用户名: 密码: 验证码:
水溶性高分子的物化性质及其与羧酸盐表面活性剂的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多水溶性高分子因其具有生物相容性和环境友好性而成为当今最受重视的材料之一,同时水溶性高分子与表面活性剂混合体系可以相互作用形成复合物,其水溶液的许多特性常常优于任一纯组分体系的性质,所以水溶性高分子溶液及其与表面活性剂的混合体系在洗涤剂、涂料、化妆品、食物、医药、生物、纺织、感光材料、采矿以及油田开发等行业中已得到非常广泛的应用。因此,关于水溶性高分子的物化性质及其与表面活性剂相互作用的研究是多年来人们一直十分感兴趣的研究课题。
     近年来,很多课题组已经采用各种手段对聚氧乙烯(PEO)、聚乙二醇(PEG)、聚乙烯吡咯烷酮(PVP)、聚丙烯酰胺(PAM)等水溶性高分子的物化性质及其在溶液中与各种表面活性剂分子间的相互作用做了大量研究。本论文不仅通过表面张力、界面扩张流变、体相流变、稳态荧光和电镜等技术研究了本实验室合成的具有星状结构的嵌段聚醚AP432的物理化学性质及其与羧酸盐表面活性剂油酸钠(C_(17)H_(33)COONa)之间的相互作用,并与另一种非离子型水溶性聚合物PVP与C_(17)H_(33)COONa之间的相互作用进行了比较;而且,研究了阴离子型聚电解质部分水解聚丙烯酰胺(HPAM)和C_(17)H_(33)COONa、硬脂酸钠(C_(17)H_(35)COONa)之间的相互作用,讨论了混合体系的浓度依赖性和抗温抗盐性。研究内容共分为五部分:
     论文的第一部分概述了水溶性高分子和表面活性剂的基本性质和应用,阐明了水溶性高分子和表面活性剂相互作用的重要意义。
     论文的第二部分通过表面张力、荧光、光散射和透射电镜(TEM)等方法研究了本实验室合成的星状嵌段聚醚AP432的聚集行为,并对比研究了和线型嵌段聚醚L64的聚集行为。结果表明,AP432降低水的表面张力的效率和效能都高于L64,且AP432在空气/水界面上的饱和吸附量高于L64,而占据的分子最小截面积低于L64,说明AP432分子在空气/水界面上的排列要比L64分子紧密。荧光光谱实验结果表明,星状AP432的I_1/I_3值远低于线型L64,同时也证明了AP432胶束中的分子排列比L64要紧密。TEM观察表明,随着AP432浓度增加,形成的胶束尺寸逐渐增大;而L64随着浓度增加胶束尺寸几乎不变,倾向于形成新的胶束。
     论文的第三部分主要通过UV-vis-NIR吸收光谱、拉曼光谱、TEM和高分辨电镜(HRTEM)电镜等方法研究了星状嵌段聚醚AP432和线型嵌段聚醚F127及L64分散碳纳米管(CNTs)的能力,比较了它们之间由于分子结构和分子量不同对CNTs分散能力的差异。结果表明,星状聚醚AP432和线型聚醚F127都具有分散碳纳米管的能力,而和AP432具有相似EO%含量的另一种线型聚醚L64却不能分散碳纳米管。与F127相比,AP432在较低浓度下就表现出可观的分散CNTs的能力,这是由于星状的AP432分子比线型的F127分子能够产生更高空间位阻效应,同时由于AP432分子较F127具有较短的疏水链段,无法和多根碳管相互作用,所以它比线型F127分子更容易分散得到以单根状态存在的CNTs。当AP432和F127的浓度较高时,胶束的形成容易导致碳管的聚沉,这一现象在CNTs/AP432分散体系中更为明显,这是因为与F127相比,AP432具有较低的cmc值和较大的胶束尺寸。根据AP432和F127对碳纳米管不同的分散效果进一步验证了前人提出的聚醚分散碳纳米管的机制:即聚醚的疏水链PO基团与碳纳米管之间通过疏水作用吸附在碳纳米管的侧壁上,而两端亲水的EO基团伸展于水溶液中从而阻止碳纳米管的相互聚集。
     论文的第四部分共分为两小节。第一节主要通过表面张力、荧光、界面流变和TEM等方法比较研究了星状聚醚AP432和和L64与C_(17)H_(33)COONa之间的相互作用,分析了AP432和L64的分子结构和分子量对相互作用的影响。结果表明,AP432和L64都能够和C_(17)H_(33)COONa形成混合胶束,且在任意比例时混合体系的cmc和γ_(cmc)都介于两单一体系之间,TEM结果表明,在研究的浓度范围内AP432/C_(17)H_(33)COONa和L64/C_(17)H_(33)COONa复配体系都形成了球状胶束。扩张黏弹性研究表明,无论单一的AP432、L64或C_(17)H_(33)COONa水溶液还是AP432/C_(17)H_(33)COONa、L64/C_(17)H_(33)COONa混合体系,扩张模量均随扩张频率的增加而升高,且随嵌段聚醚浓度增加,体系的扩张模量都出现一最大值。第二节主要利用表面张力和Langmuir槽技术考察了PVP和C_(17)H_(33)COONa混合溶液在空气/水界面上的表面张力和扩张粘弹性质,并且研究了外加盐NaCl和NaI对C_(17)H_(33)COONa与PVP之间相互作用的影响。结果表明PVP存在时C_(17)H_(33)COONa溶液的表面张力等温线出现两个明显的转折点(T_1和T_2),且随着PVP浓度的增大,T_1基本不变,而T_2却逐渐增大。少量的NaCl和NaI能使C_(17)H_(33)COONa的表面活性大大增加,且NaCl降低C_(17)H_(33)COONa溶液CMC的程度略大于NaI。另外,NaCl和NaI存在时能促进C_(17)H_(33)COONa/PVP复合物的形成;且在NaCl存在时,同样量的PVP能够比在NaI存在时结合更多的C_(17)H_(33)COONa分子。
     论文的第五部分也分为两小节。第一节主要采用流变学方法研究了HPAM与C_(17)H_(33)COONa之间的相互作用,讨论了C_(17)H_(33)COONa和HPAM的浓度对混合体系流变性质的影响。结果表明,C_(17)H_(33)COONa浓度较低时HPAM/C_(17)H_(33)COONa混合体系的粘度出现一最大值,且随着HPAM溶液浓度增加,体系粘度达到最大值时所需要的C_(17)H_(33)COONa浓度逐渐增加。含有高浓度C_(17)H_(33)COONa时HPAM溶液的表观粘度随着C_(17)H_(33)COONa浓度增加呈单调下降的趋势,说明HPAM体系的网络结构逐渐减弱,且高浓度的HPAM体系需要更多的C_(17)H_(33)COONa来破坏HPAM的网络结构。第二节采用流变学方法研究了HPAM与C_(17)H_(35)COONa的相互作用,并考察了无机盐CaCl_2、温度和pH值对HPAM/C_(17)H_(35)COONa混合体系流变行为的影响。结果表明,CaCl_2的加入导致混合体系中HPAM分子极性基团的水化层压缩,大分子链塌陷,影响了HPAM和C_(17)H_(35)COONa之间的相互作用,使得体系的粘度降低。温度的升高使HPAM分子脱水、导致HPAM链间的缠绕减弱,分子间的摩擦力减小,从而结构破坏,使得HPAM分子塌陷,也导致了体系的粘度都下降。而溶液pH的变化使得HPAM和C_(17)H_(35)COONa分子的羧基基团离子化程度改变,也影响了HPAM和C_(17)H_(35)COONa之间的相互作用。
