用户名: 密码: 验证码:
异黄酮类化合物与表面活性剂之间的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂(Surfactant,可简写为Saa)素有“工业味精”之说。由表面活性剂分子形成的两亲分子有序组合体,在溶液中存在多种缔合结构,如不同形态的胶束、单分子膜、囊泡、微乳液、液晶等。这些缔合体系能增溶药物、保护药物不受外界因素干扰,并且能够控制药物的释放,所以其在药物载体中的应用逐渐受到人们关注。同时,药物分子及添加剂的存在会对表面活性剂缔合体系的物理化学性质产生影响;药物载体进入人体后,盐度、温度、pH等环境因素的变化也会对体系产生影响,这些变化又进而影响药物的稳定性、活性及其释放速率。正是由于表面活性剂缔合体系对药物分子具有一定的保护作用,才使得其在药物载体方面有较为广泛的应用,而只有了解两者相互作用的机理,才能更好地利用这类药物载体,提高药效,降低药物的副作用。本论文的工作正是基于上述研究背景以及发展趋势展开的,围绕不同性质的表面活性剂缔合体对异黄酮类药物分子(葛根素和染料木黄酮)物理化学性质的影响展开研究,探讨了异黄酮类化合物在表面活性剂存在条件下的抗氧化性能、解离度、分配系数、结合能力和溶解特性,并选择合适的表面活性剂作为载体实现了对药物分子的缓释与控释。论文的研究内容主要包括以下六个方面:
    
     1.葛根素与CTAB胶束之间的相互作用
     通过UV-vis,荧光光谱,量子力学计算以及核磁等测试手段,研究了葛根素(Puerarin)与CTAB(十六烷基三甲基溴化铵)胶束之间的相互作用。在与CTAB胶束的相互作用中,葛根素主要以分子中的B环部分增溶于胶束中。CTAB胶束为葛根素所提供的增溶微环境,有利于葛根素分子的酸碱平衡向去质子化的方向移动。核磁实验的结果表明随着葛根素浓度的增加,葛根素分子逐渐从CTAB胶束的内侧移向外侧,这种动态的增溶定位方式促进了葛根素与CTAB分子之间的静电作用,从而导致葛根素进一步的电离。此外热力学数据表明,葛根素能自发地定位于CTAB胶束中(ΔG < 0),它与CTAB胶束的结合是一个放热过程(ΔH <0)。ΔH (-13.90 kJ?mol-1)的数量级小于化学键的作用能(>100 kJ?mol-1),表明葛根素与CTAB胶束之间的作用为弱分子间相互作用。由于CTAB球状胶束的结构较为疏松,并且与CTAB棒状胶束相比能够提供较大的增溶空间,因此它能够结合更多的葛根素分子,而CTAB棒状胶束中由于分子排列的比较紧密,可供增溶的空间也较小,使得部分葛根素分子逐渐由胶束相转移至水相。因此CTAB分子聚集状态的改变对葛根素的酸碱平衡可产生不同的影响。
     2.葛根素与不同疏水基链长的季铵盐类表面活性剂的相互作用
     通过光谱法和等温滴定微量热等实验测试手段考察了季铵盐类表面活性剂疏水基链长的改变对葛根素与表面活性剂之间相互作用的影响。实验中所选的三种表面活性剂具有相同的季铵盐类极性头基和不同的疏水基链长,碳氢链链长n分别为12 (DTAB),14 (TTAB)和16 (CTAB)。实验结果表明表面活性剂疏水基链长的增加,有利于葛根素分子的酸碱电离平衡进一步向去质子化的方向移动。根据实验结果所得的曲线进行内插计算,求得了葛根素分子在不同胶束环境中所处的具体位置,其增溶位置的变化说明随着表面活性剂碳氢链链长的增加,葛根素分子逐渐向胶束内核方向移动,这也表明环境极性的增加有利于葛根素去质子化反应的进行。等温滴定微量热实验给出了葛根素与这三种胶束相互作用的强弱次序,结果表明表面活性剂疏水基的链长越长越易与葛根素分子发生相互作用。综合上述结果可知,即使药物载体微环境中极小因素的改变也会对包埋于其中的药物分子的性质产生显著影响。
     3.葛根素与卵磷脂囊泡的相互作用
     药物分子与囊泡相互作用的研究对于囊泡作为药物载体的设计和应用具有重要的指导意义,同时通过分子弱相互作用组装成的表面活性剂分子有序组合体具有生物相似性和相容性的实质,可作为生物膜模型、模拟酶、药物载体和仿生光化学能转化装置。本章中通过紫外可见光谱、红外光谱、Zeta电势和量子力学计算等方法研究了生理条件下(pH=7.4)葛根素与卵磷脂囊泡的相互作用。结果表明,在卵磷脂囊泡体系中,葛根素能与囊泡发生显著的相互作用。在此作用过程中,葛根素主要以分子中的B环部分定位于囊泡的疏水微区中,并且卵磷脂体系有利于葛根素分子的酸碱平衡向去质子化的方向移动。葛根素分子上的羟基与磷脂分子的极性头基在膜/水界面上形成的氢键结构增强了卵磷脂双层膜的规整性和稳定性,从而导致磷脂膜流动性的降低。以钙黄绿素为标记物研究卵磷脂囊泡的释放行为,包埋于囊泡内水相中的钙黄绿素,其泄漏百分率R随着葛根素浓度的增加而逐渐减小,表明葛根素与磷脂囊泡之间的相互作用,能够引起囊泡双层膜通透性的降低。与疏水作用相比较,氢键作用在葛根素与卵磷脂囊泡相互作用中起主导作用。
     4. Triton X-100对葛根素抗氧化能力的影响
     通过动力学的方法研究了葛根素在醇-水缓冲体系中清除自由基DPPH的能力,此外还讨论了非离子表面活性剂Triton X-100的加入对葛根素抗氧化剂能力的影响。实验结果表明,在醇-水缓冲体系中,由于葛根素存在着各级电离形式,因此葛根素的抗氧化能力与体系的pH值存在着依赖关系。通过比较二级反应的速率常数k2与葛根素各级电离形式摩尔分数之间的关系,求出了葛根素未电离形式、单电离形式以及二级电离形式所对应的反应速率常数k2,分别为0.42(H2Pu),1.07(HPu-)和0(Pu2-)M-1?S-1。此结果表明与葛根素的其它存在形式相比,单电离形式HPu-具有最强的抗氧化能力。通过量子力学方法计算,得到了葛根素分子中各个羟基的O-H键解离焓的大小,计算结果也证实了动力学实验的准确性和可靠性。表面活性剂Triton X-100对葛根素抗氧化能力的影响可以从葛根素在Triton X-100胶束体系中的分配比例和其在胶束中的增溶定位区域来进行解释。在Triton X-100浓度大于CMC的条件下,葛根素清除自由基DPPH的能力可以提高10倍之多。
     5.染料木黄酮与F127胶束的相互作用
     采用负染透射电子显微镜、动态光散射和光谱法探讨了染料木黄酮(Genstein)和嵌段共聚物Pluronic F127之间的相互作用。实验结果显示染料木黄酮的加入可以使得F127水体系呈现出兰色乳光,动态光散射和负染透射电子显微镜的实验结果显示:染料木黄酮在体系中的增溶可以大大增加F127胶束的尺寸,这表明染料木黄酮和Pluronic F127之间可以形成复合物。有趣的是该复合物的稳定性与溶液pH值之间存在明显的依赖关系。随着溶液pH值的增加,染料木黄酮与F127之间所形成的复合物逐渐解体。这是由于染料木黄酮和Pluronic F127之间存在着强烈的分子间氢键作用,在较高pH值条件下,染料木黄酮分子上的酚羟基逐渐发生电离,从而失去了与F127分子中EO链上的氧发生分子间氢键作用的位点,从而使得复合物的稳定性下降。这一现象的发现,为实现染料木黄酮在F127胶束体系中pH刺激响应的控制释放提供了可能。
     6.染料木黄酮与在壳聚糖胶束的相互作用
     以天然可生物降解的壳聚糖为原料,通过在壳聚糖2位氨基上引入疏水烷基链,在6位羟基上引入羧甲基,制得N-十二烷基-O-羧甲基壳聚糖(C12-OCMCS)的两亲性衍生物。分别用FTIR、1H NMR和元素分析等技术对其结构进行表征,并利用动态光散射、负染透射电子显微镜、等温滴定微量热和荧光探针的方法考察该种壳聚糖衍生物在水溶液中的聚集行为。结果表明:烷基取代度的不同和体系pH值变化均会对C12-OCMCS的聚集行为产生明显影响。通过改变壳聚糖骨架上烷基的取代度和溶液的pH值,可以获得不同尺寸和不同荷电性质的胶束,实现了染料木黄酮在该体系中pH刺激响应的控制释放。此外还发现实验中合成的C12-OCMCS对难溶性药物染料木黄酮具有优越的增溶能力。在一定条件下可使染料木黄酮在水中的溶解度提高近1000倍。
Flavonoids are natural compounds that are effective scavengers of active oxygen radicals such as hydroxyl and superoxide radicals. Moreover, recent investigations indicate that some of them show antitumor, antibacterial, and antiinflammatory activities. As we know, drug interactions with heterogeneous media (micelles, vesicles and biomembranes) induce changes in some physicochemical properties of drugs (solubility, spectroscopic and acid-base properties). Amphiphilic molecular organized assemblies with their hydrophilic surface and hydrophobic interior serve as a simple membrane mimetic system that allows a controlled study of the effect of different membrane parameters on the structural dynamism of ligand molecules. The behavior of flavonoids is significantly influenced by their physicochemical properties, particularly by their ionization degree expressed by the pKa value and partition coefficient. More specifically, the acid-base properties of the C-ring have been subject of a number of studies since protonation of substrates occurs during numerous biochemical processes and, in some cases, it is the key step of the entire process. These data are important for a thorough understanding of absorption transport and receptor binding of these drugs at the molecular level. In these papers, we find that, with molecular organized assemblies’versatility of providing abundant structural and microenvironmental options, flavonoids’solubility can be increased and their antioxidant capacity also be modulated.
     1. The interaction between puerarin and the CTAB micelles
