Technology, Journal of,2009.27(21):p.4660-4666.
    7. Kane, Y., Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. Antennas and Propagation, IEEE Transactions on,1966.14(3):p.302-307.
    8. Khanikaev, A.B. and M.J. Steel, Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices. Opt. Express,2009.17(7):p. 5265-5272.
    9. Zhang, W., et al., Enhancement of nonreciprocal phase shift by magneto-optical slot waveguide with a compensation wall. Applied Physics Letters,2011.98(17):p.171109-3.
    10. Ghosh, S., et al., Ce.YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding. Opt. Express,2012.20(2):p.1839-1848.
    11. Dotsch, H., et al., Applications of magneto-optical waveguides in integrated optics:review. J. Opt. Soc. Am. B,2005.22(1):p.240-253.
    1. Yokoi, H., Calculation of nonreciprocal phase shift in magneto-optic waveguides with Ce.YIG layer. Optical Materials,2008.31(2):p.189-192.
    2. Chen, R., et al., Enhancement of nonreciprocal phase shift by using nanoscale air gap. Opt. Lett.,2010.35(9):p.1335-1337.
    3. Zhang, W., et al., Enhancement of nonreciprocal phase shift by magneto-optical slot waveguide with a compensation wall. Applied Physics Letters,2011.98(17):p.171109-3.
    4. Zhou, J., et al., Design and fabrication of a compact multimode interference splitter with silicon photonic nanowires. Chin. Opt. Lett.,2009.7(11):p. 1041-1044.
    5. Al-hetar, A.M., et al., Thermo-optic multimode interference switches with air and silicon trenches. Optics Communications,2008.281(18):p.4653-4657.
    6. Nagai, S., et al., Multimode interference photonic switches (MIPS). Lightwave Technology, Journal of,2002.20(4):p.675-681.
    7. Shintaku, T., Integrated optical isolator based on efficient nonreciprocal radiation mode conversion. Applied Physics Letters,1998.73(14):p. 1946-1948.
    8. Zaets, W. and K. Ando, Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer. Photonics Technology Letters, IEEE,1999.11(8):p..1012-1014.
    9. Ando, K., T. Okoshi, and N. Koshizuka, Waveguide magneto-optic isolator fabricated by laser annealing. Applied Physics Letters,1988.53(1):p.4-6.
    10. Yokoi, H., et al., Interferometric Optical Isolator Employing a Nonreciprocal Phase Shift Operated in a Unidirectional Magnetic Field. Appl. Opt.,2004. 43(24):p.4745-4752.
    11. Soldano, L.B. and E.C.M. Pennings, Optical multi-mode interference devices based on self-imaging:principles and applications. Lightwave Technology, Journal of,1995.13(4):p.615-627.
    12. Zhuromskyy, O., et al., Analysis of nonreciprocal light propagation in multimode imaging devices. Optical and Quantum Electronics,2000.32(6-8): p.885-897.
    13. Wu, J., B. Shi, and M. Kong, Exponentially tapered multi-mode interference couplers. Chin. Opt. Lett.,2006.4(3):p.167-169.
    14. Wen-Hua, T. and C. Kai, Miniaturized dual-mode bandpass filter with harmonic control. Microwave and Wireless Components Letters, IEEE,2005. 15(12):p.838-840.
    15. Canciamilla, A., et al., Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass. Opt. Lett.,2011.36(20):p. 4002-4004.
    16. Spector, S.J., et al. Thermally tuned dual 20-channel ring resonator filter bank in SOI (silicon-on-insulator). in Lasers and Electro-Optics (CLEO),2011 Conference on.2011.
    17. Xia, F., et al., Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express,2007. 15(19):p.11934-11941.
    18. Shuxiang, D., J.-F. Li, and D. Viehland, Vortex magnetic field sensor based on ring-type magnetoelectric laminate. Applied Physics Letters,2004.85(12):p. 2307-2309.
    19. Heebner, J.E. and R.W. Boyd, Enhanced all-optical switching by use of a nonlinear fiber ring resonator. Opt. Lett.,1999.24(12):p.847-849.
    20. Ibrahim, T.A., et al., All-optical switching in a laterally coupled microring resonator by carrier injection. Photonics Technology Letters, IEEE,2003. 15(1):p.36-38.
    21. Yariv, A., Critical coupling and its control in optical waveguide-ring resonator systems. Photonics Technology Letters, IEEE,2002.14(4):p. 483-485.
    22. Bi, L., et al., On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat Photon,2011.5(12):p.758-762.
    23. Shoji, Y., et al., Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Applied Physics Letters,2008.92(7):p.071117-3.