Nowadays,water-soluble polymer is one of the most important polymers because of their biocompatibility and environmently friendly.Moreover.surfactants and water-soluble polymers can interaction with each other to form complexs,they usually displays intriguing and fascinating features,which is different from polymer or surfactant.Thus,the studies on the physicochemical properties of water-soluble polymer and its interaction with surfactant have attracted increasing attention because of their complex behaviors and potential applications in detergents,paints,cosmetics. food,pharmaceuticals,coatings and enhanced oil recovery,etc.
     In the past decades,a number of studies have focused on the physicochemical properties of water-soluble neutral polymers like poly(ethylene oxide)(PEO). Polyethylene glycol(PEG),poly-(vinylpyrrolidone)(PVP)and polyacrylamine(PAM) and their interactions with surfactant.In this thesis,the interaction between a star-like amphiphilic block copolymer(denoted as AP432,which was synthesized via anionic polymerization in our lab)and carboxylate surfactant sodium oleate(C_(17)H_(33)COONa) is studied by surface tension,oscillating barrier,steady-state fluorescence measurements and transmission electron microscopy(TEM).etc.For comparision. parallel measurements have also been made on the interaction between PVP and sodium oleate.Moreover,in order to finish the programme of oil field,the interaction between HPAM and C_(17)H_(33)COONa.sodium stearate(C_(17)H_(35)COONa)were investigated by rheological measurements.The rheological properties of HPAM/C_(17)H_(33)COONa as a function of concentration and the heat and salt tolerances of HPAM/C_(17)H_(35)COONa system were studied.This thesis is divided into five parts:
     In the first section,the properties and applications of water-soluble polymers and surfactants and the study progress on the interaction between surfactant and water-soluble polymer are summarized.
     In the second section,the interface properties and the aggregation behavior of AP432,in aqueous solutions were investigated by surface tension,steady-state fluorescence,dynamic light scattering(DLS)and TEM.For comparison.a commercially available linear amphiphilic PEO-PPO-PEO block copolymer, Pluronics L64,which has a similar PEO fraction to AP432,was also studied.It is found that both the efficiency and the effectiveness of AP432 to lower the surface tension of water are higher than those of L64,theΓ_(max)value of AP432 is higher and the A_(min)value of AP432 is lower than that of L64.From fluorescence measurement,it can be conclude that the I_1/I_3 value of AP432 is much lower than that of L64 at high concentration,indicating that the micelles formed by AP432 are more compact than that of L64.TEM observations reveal that the molecules of AP432 are inclined to aggregate more compact and more molecules can aggegated to form one micelle when the concentration is increased.But for L64.once the micelles are formed,more molecules can form another micelle or combined together with increasing of L64 concentration.