     Puerarin, isolated from Pueraria lobota, is one of the most popular Chinese herbal medicines that is traditionally used to reduce febrile symptoms and is also used as an antiinebriation agent. In this section, electronic absorption spectra, fluorescence emission spectra, 1H NMR and ab initio quantum calculation are used to study the acid-base equilibrium of puerarin in CTAB (cetytrimethylammonium bromide) micelles with different microstructures and microenvironments. Experiments suggest the microenvironment provided by CTAB micelle can cause the acid-base equilibrium of puerarin to move to the deprotonation reaction. With the increasing puerarin concentration, the 1H NMR chemical shifts of a-H and a′-H in CTAB obviously decrease, this indicates the solubilization location of puerarin in CTAB moves from inner to the outer of CTAB micelles. This dynamic process of puerarin’s localization in CTAB micelles causes the acid–base equilibrium of puerarin to move to the deprotonation reaction, enhancing the interaction between puerarin and CTAB, and promoting the formation of the puerarin–CTAB associate. The binding of puerarin with CTAB micelle is a spontaneous (ΔG < 0) and endothermic process (ΔH < 0), and the hydrophobic and electrostatic force is the main driving force for its solubilization.
     2. Effect of chain length of cationic surfactant on the interactions between puerarin and micelles
     In this paper, the effect of varying hydrophobic chain lengths on the acid-base equilibrium of isoflavone, puerarin in cationic micelles has been studied. The interaction of puerarin with three types of micelles of identical positively charged head groups and varying tail lengths viz., DTAB, TTAB and CTAB shows that there is a shift in the apparent pKa in the direction that favors the displacement of acid-base equilibrium of puerarin towards the base form. The relative location depth of puerarin in micelles is determined according to their dielectric values (D) taking into account that lower D values correspond to deeper location. It is evident that the reduction of polarity favors the deprotonation of puerarin. The ITC measurements show that effect of puerarin on the thermodynamic properties of micellization is enhanced in the order CTAB>TTAB>DTAB and the results illustrate that puerarin has more affinity for micelles with greater chain length. It can be said that even small changes in membrane parameters like that of hydrophobic effect is important to determining which form of a molecule will be incorporated in it. From the our results, it can be seen that with the changes of membrane hydrophobicity the effect of puerarin on membrane-water interfaces enhances and puerarin can locate more internally in the region of membranes.
     3. Studies on molecular interactions between puerarin and PC liposomes
     Fluorescence emission spectra, FTIR spectra, zeta potential measurements, and ab initio quantum calculation are used to study the interaction between puerarin and membranes composed of egg phosphatidylcholine (PC) liposome. The hydrophobic interactions cause the puerarin molecule to partition into lipid bilayers with its B ring, and favor the displacement of acid-base equilibrium of puerarin towards the base form. Due to the hydrogen bond formation between the puerarin hydroxyl groups and polar groups of PC molecules on the water/membrane interface, puerarin can easily intercalate into the organized structure of phospholipids and modulate the membrane function. Our results reveal that the liposome membrane integrity is significantly higher compared with that of empty liposome. Through this kind of interaction, we suggest that the selected isoflavone help maintain membranes’integrity by forming the hydrogen binding network present on water/membrane interface. Finally, given the present results, it is reasonable to speculate that isoflavone-induce changes in membrane structure may also modulate the response of cells to signaling molecules.
     4. Study the radical scavenging ability of puerarin in Triton X-100 micelles
     The radical scavenging properties of puerarin are investigated in buffered hydroalcoholic media and Triton X-100 micellar solutions using the free-radical diphenylpicrylhydrazyl (DPPH?) method. The reactions, which follow the mixed second-order rate law, are investigated under pseudo-first-order condition by use of a large excess of puerarin. The rate constants (k2) observed for puerarin show notable pH dependence. These differences in reactivity of puerarin towards the oxidants at different acidity of the solution have been assumed to arise from the acid-base equilibrium of puerarin. The influence of acid-base equilibrium on bond dissociation energy for puerarin has also been investigated by means of DFT calculations. It has been concluded on the basis of these calculations that monoanionic form of puerarin is more powerful radical scavenger than the neutral molecule. When the reactions take place in Triton X-100 micelles, the radical scavenging properties of puerarin are enhanced. The results may be due to the special location of puerarin in Triton X-100 micelles. The results of the present kinetic study should provide a foundation for the interpretation of reactions of isoflavones with free radicals in more complex biological system and also provide a new method to increase the antioxidant activity of puerarin.