    24. Yanik, M.F., et al., All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt. Lett.,2003.28(24):p. 2506-2508.
    25. John D. Joannopoulos, S.G.J., Joshua N. Winn, and Robert D. Meade, Photonic Crystals:Molding the Flow of Lightsecond edition.2 ed.2008, Princeton:Princeton University Press.
    26. Sugitatsu, A., T. Asano, and S. Noda, Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs. Applied Physics Letters,2004.84(26):p.5395-5397.
    27. Ishizaki, K., et al., Realization of three-dimensional guiding of photons in photonic crystals. Nat Photon,2013.7(2):p.133-137.
    28.曹庄琪,导波光学.1 ed.2009:科学出版社.
    29. Simova, E. and I. Golub, Polarization splitter/combiner in high index contrast Bragg reflector waveguides. Opt. Express,2003.11(25):p.3425-3430.
    30. Lianping, H., et al., Mode-Locked Laser Array Monolithically Integrated With MMI Combiner, SOA, and EA Modulator. Photonics Technology Letters, IEEE, 2011.23(15):p.1064-1066.
    31. Dotsch, H., et al., Applications of magneto-optical waveguides in integrated optics:review. J. Opt. Soc. Am. B,2005.22(1):p.240-253.
    32. Haifeng, Z., et al., Analysis of an MMI-Based Six-Port Circulator by Using 3-D Magneto-Optical Beam Propagation Method. Lightwave Technology. Journal of,2009.27(21):p.4660-4666.
    33. Wang, Z. and S. Fan, Optical circulators in two-dimensional magneto-optical photonic crystals. Opt. Lett.,2005.30(15):p.1989-1991.
    34.刘仕景,寡于磁光非互易效应的光波导器件研究.2008,浙江大学:杭州.
    35.姜国敏,磁光波导器件的若干基础研究.2011,浙江大学:杭州.
    36. Guomin, J., et al., Slab-Modulated Sidewall Bragg Gratings in Silicon-on-Insulator Ridge Waveguides. Photonics Technology Letters, IEEE, 2011.23(1):p.6-8.
    37. Keyvaninia, S., et al., Ultra-thin DVS-BCB adhesive bonding of Ⅲ-Ⅴ wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt. Mater. Express,2013.3(1):p.35-46.
    38. Ghosh, S., et al., Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding. Opt. Express,2012.20(2):p.1839-1848.
    1. Granqvist, C.G. and A. Hultaker, Transparent and conducting ITO films:new developments and applications. Thin Solid Films,2002.411(1):p.1-5.
    2. Hu, L., et al., Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano,2010.4(5):p.2955-2963.
    3. Hu, L., D.S. Hecht, and G. Griiner, Percolation in Transparent and Conducting Carbon Nanotube Networks. Nano Letters,2004.4(12):p. 2513-2517.
    4. Li, X., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science,2009.324(5932):p.1312-1314.
    5. Li, X., et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters,2009.9(12):p.4359-4363.
    6. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,2009.457(7230):p.706-710.
    7. Huang, P.Y., et al., Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature,2011.469(7330):p.389-392.
    8. Yazyev, O.V. and S.G. Louie, Electronic transport in polycrystalline graphene. Nat Mater,2010.9(10):p.806-809.
    9. Jeong, C., et al., Prospects for Nanowire-Doped Polycrystalline Graphene Films for Ultratransparent, Highly Conductive Electrodes. Nano Letters,2011. 11(11):p.5020-5025.
    10. Cao, Q. and J.A. Rogers, Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors:A Review of Fundamental and Applied Aspects. Advanced Materials,2009.21(1):p.29-53.
    11. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano,2010.5(8):p.574-578.
    12. Ferrari, A.C., et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters,2006.97(18):p.187401.
    13. Dresselhaus, M.S., et al., Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Letters,2010.10(3):p.751-758.
    14. Das, A., et al., Phonon renormalization in doped bilayer graphene. Physical Review B,2009.79(15):p.155417.
    15. Yu, Q., et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater, 2011.10(6):p.443-449.
    16. S.S.Cohen, VLSI Electronics. Vol.13.1986, London:Academic Press.
    17. Reeves, G.K. and H.B. Harrison, Obtaining the specific contact resistance from transmission line model measurements. Electron Device Letters, IEEE, 1982.3(5):p.111-113.
    18. Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science,2008.320(5881):p.1308-1308.
    19. Hsu, A., et al., Impact of Graphene Interface Quality on Contact Resistance and RF Device Performance. Electron Device Letters, IEEE,2011.32(8):p. 1008-1010.
    20. Nouchi, R., T. Saito, and K. Tanigaki, Observation of negative contact resistances in graphene field-effect transistors. Journal of Applied Physics, 2012.111(8):p.084314-084314-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700