     In the third section,the ability of dispersing carbon nanotubes(CNTs)in aqueous solutions by AP432 was investigated in detail by UV-vis-NIR,Raman spectra,TEM and HRTEM observations.For comparison,two commercially available linear amphiphilic PEO-PPO-PEO tri-block copolymers,Pluronics L64 and F127 were also studied.From the experiments,it was found that AP432 and F127 can get good CNTs dispersions stable for months while it was not the case for L64.The star-like AP432 with five branches could disperse CNTs efficiently at much lower concentration and has advantages to disperse CNTs in individuals or smaller bundles compared with the linear F127,although it has a smaller molecular weight and shorter terminal EO groups.Increasing concentration of AP432 or F127 would disperse more CNTs,but the flocculation of dispersed CNTs was observed at high copolymer concentrations,which may be related to the free micelles formed by AP432 or F127 around CNTs.At high concentration of AP432.free micelles began to form which caused a subsequent of the dispersed tubes.Under the HRTEM analysis and other observations used in our measurements,the mechanism of dispersing CNTs by different copolymers can be rationalized,that is.when mixed with CNTs,the PO groups would interact with the sidewall of CNTs while the EO groups extend into water and hence create a so-called steric repulsion.
     The fourth section divides into two parts.In part one,the interaction between AP432 and an anionic surfactantC_(17)H_(33)COONa in aqueous solutions was investigated by surface tension,oscillating barrier,steady-state fluorescence measurements and TEM.For comparison,the interaction between Pluronics L64 and C_(17)H_(33)COONa was also studied.AP432 and C_(17)H_(33)COONa could form mixed micelles in aqueous solutions and the cmc values were between that of individual AP432(L64)and C_(17)H_(33)COONa,as revealed by surface tension measurements.TEM observations also reveal that both AP432/C_(17)H_(33)COONa and L64/C_(17)H_(33)COONa systems form mixed spherical micelles.Moreover,the dilational modulus increases gradually with the increase of dilational frequency and the dilational moduli pass through the maximum values with increasing concentration not only for the pure AP432、L64 and C_(17)H_(33)COONa solutions,but also for AP432/C_(17)H_(33)COONa and L64/C_(17)H_(33)COONa systems.In second part,the study of the interaction between PVP and C_(17)H_(33)COONa in aqueous solution in the presence of sodium halide(NaX:X=Cl,I)is investigated by surface tension and the oscillating barriers measurements.It can be seen that two inflection points were observed when PVP is added,implying the interaction between C_(17)H_(33)COONa and PVP occurs.An increase of PVP concentration shifts T_2 values toward higher C_(17)H_(33)COONa concentration,indicating that more C_(17)H_(33)COONa molecules bind on the PVP chains to form PVP/C_(17)H_(33)COONa complexes.It also can be concluded that the addition of NaX can decrease the CMC of C_(17)H_(33)COONa solutions and NaCl has more effect than NaI on decreasing the CMC of C_(17)H_(33)COONa solutions.An addition of NaX also affects the binding cooperativity between C_(17)H_(33)COONa and PVP,and the higher NaX concentration corresponds to the higher binding cooperativity.Moreover,NaCl is more efficient than NaI in promoting the interaction between C_(17)H_(33)COONa and PVP.
     The fifth section also divides into two parts.In part one.the interaction between HPAM and C_(17)H_(33)COONa was investigated by rheological measurements and the influences of the concentrations of HPAM and C_(17)H_(33)COONa on the rheological properties of mixed systems were also studied.With increasing amount of C_(17)H_(33)COONa.the shear viscosity of the system first shows an increase due to interpolymer cross-linking through hydrogen bonding between C_(17)H_(33)COONa and HPAM.It can be noted that the concentration of C_(17)H_(33)COONa needed to get the maximum viscosity increases for the higher HPAM concentration systems.With further increase of C_(17)H_(33)COONa concentration,a drastic decrease of viscosity is induced by the breakdown of the cross-linking network due to an increasing of ionic strength,which would make the coil of HPAM shrink.Also,to lower the viscosity of the sample to similar extent,higher concentration of C_(17)H_(33)COONa is required to make HPAM molecule shrink for higher concentration of HPAM.In second part.the effects of CaCl_2,temperature and pH on the HPAM/C_(17)H_(35)COONa systems were investigated via steady-flow and oscillatory experiments.The results reveal that addition of CaCl_2 causes the double layer of HPAM to collapse,resulting in loss of structure and a corresponding loss of viscosity and shear thinning behavior.Moreover. the increasing of temperature can give rise to crimple of HPAM molecules due to its dehydrating and destruction of the associational structure.As a consequence,the viscosities of systems also decrease.With pH increasing,carboxyl groups of the HPAM and C_(17)H_(35)COONa molecular chains ionize much more and the resultant electrostatic repulsion cause stretching of the chains,resulting in the decrease of intra-molecular associations of HPAM and the increase of interaction between HPAM and C_(17)H_(35)COONa.
引文
[1]严瑞瑄.水溶性高分子,化学工业出版社,北京,1999.
    [2]黄汉光,杨坤鹏,罗平亚.泥浆工艺原理,北京:石油工业出版社:1982:46.
    [3]Podolsak,A.K.;Tiu,C.;Saeki.T.;Usui.H.Rheological properties and some applications for rhamsan and xanthan gum solutions,Polvm.International;1996:40:155-167.