     5. Interaction between Genistein and Pluronic F127 micelles
     In this paper, the loading of an isoflavone molecule, Genistein (Gen), to Pluronic F127 at different pH values has been investigated using laser light scattering techniques, film analysis methods, UV-vis spectroscopy and transmission electron microscopy. The TEM images and the DSL studies indicate the formation of Gen/F127 complex induced by the solubilization of Gen in micelles, and the stability of the Gen/F127 complex is decreased with the increasing of pH values. At pH of 6.4, the turbidity of the Gen/F127 complex solution is significantly reduced in the present of 0.31 M ethylene glycol, indicating the existence of hydrogen bonds between Gen and F127 copolymer. Experiments on the controlled release demonstrate that Gen-loaded F127 micelles act as a drug carrier, giving slow release to the surrounding solution over a period of time. Rapid release can be triggered by enhancing the pH of the micelle solutions. Thus, these micelle systems offered potential for both controlled and pH-triggered drug.
     6.Interactions between gensitein and novel chitosan micelles
     Novel chitosan derivates with long alkyl groups as the hydrophobic moieties and carboxymethyl groups as the hydrophilic moieties have been synthesized. The chemical structure of N-lauryl-O-carboxymethyl chitosan (C12-OCMCS) is characterized by FTIR, 1H NMR and elemental analysis. The results of DLS, ITC, TEM and fluorescence studies show that the aggregation behaviors C12-OCMCS have different pH sensitivity compared with chitosan, and the degree of substitution of lauryl groups also can affects the aggregation of chitosan. This novel chitosan derivative can increase the solubility of genstein up to 1000 folds in water, and the releasing of genstein in various mediums are also studied. Rapid release can be triggered by changing the pH of the micelle solutions. It is concluded that the present C12-OCMCS could be potentially useful as the novel delivery carrier materials for insoluble drugs and can be applied in drug-controlled release system.
引文
(1) N. V. Churaev, V. D. Sobolev, Adv. Colloid Interfac. 2007, 134-135, 15-23.
    (2) D. K. Chattoraj, E. Halder, K. P. Das, A. Mitra, Adv. Colloid Interfac. 2006, 123-126, 151-161.
    (3) R. Zana, Langmuir 1996, 12, 1208-1211.
    (4) M. P. Pileni, J. Phys. Chem. 1993, 97, 6961-6973.
    (5) H. Kunieda, K. Ozawa, K. Aramaki, A. Nakano, C. Solans, Langmuir 1998, 14, 260-263.
    (6) M. Sagisaka, T. Fujii, Y. Ozaki, S. Yoda, Y. Takebayashi, Y. Kondo, N. Yoshino, H. Sakai, M. Abe, K. Otake, Langmuir 2004, 20, 2560-2566.
    (7) L. Zhou, X. Jiang, Y. Li, Z. Chen, X. Hu, Langmuir 2007, 23, 11404-11408.
    (8) S. Sun, P. R. Jaffe, Environ. Sci. Technol. 1996, 30, 2906-2913.
    (9) A. A. M. A. Omar, N. A. Abdel-Khalek, J. Chem. Eng. Data 1998, 43, 117-120.
    (10)赵国玺,物理化学学报1992, 8, 136-144.
    (11) S. Palma, R. H. Manzo, D. Allemandi, L. Fratoni, P. L. Nostro, Colloid Surface A 2003, 212, 163–173.
    (12) P. Li, L. Zhao, Int. J. Pharm. 2002, 249, 211-217.
    (13) Y. Y. Lyu, S. H. Yi, J. K. Shon, S. Chang, L. S. Pu, S. Y. Lee, J. E. Yie, K. Char, G. D. Stucky, J. M. Kim, J. Am. Chem. Soc. 2004, 126, 2310-2311.
    (14) X. Gou, F. Cheng, Y. Shi, L. Zhang, S. Peng, J. Chen, P. Shen, J. Am. Chem. Soc. 2006, 128, 7222-7229.
    (15) G. Reiss, Prog. Polym. Sci. 2003, 28, 1107-1170.
    (16) L. Bes, S. Angot, A. Limer, D. M. Haddleton, Macromolecules 2003, 36, 2493-2499.
    (17) J. L. Turner, M. L. Becker, X. Li, J. S. Taylor, K. L. Wooley, Soft Matter 2005, 1, 69-78.
    (18) B. Boulanger, A. M. Peck, J. L. Schnoor, K. C. Hornbuckle, Environ. Sci. Technol. 2005, 39, 74-79.
    (19) S. J. Limmer, T. L. Hubler, G. Z. Cao, J. Sol–Gel Sci. Technol. 2003, 26, 577-581.
    (20) C. T. Krsge, M. E. Leonowicz, W. J. Roth, J. C. Vartulli, J. S. Beck, Nature 1992, 359, 710-712.
    (21) I. Szleifer, D. Kramer, A. Ben-Shaul, W. M. Gelbart, S. A. Safran. J. Chem. Phys. 1990, 92, 6800-6817.
    (22) T. Hiranita, S. Nakamura, M. Kawachi, H. M. Courrier, T. F. Vandamme, M. P. Krafft, J. Colloid Interf. Sci. 2003, 265, 83-92.
    (23) M. P. Krafft, M. Goldmann, Curr. Opin. Colloid Interf. Sci. 2003, 8, 243-250.
    (24) B. Baroli, M. A. Lopez-Quintela, M. B. Delgado-Charro, A. M. Fadda, J. Blanco-Mendez, J. Control. Release 2000, 69, 209-218.
    (25) C. W. Chen, C. C. Ou-Yang, C. W. Yeh, Enzyme Microb. Technol. 2003, 33, 497-507.
    (26) D. M. F. Prazares, F. Lemos, F. A. P Garcia, J. M. S Cabral, Biotechnol. Bioeng. 1993, 42, 759-764.
    (27) R. K. Nagarale, G. S. Gohil, V. K. Shahi, Adv. Colloid Interfac. 2006, 119, 97-130.
    (28) G. Brezesinski, H. M?hwald, Adv. Colloid Interfac. 2003, 100-102, 563-584.
    (29) H. M?hwald, Ann. Rev. Phys. Chem. 1990, 41, 441-476.
    (30) D. Honig, D. Mobius, J. Phys. Chem. 1991, 95, 4590-4592.
    (31) R. A. Heller, Proc. Natl. Acad. Sci. 1997, 98, 2150-2155.
    (32)中国科学院, 2001科学发展报告,科学出版社, 2001, 2-15.
    (33) C. Giacomelli, V. Schmidt, R. Borsali, Macromolecules 2007, 40, 2148-2157.
    (34) S. Y. Liu, S. P. Armes, Angew. Chem. Int. Ed. 2002, 41, 1413-1416.
    (35) J. Wang, H. Q. Mao, K. W. Leong, J. Control Release 1998, 53, 183-193.
    (36) F. C. MacLaughlin, R. J. Mumper, J. Wang, J. Control. Release 1998, 53, 259-272.
    (37)平其能,郭建新,药学发展1998, 22, 69-74.
    (38) D. D. Ryn, D. N. Nam, Biotechnol. Prog. 2000, 16, 2-16
    (39) E. Regulier, B. L. Schneider, N. Deglon, Y. Beuzard, P. Aebischer Gene Ther. 1998, 5, 1014-1022.
    (40) C. B. Fox, R. A. Horton, J. M. Harris, Anal. Chem. 2006, 78, 4918-4924.
    (41) J. Ding, G. Liu, J. Phys. Chem. B 1998, 102, 6107-6113.
    (42) E. Soussan, C. Mille, M. Blanzat, P. Bordat, I. Rico-Lattes, Langmuir 2008, 24, 2326-2330.
    (43) Y. Lee, S. Y. Park, H. Mok, T. G. Park, Bioconjugate Chem. 2008, 19, 525-531.
    (44) Y. Liu, C. Jia, X. P. Hou, J. Chin. Pharm. Sci. 2001, 10, 94-97.
    (45) K. Emoto, Y. Nagasaki, M. Iijima, Colloid Surface B 2000, 18, 337-346.
    (46) K. Yoshiaki, Adv. Drug Deliv. Rev. 2001, 47, 1-2.
    (47) R. I. Latters, A. lattes, Colloid surface A 1997, 123/124, 37-48.
    (48) WO 87-037246. 1987.
    (49) WO 87-145699. 1987.
    (50) E. B. Rodrigues, Anst. J. Chem. 1990, 43, 1391.
    (51) Y. F. Zhang, Chem. J. Chin. Univ. 2001, 22, 912-915.
    (52) I. Lee, Phys. Rev. Lett. 1997, 79, 3294-3297.
    (53) H. Fujiwra, Y. Q. Yonezawa, Nature 1991, 351, 724-726.
    (54) E. K. Esbjorner, K. Oglecka, P. Lincoln, A. Graslund, B. Norden, Biochemistry 2007, 46, 13490-13504.
    (55) M. D. Chavanpatil, A. Khdair, B. Gerard, C. Bachmeier, D. W. Miller, M. P. Shekhar, J. Panyam, Mol. Pharm. 2007, 4, 730-738.
    (56) E. J. Danoff, X. Wang, S. H. Tung, N. A. Sinkov, A. M. Kemme, S. R. Raghavan, D. S. English, Langmuir 2007, 23, 8965-8971.
    (57) H. T. Tien, Ann. Sci. 1998, 14, 3-18.
    (58) E. Tronel, Chem. Phys. Lett. 1998, 285, 294-298.
    (59) K. Uosaki, J. Am. Chem. Soc. 1997, 119, 8367-8368.
    (60) H. T. Tien, S. H. Wurster, A. L. Ottova, Bioelectrochem. Bioenergy. 1997, 42, 77-79.
    (61) F. P. Zamborini, M. C. Leopold, J. F. Hicks, P. J.Kulesza, M. A. Malik, R. W. Murray, J. Am. Chem. Soc. 2002, 124, 8958-8964.
    (62) N. Krasteva, L. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, T. Vossmeyer, Nano Lett. 2002, 2, 551-555.
    (63) J. F. Rusling, A. E. F. Nassar, J. Am. Chem. Soc. 1993, 115, 11891-11897.
    (64) N. Hu, J. F. Rusling, Anal. Chem. 1992, 63, 2163-2168.
    (65) X. Chen, N. Hu, Y. Zeng, Langmuir 1999, 15, 7022-7030.
    (66) C. W. Jefford, V. D. L. Heros, Tetrahedron. Lett. 1980, 21, 913-916.
    (67) Y. J. Jeon, H. Kim, S. J. On, N. Selvapalam, D. H. Oh, I. Seo, C. S. Park, S. R. Jung, D. S. Koh, K. Kim, J. Am. Chem. Soc. 2004, 126, 15944-15945.
    (68) C. K. Ober, Science 2002, 296, 859-861.
    (69) P. Chirakul, V. H. Perez-Luna, H. Owen, G. P. Lopez, Langmuir 2002, 18, 4324-4330.
    (70)魏树社,张强,生物药剂学与药物动力学第二版,北京:北京大学医学出版社, 2004.
    (71) A. Kristl, Int. J. Pharm. 2000, 88, 109-110.
    (72) H. Kuaoka, C. Wada, R. Morli, Chem. Pharm. Bull. 1995, 43, 649-652.
    (73) M. Otsuka, Y. Matusda, Pharm. Tech. Jpn. 1994, 10, 977-980.
    (74) A. Burger, A. Lettenbichler, Pharmazie 1993, 48, 262-272.
    (75) T. Z. Yang, D. B.Chen, Q. Zhang, J. Beijing Med. Univ. 2001, 33, 238-242.
    (76) L. Bromberg, J. Control. Release 2008, 128, 99-112.
    (77) H. H. Wu, H. D. Jiang, Y. Z. Hu, Z. W. Chen, Q. Xia, Chin. Pharm. J. 2005, 40, 873-874.
    (78) J. Shi, Chin. J. Clin. Pharmacol. Ther. 2007, 12, 1099-1122.
    (79) M. Bernd, Chin. J. Clin. Pharmacol. Ther. 2007, 12, 1089-1098.
    (80) Y. P. Liu, N. L. Song, C. X. Liu, Chin. J. Clin. Pharmacol. Ther. 2004, 9, 868-871.
    (81) J. R. Li, F. B. Han, G. Zhang, W. T. Li, S. L. Ma, T. Beijing J. Technol. 2005, 25, 169-171.
    (82) J. W. Zhou, J. B. Li, Q. S. Yu, R. S. Lin, Comput. Appl. Chem. 2000, 17, 1.
    (83) L. X. Liu, S. Y. Zhu, Chin. Pharm. J. 2006, 41, 122-125.
    (84) D. B. Larsen, H. Parshad, K. Fredholt, C. Larsen, Int. J. Pharm. 2002, 232, 107-117.
    (85) K. Takács-Novák, K. Y. Tam, J. Pharmaceut. Biomed. Anal. 2000, 21, 1171-1182.
    (86) P. Gamache, E. Ryan, I. N. Acworth, J. Chromatogr. 1993, 635, 143-150.
    (87) L. Coward, N. Barnes, K. Setchell, S. Barnes, J. Agric. Food Chem. 1993, 41, 1961-1967
    (88) S. W. Lamson, M. S. Brignall, Altern. Med. Rev. 2000, 5, 196-208.
    (89) B. Havsteen, Biochem. Pharmacol. 1983, 32,1141-1148.
    (90) J. V. Fornica, W. Regelson, Fd. Chem. Toxic. 1995, 33, 1061-1080.
    (91) M. G. L. Hertog, P. C. H. Hollman, B. Van de Putte, J. Agric. Food Chem. 1993, 41, 1242-1246.
    (92) M. G. L. Hertog, P. C. H. Hollman, B. Van de Putte, J. Agric. Food Chem. 1992, 40, 2379-2383.
    (93) J. B. Harbome, C. A. Williams, Phytochemistry 2000, 55, 481-504.
    (94) E. Falkovskaia, P. K. Sengupta, M. Kasha, Chem. Phys. Lett. 1998, 297, 109-114.
    (95) Z. Guo, Q. Jin, G. Fan, Y. Duan, C. Qin, M. Wen, Anal. Chim. Acta. 2001, 436, 41-47.