    [4]Davidson,R.L.Handbook of Water-soluble Gums and Resins.2~(nd)Ed..McGraw-Hill Book Co..New York;1980:2-7.
    [5]McCormick,C.L.;Bock.J.;Schulz,D.N.Water-Soluble Polymer.In:Mark.H.F.;Bikalas.N.M.;Overberger,C.G.;Menges.G.Encyclopedia of Polymer Science and Engineering,2~(nd)ed..John Wile),& Sons,New York:1989:17:730-733.
    [6]张志庆,多枝状嵌段聚醚高分子表面活性剂的合成、表征与应用.山东大学博士学位论文,2005:88-98.
    [7]Alexandridis,P.;Hatton,T.A.Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)block copolymer surfactants in aqueous solutions and at interfaces:thermodynamics.structure,dynamics,and modeling,Colloids and Surfaces A:1995:96:1-46.
    [8]Zheng,L.;Guo,C.;Wang,J.;Liang,X.;Chen.S.;Ma,J.;Yang.B.;Jiang.Y.;Liu.H.Effect of ionic liquids on the aggregation behavior of PEO-PPO-PEO block copolymers in aqueous solution,J.Phys.Chem.B.;2007;111(6):1327-1333.
    [9]Zipfel,J.;Lindner,P.;Tsianou,M.;Alexandridis.P.;Richtering,W.Shear-induced formation of multilamellar vesicles("onions")in block copolymers.Langmuir;1999;15(8):2599-2602.
    [10]Wang,R.;Knoll,H.;Rittig,F.;Karger,J.Fluorescence probe and pulsed field gadient NMR study of aqueous solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)block copolymer F88,Langmuir;2001;17(24):7464-7467.
    [11]Bryskhe,K.;Jansson,J.;Topgaard.D.;Schillen,K.:Olsson,U.Spontaneous vesicle formation in a block copolymer system,J.Phys.Chem.B:2004:108(28):9710-3719.
    [12]Guo,C.;Wang,J.;Liu,H.;Chen,J.Hydration and conformation of temperature-dependent micellization of PEO-PPO-PEO block copolymers in aqueous solutions bv FT-Raman,Langmuir:1999;15(8);2703-2708.
    [13]Zana,R.;Marques,C.;Johner,A.Dynamics of micelles of the triblock copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)in aqueous solution.Adv.Colloid Interface Sci.;2006;123-126:345-351.
    [14]Guzman,M.;Garcia,F.F.;Molpeceres,J.;Aberturas,M.R.Poly oxyethylene-poly oxypropylene block copolymer gels as sustained release vehicles for subcutaneous drug administration,International J.Pharmaceutics;1992;80:119-127.
    [15]Hurter,P.N.;Haton,T.A.Solubilization of polycylic aromatic hydrocarbons by poly(ethylene oxide-propylene oxide)block copolymer micelles:Effects of polymer structure,Langmuir;1992;8:1291-1299.
    [16]Murhammer,D.W.;Goochee,C.F.Structural features of nonionic polyglycol polymer molecules responsible for the protective effect in sparged animal gell bioreactors.Biotechnol.Prog.;1990;6:142-148.
    [17]Matsuyama,K.;Enjoji,T.;Mishima.K.;Oka,S.;Uchiyama,H.;Ide,M.;Nagatani.M.Partition coefficients of amylase,maltose and starch in aqueous two-phase systems containing polyoxyethylene-polyoxypropylene block copolymer.Solvent Extraction Research and Development.Japan;1997;4:80-88.
    [18]Johansson,H.O.;Karlstrom,G.;Tjerneld,F.Phase partitioning of peptides in water solutions of temperature-induced ethylene oxide and propylene oxide random copolymers,Biochim.Biophys.Acta.;1997;1335:315-325.
    [19]Mortensen,K.;Batsberg,W.;Hvidt.S.Effects of PEO-PPO Diblock Impurities on the Cubic Structure of Aqueous PEO-PPO-PEO Pluronics Micelles:fcc and bcc Ordered Structures in F127.Macromolecules;2008;41(5):1720-1727.
    [20]Ma,J.H.;Guo,C.;Tang,Y.L.;Liu.H.Z.~1H NMR spectroscopic investigations on the micellization and gelation of PEO-PPO-PEO block copolymers in aqueous solutions,Langmuir;2007;23(19):9596-9605.
    [21]Ma,J.H.;Guo,C.;Tang,Y.L.;Wang,J.;Zheng,L.;Liang,X.F.;Chen,S.;Liu.H.Z.Salt-induced micellization of a triblock copolymer in aqueous solution:A ~1H nuclear magnetic resonance spectroscopy study,Langmuir:2007;23(6):3075-3083.
    [22]Alexandridis,P.;Holzwarth,J.F.;Haton,T.A.A correlation of the estimation of critical micellization concentration and temperature of polyols in aqueoussolutions,J.Am.Oil.Chem.Soc.:1995;72:823-826.
    [23]Alexandridis,P.;Holzwarth,J.F.;Hatton,T.A.Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)triblock copolymers in aqueous solutions:Thermodynamics of copolymer association.MacromolecuIes;1994;27:2414-2425.