    (96) D. K. Y. Yeung, S. W. S. Leung, Y. C. Xu, P. M. Vanhoutte, R. Y. K. Man, Eur. J. Pharmacol. 2006, 552, 105-111.
    (97) J. H. Zhu, X. X. Wang, J. Z. Chen, Acta. Pharmacol. Sin. 2004, 25, 1045-1051.
    (98) R. Cervellati, C. Renzulli, M. C. Guerra, E. Speroni, J. Agric. Food Chem. 2002, 50, 7504-7509.
    (99) E. Benlhabib, J. I. Baker, D.E. Keyler, A. K. Singh, J. Med. Food 2004, 7, 180-186.
    (100) L. Ding, Y. Yang, S. Han, Puerarin injection for perfusion for treating heart disease (in Chinese). CN1249178, 2004.
    (101) F. Shahidi, P. K. Janitha, P. D. Wanasundara, Crit. Rev. Food. Sci. Nutr. 1992, 32, 67-103.
    (102) A. Angelo, J. Crit. Rev. Food. Sci. Nutr. 1996, 36, 175-224.
    (103) M. C. Guerra, E. Speroni, M. Broccoli, M. Cangini, P. Pasini, A. Minghetti, N. Crespi-Perellino, M. Mirasoli, G. Cantelli-Forti, M. Paolini, Life Sci. 2000, 67, 2997-3006.
    (104) R. M. Han, Y. X. Tian, E. M. Becker, M. L. Andersen, J. P. Zhang, L. H. Skibsted, J. Agric. Food Chem. 2007, 55, 2384-2391.
    (105) D. Li, S. H. Park, J. H. Shim, H. S. Lee, S. Y. Tang, C. S. Park, Carbohydr. Res. 2004, 339, 2789-2797.
    (106) X. H. Meng, C. Ni, Y. M. Zhu, X. D. Fang, L. Zhu, Y. L. Shen, Y. Y. Chen, Cell Biol. Int. 2008, 32, 16-21.
    (107) J. L. Hwang, H. N. Hodis, A. Sevanian, J. Agric. Food Chem. 2001, 49, 308-314.
    (108) S. Barnes, H. Kim, V. Darley Usmar, R. Patel, J. Xu, B. Boersma, M. Luo, J. Nutr. 2000, 130, 656-657.
    (109) R. M. Han, Y. X.Tian, E. M. Becker, M. L. Andersen, J. P. Zhang, L. H. Skibsted, J. Agric. Food Chem. 2007, 55, 2384-2391.
    (110) H. C. Wei, J. Nutr. 2003, 133, 3811-3819.
    (111) M. Tsukayama, A. Oda, Y. Kawamura, M. Nishiuchi, K. Yamashita, Tetrahedron Lett. 2001, 42, 6163-6166.
    (112) A. Kirakosyan, P. Kaufman, R. L. Nelson, M. J. Kasperbauer, J. A. Duke, E. Seymour, S. C. Chang, S. Warber, S. Bolling, J. Agric. Food Chem. 2006, 54, 54-58.
    (113) J. Wang, N.D. Zhou, Z.Q. Zhu, J.Y. Huang, G.X. Li, Anal. Bioanal. Chem. 2007, 388, 1199-1205.
    (114) S. C. Ho, J. H. Liu, R.Y.Y. Wu, Biogerontology 2003, 4, 15-18.
    (115) Z. G. Yu, X. X Gao, H. X. Yuan, T. Liu, M. Y. Ma, X. Hi Chen, K. H. Bi, J. Pharmaceut. Biomed. Anal. 2007, 45, 327-336.
    (116) Z. L. Yu, W. J. Li, Cancer Lett. 2006, 238, 53-60.
    1. P. Gamache, E. Ryan, I. N. Acworth, J. Chromatogr. 1993, 635, 143-150.
    2. L. Coward, N. Barnes, K. Setchell, S. Barnes, J. Agric. Food Chem. 1993, 41, 1961-1967.
    3. S. W. Lamson, M. S. Brignall, Altern. Med. Rev. 2000, 5, 196-208.
    4. C. Morel, F. R. Stermitz, G. Tegos, K. Lewis, J. Agric. Food Chem. 2003, 51, 5677-5679.
    5. G. Duthie, A. Crozier, Curr. Opin. Lipidol. 2000, 11, 43-47.
    6. Y. Hanasaki, O. Shunjiro, S. Fukui, Free Radical Biol. Med. 1994, 16, 845-850.
    7. I. F. Cheng, K. Breen, Biometals 2000, 13, 77-83.
    8. Pharmacopoeia of the People’s Republic of China, Vol. 1, Chemical Industry Press, Beijing, 2000, pp. 273.
    9. J. H. Zhu, X. X. Wang, J. Z Chen, Acta Pharmacol. Sin. 2004, 25, 1045-1051.
    10. R. Cervellati, C. Renzulli, M. C. Guerra, E. Speroni, J. Agric. Food Chem. 2002, 50, 7504-750.
    11. L. Ding, Y. Yang, S. Han, Puerarin injection for perfusion for treating heart disease. CN1249178.
    12. E. Benlhabib, J. I. Baker, D. E. Keyler, A. K. Singh, J. Med. Food 2004, 7, 180-186.
    13. R. Sabaté, M. Gallardo, J. Estelrich, J. Colloid Interf. Sci. 2001, 233, 205-210.
    14. C. Alemán, J. Mol. Struc.-Theochem 2000, 528, 65-73.
    15. D. C. Zhu, Analytics of molecule luminescence. Fu Dan University Press Shanghai, 1985, p 7.
    16. J. Q. Xi, R. Guo, X. Guo, Colloid Polym. Sci. 2006, 284, 1139-1145.
    17. K. Venkataraman, Methods for determining the structure of flavonoids compounds, in: T. A. Geissman (Ed.), The chemistry of flavonoids compounds, MacMillan, New York, 1962.
    18. D. A. García, M. A. Perillo, Biochim. Biophy. Acta 1999, 1418, 221-231.
    19. F. Zsila, Z. Bikadi, M. Simonyi, Biochem. Pharmacol. 2003, 65, 447-456.
    20. B. Naseem, A. Sabri, A. Hasan, S. S. Shah. Colloid Surface B 2004, 35, 7-13.
    21. M. D. Engelmann, R. Hutcheson, I. F. Cheng, J. Agric. Food Chem. 2005, 53, 2953-2950.
    22. S. Schreier, S. V. P. Malheiros, E. D. Paula, Biochim. Biophy. Acta 2000, 1508, 210-234.
    23. O.?udina, K. K. Raji?, I. R. Bugar?i?, I. Jankovi?, Colloid Surface A 2005, 256,225-232.
    24. H. Z. Yuan, S. Zhao, G. Z. Cheng, L. Zhang, X. J. Miao, S. Z. Mao, J. Y. Yu, L. F. Shen, Y. R. Du, J. Phys. Chem. B 2001, 105, 4611-4615.
    25. M. Graetzel, K. Kalyanasundaram, J. K. Thomas, J. Am. Chem. Soc. 1974, 96, 7869-7874.
    26. X. Huang, W. Zhang, Z. Zhang, G. Xu, C. Li, Spectrochim. Acta Part A 1998, 54, 617-621.
    27. W. Y. Liu, R. Guo, J. Colloid Intef. Sci. 2005, 290, 564-573.
    28. G. Weber, Polarization of the Fluorescence of Solution, in Fluorescence and Phosphorescence Analysis, D. M. Hercules (Ed.). John Wiley and Sons: NewYork, 1966, 217.
    29. M. D. L. Guardia, E. P. Cardells, J. Sancenon, J. L. Carrion, E. Pramauro, Microchem. J. 1991, 44, 193-200.
    30. G. P. Song, R. Guo, Y. F. Yang, J. Yangzhou Technol. Coll. (Nat. Sci.) 1992, 12, 42-47.
    31. I. M. Cuccovia, E. H. Schroeter, P. M. Monteiro, H. Chaimovich, J. Org. Chem. 1978, 43, 2248-2252.
    32. R. Guo, W. Y. Liu, G. K. Fan, Acta Phys-Chim. Sin. 2001, 17, 1062-1066.
    1. F. Bernardi, N. D. Amelio, E. Gaggelli, E. Molteni, G. Valensin, J. Phys. Chem. B 2008, 112, 828-835.
    2. J. D. Dignam, X. Qu, J. Ren, J. B. Chaires, J. Phys. Chem. B 2007, 111, 11576-11584.
    3. M. A. Cheema, P. Taboada, S. Barbosa, E. Castro, M. Siddiq, V. Mosquera, Biomacromolecules 2007, 8, 2576-2585.
    4. A. Sidorowicz, C. Mora, S. Jab?onka, A. Pola, T. Modrzycka, D. Mosidza, K. Michalak, J. Mol. Srtuct. 2005, 744-747, 711-716.
    5. J. C. Lima, C. V. Giongo, A. Lopes, E. Melo, F. H. Quina, A. L. Macanita, J. Phys. Chem. A 2002, 106, 5851-5859.
    6. P. M. Saikia, M. Bora, R. K. Dutta, J. Colloid Interf. Sci. 2005, 285, 382-387.
    7. K. Kawakami, N. Oda, K. Miyoshi, T. Funaki, Y. Ida, Eur. J. Pharm. Sci. 2006, 28, 7-14.
    8. D. K. Y. Yeung, S. W. S. Leung, Y. C. Xu, P. M. Vanhoutte, R. Y. K. Man, Eur. J. Pharmacol. 2006, 552, 105-111.
    9. J. H. Zhu, X. X. Wang, J. Z. Chen, Acta. Pharmacol. Sin. 2004, 25, 1045-1051.
    10. R. Cervellati, C. Renzulli, M. C. Guerra, E. Speroni, J. Agric. Food Chem. 2002, 50, 7504-7509.
    11. E. Benlhabib, J. I. Baker, D. E. Keyler, A. K Singh, J. Med. Food 2004, 7, 180-186.
    12. J. P. Guo, Q. R. Sun, K. D. Yao, Q. Zhou, G. X. Chen, H. X. Guo, Chin. Pharm. J. 2001, 36, 745-746.
    13. D. C. Zhu, Analytics of molecule luminescence, Fu Dan University Press Shanghai, 1985, p 7.
    14. R. Sabaté, M. Gallardo, J. Estelrich, J. Colloid Interf. Sci. 2001, 233, 205-210.
    15. E. Feitosa, P. C. A. Barreleiro, Progr. Colloid Polym. Sci. 2000, 116, 33-36.
    16. S. Dai, K. C. Tam, Colloid Surface A 2003, 229, 157-168.
    17. F. Zsila, Z. Bikadi, M. Simonyi, Biochem. Pharmacol. 2003, 65, 447-456.
    18. B. Naseem, A. Sabri, A. Hasan, S. S. Shah. Colloid Surface B 2004, 35, 7-13.
    19. J. Q. Xi, R. Guo, J. Pharm. Biomed. Anal. 2007, 43, 111-118.
    20. M. D. Engelmann, R. Hutcheson, I. F. Cheng, J. Agric. Food Chem. 2005, 53, 2953-2960.
    21. R. Ranganathan, L. Tran, B. L. Bales, J. Phys. Chem. B 2000, 104, 2260-2264.
    22. H. Cang, D. D. Brace, M. D. Fayer, J. Phys. Chem. B 2001, 105, 10007-10015.
    23. M. J. Rosen, Surfactants and interfacial phenomena. 3rd ed., John Wiley and Sons, New York, 2004.
    24. F. W. Critchfield, J. A.Gibson, J. L. Hall, J. Am. Chem. Soc. 1953, 75, 1991-1992.
    25. D. A. Garacía, M. A. Perillo, Biochim. Biophys. Acta. 1997, 1324, 76-84.
    26. G., Cevc, D. March, In phospholipid bilayers, John Wiley and Sons, New York, 1987.
    27. W. Y. Liu, R. Guo, J. Colloid Interf. Sci. 2005, 290, 564-573.
    28. G. Weber, Polarization of the fluorescence of solution in fluorescence and phosphorescence analysis, D. M. Hercules (Ed.). John Wiley and Sons: New York, 1966.
    29. M. D. L. Guardia, E. P. Cardells, J. Sancenon, J. L. Carrion, E. Pramauro, Microchem. J. 1991, 44, 193-200.
    30. S. P. Stodghill, A. E. Smith, J. H. O’Haver, Langmuir 2004, 20, 11387-11392.
    1. H. Chen,R. C. MacDonald,S. Li, J. Am. Chem. Soc. 2006, 128, 13348-13349.
    2. M. V. Kitaeva,F. M. Menger,A. A. Yaroslavov,Langmuir 2004, 20, 6796-6799.
    3. J. M. Zhao, Y. Harel, M. T. McMahon, J. Zhou, A. D. Sherry, G. Sgouros, J. W. Bulte, P. C. van Zijl, J. Am. Chem. Soc. 2008, 130, 5178-5184.
    4. S. Kv, G. S. Devi, S. T. Mathew, Mol. Pharmaceutics 2008, 5, 92-97.
    5. D. D. Lasic,D. Papahadjopoulos, Curr. Opin. Solid. St. M. 1996, 1, 392-400.
    6. D. D. Lasic, J. Control. Release 1997, 48, 203-222.
    7. C. Bombelli, F. Faggioli, P. Luciani, G. Mancini, M. G. Sacco, J. Med. Chem. 2007, 50, 6274-6278.
    8. M. G. L. Hertog,P. C. H. Hollman,M. B. Katan, J. Agric. Food Chem. 1992, 40, 2379-2383.
    9. J. H. Zhu, X. X. Wang, J. Z. Chen, Acta. Pharmacol. Sin. 2004, 25, 1045-1051.
    10. R. Cervellati, C. Renzulli, M. C. Guerra, J. Agric. Food Chem. 2002, 50, 7504-7509.
    11. Y. X. Tian, R. M. Han, L. M. Fu, J. P. Zhang, L. H. Skibsted, J. Phys. Chem. B. 2008, 12, 2273-2280.
    12. R. M. Han, Y. X.Tian, E. M. Becker, M. L. Andersen, J. P. Zhang, L. H. Skibsted, J. Agric. Food Chem. 2007, 55, 2384-2391.