    [24]Alexandridis,P.;Nivaggioli,T.;Haton,T.A.Temperature effects on structural properties of Pluronic P104 and F108 PEG-PPO-PEO block copolymer solutions,Langmuir;1995:11:1468-1476.
    [25]Alexandridis,P.;Athanassiou,V.;Haton.T.A.Pluronic P105 PEO-PPO-PEO block copolymer in aqueous urea solutions:Micelle formation,structure,and microenviromnennt.Langmuir;1995;11:2442-2450.
    [26]Nivaggioli,T.;Tsao,B.:Alexandridis,P.;Haton.T.A.Microviscosity in Pluronic and Tetronic poly(ethylene oxide)-poly(propylene oxide)block copolymer micelles.Langmuir;1995:11:119-126
    [27]Alexandridis,P.;Athanassiou,V.;Fukuda,S.;Haton,T.A.Surface activity of poly(ethylene oxide)-block-poly(propylene)-block-poly(ethylene oxide)copolymers,Langmuir;1994;10:2604-2612.
    [28]Nolan,S.L.;Philips,R.J.;Cotts,P.M.;Dungan,S.R.Light scattering study on the effect of polymer composition on the structural properties of PEO-PPO-PEO micelles,J.Colloid Interface Sci.;1997;191:291-302.
    [29]Mortensen,K.;Brown,W.Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)triblock copolymers in aqueous solution.The influence of relative block size.Macromolecules;1993;26:4128-4135.
    [30]Mortensen,K.;Pedersen,J.S.Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)triblock copolymer in aqueous solution. Macromolecules;1993:26:805-812.
    [31]Jain,N.J.;Aswal.V.K.:Goyal.P.S.:Bahadur,P.Micellar structure of an ethvlene oxide-propylene oxide block colymer:A small angle scattering study.J.Phys.Chem.B;1998;102:8452-8458.
    [32]Goldmints,I.;von Gottberg,F.K.;Smith.K.S.;Hatton.T.A.Small-angle neutron scattering study of PEO-PPO-PEO micelle structure in the unimer-to-micelle transition region,Langmuir;1997;13:3659-3664.
    [33]Goldmints,I.;Yu,G.;Booth,C.;Smith,K.A.;Hatton,T.A.Structure of(deuterated PEO)-PPO-(deuterated PEO)block copolymer micelles as determined by small angle neutron scattering,Langmuir;1999;15:1651-1656.
    [34]Yang,L.;Alexandridis,P.;Steytler.D.C.:Kositza.M.J.;Holzwarth,J.F.Small-angle neutron scattering investigation of the temperature-dependent aggregation behavior of the block copolymer Pluronic L64 in aqueous solution,Langmuir;2000;16:8555-856.
    [35]Guo,C.;Liu,H.Z.;Wang,J.;Chen,J.Y.Conformational structure of triblock copolymers by FTRaman and FTIR spectroscopy.J.Colloid Interface Sci.;1999;209:368-373.
    [36]Guo,C.;Liu,H.Z.;Chen,J.Y.A fouler transform infrared study of the phase transition in aqueous solutions of ethylene oxide-propylene oxide triblock copolymer.Colloid Polvm.Sci.:1999;277.376-381.
    [37]Guo.C.;Liu,H.Z.;Chen,J.Y.A fourier transform infrared study on water-induced reverse micelle formation of block copoly(oxyethylene-oxypropylene-oxyethylene)in organic solvent.Colloid Surf A.;2000;175:193-202.
    [38]Hurter,P.N.;Scheutjens,J.M.H.M.;Haton,T.A.Molecular modeling of micelle formation and solubilization in block copolymer micelles.1.A self-consistent mean-field lattice theory.Macromolecules;1993;26:5592-5601.
    [39]Hurter,P.N.;Scheutjens.J.M.H.M.:Hatton,T.A.Molecular modeling of micelle formation and solubilization in block copolymer micelles.2.Latice theory for monomers with internal degree of freedom,Macromolecules;1993;26:5030-5040.
    [40]Svensson,M.;Alexandridis,P.;Linse,P.Modeling of the phase behavior in ternary triblock copolymer/water/oil systems,Macromolecules;1999;32:5435-5443.
    [41]Noolandi,J.;Shi,A.;Linse,P.Theory of phase behavior of poly(oxyethylene)poly(oxypropylene)-poly(oxyethylene)triblock copolymers in aqueous solutions,Macromolecules;1996;29:5907-5919.
    [42]Linse,P.Micellization of poly(ethylene oxide)-poly(propylene oxide)block copolymer in aqueous solution:Effect of polymer impurities,Macromolecules;1994;27:2685-2693.
    [43]Linse,P.;Malmsten,M.Temperature-dependent micellization in aqueous block copolymer solutions,Macromolecules;1992;25:5434-5439.
    [44]van Vlimmeren,B.A.C.:Maurits,N.M.:Zvelindovsky,A.V.:Sevink.G.J.A.:Fraaije.J.G.E.M.Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer suffactants(ethylene oxide)_(13)(propylene oxide)_(30)(ethylene oxide)_(13)and (propylene oxide)_(19)(ethylene oxide)_(33)(propylene oxide)_(19).Application of dynamic mean-field density functional theory.Macromoleeules;1999;32:646-656.