    13. E. Benlhabib, J. I. Baker, D. E. Keyler, J. Med. Food 2004, 7, 180-186.
    14.丁丽,杨轶,韩绍洲.葛根素输液制剂及其制备方法.中国专利, CN1249178, 2004.
    15. J. Q. Xi, R. Guo, Colloid Polym. Sci. 2006, 284, 1139-1145.
    16. A. S. Verkman, Biochim. Biophys. Acta 1980, 599, 370-379.
    17. V. C. Dijk, A. J. M. Driessen, K. Recourt, Biochem. Pharmacol. 2000, 60, 1593-1600.
    18. C. Alemán, J. Mol. Struc. Theochem. 2000, 528, 65-73.
    19. J. S. Wright, D. J. Carpenter, D. J. McKay, K. U. Ingold, J. Am. Chem. Soc. 1997, 119, 4245-4252.
    20. W. Y. Liu, R. Guo, J. Colloid Interf. Sci. 2005, 290, 564-573.
    21. Y. Yokouchi, T. Tsunoda, T, Imura, Colloids Surface B 2001, 20, 95-103.
    22. J. Sujatha,A. K. Mishra, J. Photoch. Photobio. A 1997, 104, 173-178.
    23. S. Yokoyama, T. Takeda, M. Abe, Colloid Surface B 2003, 27, 181-187.
    24. J. Q. Xi, R. Guo, J. Pharm. Biomed. Anal. 2007, 43, 111-118.
    25. M. D. Engelmann, R. Hutcheson, I. F. Cheng, J. Agric. Food Chem. 2005, 53, 2953-2960.
    26. Q. Gu, A. H. Zou, R. Guo, J. Colloid Interface Sci. 2003, 66, 442-447.
    27. P. Tammela, L. Laitinen, A. Galkin, Arch. Biochem. Biophys. 2004, 425, 193-199.
    28.薛奇,高分子结构研究中的光谱方法.北京:高等教育出版社, 1995.
    29. S. Hamai, H. Kokubun, Bull. Chem. Soc. Jpn. 1974, 47, 24-27.
    30. F. Ollila, K. Halling, P. Vuorela, Arch. Biochem. Biophys. 2002, 399, 103-108.
    1. F. Shahidi, P. K. Janitha, P. D. Wanasundara, Crit. Rev. Food. Sci. Nutr. 1992, 32, 67-103.
    2. A. Angelo, Crit. Rev. Food. Sci. Nutr. 1996, 36, 175-224.
    3. C. S. Yang, J. M. Landau, H. L. Newmark, Annu. Rev. Nutr. 2001, 21, 381-406.
    4. W. Bors, M. Saran, Free Radical Res. Commun. 1987, 2, 289-294.
    5. J. M. Hodgson, K. D. Croft, I. B. Puddey, T. A. Mori, L. J. Beilin, J. Nutr. Biochem. 1996, 7, 664-669.
    6. N. C. Cook, S. Samman, J. Nutr. Biochem. 1996, 7, 66-76.
    7. E. Middleton, C. Kandaswami, T. C. Theoharides, Pharmacol. Rev. 2000, 52, 673-751.
    8. A. Arora, M. G. Nair, G. M. Strasburg, Free Radical Biol. Med. 1998, 24, 1355-1363.
    9. The public health department of people’s republic of china: Pharmacopoeia of the people’s republic of china, Vol. 1, Chemical industry press, Beijing, 2000.
    10. M. C. Guerra, E. Speroni, M. Broccoli, M. Cangini, P. Pasini, A. Minghetti, N.Crespi-Perellino, M. Mirasoli, G. Cantelli-Forti, M. Paolini, Life Sci. 2000, 67, 2997-3006.
    11. R. M. Han, Y. X. Tian, E. M. Becker, M. L. Andersen, J. P. Zhang, L. H. Skibsted, J. Agric. Food Chem. 2007, 55, 2384-2391.
    12. D. Li, S. H. Park, J. H. Shim, H. S. Lee, S. Y. Tang, C. S. Park, Carbohydr. Res. 2004, 339, 2789-2797.
    13. C. Jacbosen, K. Schwarz, H. Stockmann, A. S. Meyer, J. Adler-Nissen, J. Agric. Food Chem. 1999, 47, 3601-3610.
    14. G. Gramlich, J. Zhang, W. M. Nau, J. Am. Soc. Chem. 2002, 124, 11252-11253.
    15. R. Amorati, G. F. Pedulli, L. Cabrini, L. Zambonin, L. Landi, J. Agric. Food Chem. 2006, 54, 2932-2937.
    16. A. Sanchez-Ferrer, F. Garcia-Carmona, Enzyme Microb. Technol. 1994, 16, 409-415.
    17. J. Zielonka, J. Gebicki, G. Grynkiewicz, Free Radical Biol. Med. 2003, 35, 958-965.
    18. J. S. Wright, D. J. Carpenter, D. J. McKay, K. U. Ingold, J. Am. Chem. Soc. 1997,119, 4245-4252.
    19. R. Bortolomeazzi, N. Sebastianutto, R. A. Toniolo Pizzariello Food Chem. 2007, 100, 1481-1489.
    20. V. Butkovi?, L. Klasinc, W. Bors, J. Agric. Food Chem. 2004, 52, 2816-2820.
    21. S. H. Xu, H. Hang, J. Instru. Anal. 2000, 19, 50-52.
    22. J. Q. Xi, R. Guo, J. Pharm. Biomed. Anal. 2007, 43, 111-118.
    23. H. Cao, W. X. Cheng, C. Lia, X. L. Pan, X. G. Xie, T .H. Lai, J. Mol. Struc. Theochem. 2005, 719, 177–183.
    24. P. Trouillas, P. Marsal, D. Siri, R. Lazzaroni, J. L. Duroux, Food Chem. 2006, 97, 679-688.
    25. G. Savelli, R. Germani, L. Brinchi, Reactivity control by aqueous self-assembling systems. In reactions and synthesis in surfactant systems; Texter, J., Ed.; Marcel-Dekker: New York, 2001.
    26. A. Sanchez-Ferrer, F. Garcia-Carmona, Enzyme Microb. Technol. 1994, 16, 409-415.
    27. Y. Moroi, Micelles: Theoretical and Applied Aspects; Plenumm Press: New York, 1992.
    28. J. Q. Xi, R. Guo, Int. J. Biol. Macromol. 2007, 40, 305-311.
    29. T. Q. Liu, R. Guo, Langmuir 2005, 21, 11034-11039.
    30. M. Graetzel, K. Kalyanasundaram, J. K. Thomas, J. Am. Chem. Soc. 1974, 96, 7869-7874.
    31. K. Ohara, W. Mizukami, A. Tokunaga, S. Nagaoka, H. Uno, K. Mukai, Bull. Chem. Soc. Jpn. 2005, 78, 615-621.
    1. A. Lavasanifar, J. Samuel, G. S. Kwon, Adv. Drug Delivery Rev. 2002, 54, 169-190.
    2. A. V. Kabanov, E. V. Batrakova, V. Y. Alakhov, J. Control. Release 2002, 82, 189-212.
    3. G. S. Kwon, T. Okano, Adv. Drug Delivery Rev. 1996, 21, 107-116.
    4. H. Maeda, Y. Matsumura. Cancer Res. 1986, 46, 6387-6392.
    5. G. S. Kwon, T. Okano. Adv. Drug Delivery Rev. 1996, 21, 107-116.
    6. S. C. Kim, D. W. Kim, M. H. Shim. J. Control. Release, 2001, 72, 191-202.
    7. Kakizawa Y, Kataoka K. Adv. Drug Deliv. Rev. 2002, 54, 203-222.
    8. M. C. Jones, J. C. Leroux, Eur. J. Pharm. Biopharm. 1999, 48, 101-111.
    9. K. Kataoka, H. Togawa, A. Harada, Macromolecules 1996, 29, 8556-8557.
    10. S. Katayose, K. Kataoka, J. Pharm. Sci. 1998, 87, 160-163.
    11. V. Weissig, K. R. Whiteman, V. P. Torchilin. Pharm. Res. 1998, 15, 1552-1556.
    12. H. Maeda, J. Wu, T. Sawa, J Control. Release 2000, 65, 271-284.
    13. A. Lavasanifar, J. Samuel, G. S. Kwon. Adv. Drug Deliv. Rev. 2002, 54, 169-190.
    14. N. Rapoport, N. Munshi, L. Pitina, Polym. Prepr. 1997, 38, 620-621.
    15. M. C. Jones, J. C. Leroux, Eur. J. Pharm. Biopharm. 1999, 48, 101-111.
    16.吴镭,平其能,药剂学发展与展望,北京:化学工业出版社,2002.
    17. P. Alexandridis, T. A. Hatton, Colloid Surface A 1995, 96, 41-46.
    18. M. J. Lawrence, Chem. Soc. Rev. 1994, 16, 417- 424.
    19. K. Holmberg, F. Tiberg, M. Malmsten, Colloid Surface A 1997, 123-24, 297-306.
    20. S. Barnes, H. Kim, V. Darley Usmar, R. Patel, J. Xu, B. Boersma, M. Luo, J. Nutr. 2000, 130, 656-657.
    21. J. L. Hwang, H. N. Hodis, A. Sevanian, J. Agric. Food Chem. 2001, 49, 308-314.
    22. M. Tsukayama, A. Oda, Y. Kawamura, M. Nishiuchi, K. Yamashita, Tetrahedron Lett. 2001, 42, 6163-6166.
    23. T. Akiyama, J. Ishida, S. Nakagawa, H. Ogawara, S. Watanabe, N. Itoh, M. Shibuya, Y. Fukami, J. Biol. Chem. 1987, 262, 5592-5595.
    24. J. Q. Xi, R. Guo, Colloid Polym. Sci. 2006, 284, 1139-1145.
    25. V. Crupi, R. Ficarra, M. Guardo, D. Majolino, R. Stancanelli, V. Venuti, J. Pharm. Biomed. Anal. 2007, 44, 110-117.
    26. L. Xing, W. L. Mattice, Langmuir 1998, 14, 4074-4080.
    27. W. Tong, L. Wang, M. J. Dsouza. Drug Dev. Ind. Pharm. 2003, 29, 745-756.
    28. J. Liu, Y. Xiao, C. Allen, J. Pharm. Sci. 2004, 93, 132-143.
    29.J. Zielonka, J. Gebicki, G. Grynkiewicz, Free Radical Bio. Med. 2003, 35, 958-965.
    30. J. Q. Xi, R. Guo, Int. J. Biol. Macromol. 2007, 40, 305-311.
    31. T. Q. Liu, R. Guo, Langmuir 2005, 21, 11034-11039.
    32. Y. Tian, P. Ravi, L. Bromberg, T. A. Hatton, K. C. Tam, Langmuir 2007, 23, 2638-2646.
    33. Y. Q. Tang, S. Q. Liu, S. P. Armes, N. C. Billingham. Biomacromolecules 2003, 4, 1636-1645.
    1. K. Kataoka, A. Harada, Y. Nagasaki, Adv. Drug Deliv. Rev. 2001, 47, 113-131.
    2. H. M. Aliabadi, D. R. Brocks, A. Lavasanifar, Biomaterials 2005, 26, 7251-7259.
    3. T. Nakanishi, S. Fukushima, K. Okamoto, J. Control. Release 2001, 74, 295-302.
    4. E. S. Lee, K. Na, Y. H. Bae, J. Control. Release 2005, 103, 405-418.
    5. K. Greish, T. Sawa, J. Fang, J. Control. Release 2004, 97, 219-230.
    6. W. Q. Niu, G. Q. Fu, J. L. Wu, Chem. J. Chinese Universities 2005, 26, 1369-1371.
    7. J. P. Xu, W. D. Chen, J. Ji, Chem. J. Chinese Universities 2007, 28, 394-396.
    8. Z. Zhang, S. S. Feng, Biomateria 2006, 27, 262-270.
    9. Y. Wang, C. M. Wang, B. Yang, Chem. J. Chinese Universities 2006, 27, 758-760.
    10. G. L. Zhang, J. B. Ma, Y. N. Wang, Chem. J. Chinese Universities 2006, 27, 767-770.
    11. F. Lin Teng Shee, J. Arul, S. Brunet, A. M. Mateescu, L. Bazinet, J. Agric. Food Chem. 2006, 54, 6760-6764.
    12. R. Belalia, S. Grelier, M. Benaissa, V. Coma, J. Agric. Food Chem. 2008, 56, 1582-1588.
    13. M. Lundin, L. Macakova, A. Dedinaite, P. Claesson, Langmuir 2008, 24, 3814-3827.
    14. K. Desai, K. Kit, J. Li, S. Zivanovic, Biomacromolecules 2008, 9, 1000-1006.
    15. Y. Wu, Y. Zheng, W. Yang, Carbohyd. Polym. 2005, 59, 165-171.
    16. J. Hyung Park, S. Kwon, M. Lee, Biomaterials 2006, 27, 119-126.
    17. C. Zhang, Y. Ding, Q. Ping, L. L. Yu, J. Agric. Food Chem. 2006, 54, 8409-8416.
    18. A. P. Zhu, W. J. Jin, L. H. Yuan, G. J. Yang, H. Yu, H. Wu, Carbohyd. Polym. 2007, 68, 693-700.
    19. A. Miwa, A. Ishibe, M. Nakano, Pharm. Res. 1998, 15, 1844-1850.
    20. A. Senso, P. Franco, L. Oliveros, Carbohydr. Res. 2000, 329, 367-376.
    21. B. Smitha, S. Sridhar, A. A. Khan, Eur. Polym. J. 2005, 41, 1859-1866.
    22. S. Sun, A. Wang, J. Hazard. Mater. B 2006, 131, 103-107.
    23. J. Holappa, T. Nevalainen, J. Savolainen, P. Soininen, M. Elomaa, R. Safin, S. Suvanto, T. Pakkanen, M. Masson, T. Loftsson, T. Jarvinen, Macromolecules 2004, 37, 2784-2789.
    24. C. Keyes-Baig, J. Duhamel, S. Y. Fung, J. Bezaire, P. Chen, J. Am. Chem. Soc. 2004, 126, 7522-7532.
    25. H. Siu, J. Duhamel, Macromolecules 2006, 39, 1144-1155.
    26. M. D. Reboiras, M. Kaszuba, M. T. Connah, M. N. Jones, Langmuir 2001, 17, 5314-5318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700