    [45]Dormidontova,E.E.;Lodge,T.P.The order-disorder transition and the disorder micelle regime in sphere-forming block copolymer melts.Macromolecules;2001;34:9143-9156.
    [46]Zhang,X.Q.;Yuan,S.L.;Wu.J.Mesoscopic simulation on phase behavior of ternary copolymeric solution in the absence and presence of shear.Macromolecules:2006:39:6631-6642.
    [47]Cao.X.R.;Xu,G.Y.;Li,Y.M.;Zhang.Z.Q.Aggregation of poly(ethylene oxide)-poly(propylene oxide)block copolymers in aqueous solution:DPD simulation study,J.Phys.Chem.A;2005;109:10418-10423.
    [48]曹晓荣,水溶性高分子表面活性剂聚集行为.山东大学博士学位论文.2007.43-58.
    [49]Dou,H.J.;Jiang,M:Peng,H.S.;Chen,D.Y.;Hong.Y.;pH-dependent self-assembly:Micellization and micelle-hollow-sphere transition of cellulose-based copolymers.Angew.Chem.Int.Ed.;2003;42:1516-1519.
    [50]Li,Z.B.;Kesselman,E.;Yalmon,Y.;Hilllmyer,M.A.;Lodge.T.P.;Multicompartment micelles from ABC miktoarm stars in water,Science;2004;306:98-101.
    [51]Ma,N.;Wang.Y.P.;Wang,Z.Q.;Zhang.X.:Polymer micelles as building blocks for the incorporation of azobenzene:enhancing the photochromic properties in layer-by-layer films,Langmuir;2006;22:3906-3909.
    [52]余承忠,范杰,赵东元.利用嵌段共聚物及无机盐合成高质量的立方相、大孔径介孔氧化硅球,化学学报;2002,8:1357-1360.
    [53]Zhao,D.Y.;Huo,Q.S.;Feng,J.L.;Chmelka,B.F.;Stucky,G.D.;Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered,hydrothermally stable,mesoporous silica structures,J.Am.Chem.Soc.;1998;120(24):6024-6036.
    [54]Yasuhiro,S.;Kaneda,Y.M.;Terasaki,O.;Zhao,D.Y.;Kim,J.M.;Stucky,G.;Shin,H,J.;Ryoo,R.;Direct imaging of the pores and cages of three-dimensional mesoporous materials.Nature;2000;408:449-453.
    [55]Yu,S.H.;Tauer,K.;Antonietti,M.;Tectonic arrangement of BaCO_3 nanocrystals into helices induced by a racemic block copolymer.Nature Materials;2005;5:51-55.
    [56]Zhao,D.;Feng,J.;Huo.Q.;Melosh,N.;Fredrickson,G.H.;Chmelka,B.F.;Stucky,G.D.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science;1998;279:548-552.
    [57]Zhao,D.;Huo,Q.;Feng,J.;Chmelka.B.F.;Stucky.G.D.Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered,hydrothermally stable.mesoporous silica structures,J.Am.Chem.Soc.;1998;120:6024-6036.
    [58]Ryan.K.M.;Cloeman,N.R.B.;Lyons,D.M.;Hanrahan,J.P.;Spalding,T.R.;Morns.M.A.;Steytler,D.C.;Heenan,R.K.;Holmes,J.D.Control of pore morphology in mesoporous silicas synthesized from triblock copolymer templates,Langnmir;2002;18:4996-5001.
    [59]Kipkemboi,P.;Fogden,A.;Alfredsson,V.;Flodstr6m.K.Triblock copolymers as templates in mesoporous silica formation:structural dependence on polymer chain length and synthesis temperature.Langmuir:2001:17:5398-5402.
    [60]Feng,P.;Bu,X.;Pine,D.J.Control of pore sizes in mesoporous silica templated by liquid crystals in block copolymer-cosurfactant-water systems,Langmuir:2000:16:5304-5310.
    [61]Forster,S.;Antonieti,M.Amphiphilic block copolymers in structure-controlled nanomaterial hybrids,Adv.Mater.;1998;10(3):195-217.
    [62]Huang,Y.;Cai,H.Q.;Yu,T.;Sun,X.L.;Tu,B.;Zhao,D.Y.Highly ordered mesoporous carbonaceous frameworks from a template of a mixed amphiphilic triblock-copolymer system of PEO-PPO-PEO and reverse PPO-PEO-PPO,Chem.Asian J.;2007;2:1282-1289.
    [63]Alexandridis,P.;Olsson,U.;Lindman,B.A record nine different phases(four cubic,two hexagonal,and one lamellar lyotropie liquid crystalline and two micellar solutions)in a ternary isothermal system of an amphiphilic block copolymer and selective sohents(water and oil),Langmuir;1998;14(10):2627-2638.
    [64]Wang,L.;Chert,X.;Zhan,J.;Sui.Z.;Zhao,J.;Sun Z.Controllable morphology formation of gold nano- and micro-plates in amphiphilic block copolymer-based liquid crystalline phase,Chem.Lett.;2004;33(6):720-721.
    [65]Wang.L.;Chert.X.;Zhan,J.;Chai,Y;Yang,C.;Xu.L.;Zhuang,W.;Jing,B.Synthesis of gold nano- and microplates in hexagonal liquid crystals.J.Phvs Chem.B;2005;109:3189-3194.
    [66]Wang.F.;Xu,G.Y.;Zhang,Z.Q.;Xin,X.Synthesis of monodisperse CdS nano-spheres in inverse microemulsion system formed by dendritic polyether copolymer,Eur.J.Inorg.Chem.;2006;1:109-114.
    [67]Moore,V.C.;Strano,M.S.;Haroz,E.H.;Hauge,R.H.;Smalley,R.E.Individually suspended single-walled carbon nanotubes in various surfactants.Nano Lett;2003;3:1379-1382.
    [68]Szleifer,I.;Yerushalmi-Rozen,R.Polymers and carbon nanotubes-dimensionality,interactions and nanotechnology,Polymer;2005;46:7803-7818.
    [69]Shvartzman-Cohen,R.;Nativ-Roth,E.;Baskaran,E.;Levi-Kalisman,Y.;Szleifer,I.;Yerushalmi-Rozen,R.Selective dispersion of single-walled carbon nanotubes in the presence of
    polymers:the role of molecular and colloidal len~h scales,J Am Chem Soc:2004:126:
    14850-14857.
    [70]Bandyopadbyaya,R.:Natix.-Roth.E.:Regev.O.:Yerushalmi-Rozen.R.Stabilization of
    individual carbon nanotubes in aqueous solutions.Nano Lett:2002:2:25-28.
    [71]Shvartzman-Cohen,R.;Levi-Kalisman,Y.:Nativ-Roth.E.;Yerushalmi-Rozen.R.Generic
    approach for dispersing single-walled carbon nanotubes:The stren~h of a weak interaction.
    Langmuir;21104;20:6085-6088.
    [72]Zhang,Z.Q.:Xu,G.Y.:Wang.E:Dong,S.L.:Li.Y.M.:Characterization and
    demulsification of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide)
    copolymers,J.Colloid Interface Sci.:2004:277:464-470.
    [73]Zhang,Z.Q.;Xu.G.Y.:Wang.F.:Dong.S.L.:Chen,Y.J.Demulsification by amphiphilic
    dendrimer copolymers,J.Colloid lntelface Sci.:2005:282:1-4.
    [74]Makhaeva,E.E.;Tenhu,H.:Khokhlov.A.R.Behavior of poly(N-vinyl
    caprolactam-co-methacrylic acid)macromolecules in aqueous solution:interplay between
    coulombic and hydrophobic interaction.Macromolecules:2002:35:1870-1876.
    [75]Stahl,G A.;Schulz.D,N.Water-soluble polymers for petroleum recoveR.,ACS,meeting.
    Anaheim,Calif.:1986;83-85.
    
    [76]林梅钦,董朝霞,宋锦宏,唐亚林.李明远,吴肇亮.部分水解聚丙烯酰胺柠檬酸铝体系临界交联浓度的研究,高分子学报,2003,6:816-820.
    [77]Nakashima.K.;Bahadur.R Aggregation of water-soluble block copolymers in aqueous solutions:Recent trends,Adv.Colloid lnterface Sci.;2006;123-126:75-96.
    [78]Zhang.L.;Xu,X.J.;Zhang,M.;Chen.J.H.;Meng,D,Y.;Ren.L.W.;lijima,H.Molecular size and aggregation behavior of erwinia gum in aqueous solution.J.Apply Polym.Sci.;2000:75:1083-1088.
    [79]Bo,S.;Milas,M.;Rinaudo.M.Behaviour of scleroglucan in aqueous solution containing sodium hydroxide,Int.J.Biol.Macromoi.;1987;9:153-157.
    [80]王德润,于宪潮,赵天键.黄原胶分子形貌的电镜研究.高分子学报,1990.3:222-225.
    [81]Hu,Y.X.;Scott Armentrout.R.;McCormick,C.L.Water soluble polymers.75.responsive microdomains in labeled n-octylamide-substituted poly(sodium maleate-alt-ethyl vinyl ether):Transient fluorescence and time-resolved fluorescence anisotropy studies.Marcromolecules;1997;30:3538-3546.
    [82]吕泽,疏水缔合型丙烯酸胺共聚物的制备及溶液和流变性能研究.硕士论文,长春,中国科学院长春应用化学研究所,1995.
    [83]Gao,J.;Wu,C.The "coil-to-globule" transition of poly(n-isopropylacrylamide)on the surface of a surfactant-free polystyrene nanoparticle,Macromolecules;1997;30:6873-6876.
    [84]吴奇,汪晓辉.高均,激光光散射研究聚(N-异丙基丙烯酰胺)单链及其智能凝胶微球在水中的相变(上),高分子通报,1998,3:9-16.
    [85]Dutour Sikiric M.;Furedi-Milhofer,H.The influence of surface active molecules on the crystallization of biominerals in solution.Adv.Colloid Interface Sci.;2006:128-130:135-158.
    [86]Chavanpatil,M.D.;Khdair.A.;Patil,Y.;Handa,H.;Mao,G.Z;Panyam,J.Polymer-surfactant nanoparticles for sustained release of water-soluble drugs.J.Pharmaceutical Sci.;2007;96(12):3379-3389.
    [87]Yang,H.;Horii,F.Investigation of the structure of poly(vinyl alcohol)-iodine complex hydrogels prepared from the concentrated polymer solutions.Polvmer;2008;49(3):785-791.
    [88]赵国玺.表面活性剂物理化学.北京大学出版社.北京,1984.
    [89]沈钟.王果庭,胶体与表面化学(第二版),化学工业出版社,北京.2001;P313.
    [90]Diab,C.;Winnik,F.M.;Tribet,C.Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers(Amphipols).Langmuir;2007;23(6):3025-3035.
    [91]Solomatin,S.V.;Bronich,T.K.;Eisenberg,A.;Kabanov,V.A.;Kabanov,A.V.Nanomaterials from ionic block copolymers and single-,double-,and triple-tail surfactants.Langmuir;2007;23(5):2838-2842.
    [92]Zhao,N.N.;Qi,L.M.;Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic-anionic surfactants,Adv.Mater.;2006;18:359-362.
    [93]Shen,Q.;Wei,H.;Zhou,Y.;Huang,Y.P.;Yang,H.R.;Wang,D.J.;Xu,D.F.Properties of amorphous calcium carbonate and the template action of vaterite spheres.J.Phys.Chem.B;2006;110:2994-3000.
    [94]An,Z.;Tao,C.;Lu,G.;Mohwald,H.;Zheng,S.;Cui,Y.;Li,J.Fabrication and characterization of human serum albumin and L-dimyristoylphosphatidic acid microcapsules based on template technique.Chem.Mater.;2005;17(10):2514-2519.
    [95]An,Z.;Mohwald,H.;Li,J.pH Controlled permeability of lipid/protein biomimetic microcapsules,Biomacromolecules;2006;7(2):580-585.
    [96]Lu,G.;An,Z.;Tao,C.;Li,J.Microcapsule assembly of human serum albumin at the liquid/liquid interface by the pendent drop technique,Langmuir;2004:20(19):8401-8403.
    [97]Duan,L.;He,Q.;Wang,K.W.;Yan,X.H.;Cui,Y.;M_hwald,H.;Li,J.B.Adenosine triphosphate biosynthesis catalyzed by FoF1 ATP synthase assembled in polymer microcapsules.Angew.Chem.Int.Ed.;2007;46:6996-7000.
    [98]Jennings,K.H.;Marshall,I.C.B.;Wilkinson,M.J.;Kremer,A.;Kirby,A.J.;Camilleri,P.Aggregation properties of a novel class of cationic gemini surfactants correlate with their efficiency as gene transfection agents,Langmuir;2002;18(6):2426-2429,
    [99]Ryhanen,S.J.;Pakkanen,A.L.;Saily,M.J.;Bello.C.;Mancini,G.;Kinnunen,P.K.J. Impact of the stereocnemical structure on the thermal phase behavior of a cationic gemini surfactant,J.Phys.Chem.B.;2002;106(44):11694-11697.
    [100]Bai.G,;Yan,H;Thomas,R.S.Microcalorimetric studies on the thermodynamic properties of cationic gemini surfactants.Langmuir;2001;17(15):4501-4504.
    [101]zu Putlitz,B.;Hentze,H.P.;Landfester,K.;Antonietti,M.New cationic suffactants with sulfonium headgroups,Langmuir;2000:16(7):3214-3220.
    [102]Erhardt,R.;Boker,A.;Zettl.H.;Kaya,H.;Pyckhout-Hintzen,W.;Krausch,G.;Abetz.V.;Muller.A.H.E.Janus micelles,Macromolecules;2001;34(4):1069-1075.
    [103]Li.Y.;Wang,D.J.;Hao.Z.P.;Hao,J.C.Han.C.C.Heat-induced phase transitions from an aqueous solution to precipitates in a poly(sodium 4-styrenesulfonate tetradecyltrimethylammonium bromide system.Chemistry-A European Journal;2007;13(17):4782-4785.
    [104]Boerakker,M.J.;Botterhuis,N.E.;Bomans,P.H.H.;Frederik.P,M.;Meijer.E.M.;Nolte.R.J.M.;Sommerdijk,N.A.J.M.Aggregation behavior of giant amphiphiles prepared by cofactor reconstitution.Chemistry-A European Journal:2006;12(23):6071-6080.
    [105]Song,A.X.,Dong.S.L.;Jia,X.F.;Hao,J.C.;Liu.W.M.;Liu T.B.An onion phase in salt-free zero-charged catanionic surfactant solutions,Angew.Chem..Int.Ed.;2005;44(26):4018-4021.
    [106]Kuntz,D.M.;Walker,L.M.Solution Behavior of rod-like polyelectrolyte-surfactant aggregates polymerized from wormlike micelles,J.Phys.Chem.B.;2007;111(23):6417-6424.
    [107]Caracciolo.G.;Pozzi.D.;Mancini,G.;Caminiti,R.Role of the spacer stereochemistry on the structure of solid-supported gemini surfactants aggregates,Langmuir;2007:23(20):10040-10043.
    [108]Pankov,R.;Markovska.T.;Antonov,P.;Ivanova.L.;Momchilova.A.Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes,General Physiology and Biophysics;2006;25(3):313-324.
    [109]Nakanishi,T.;Ariga.K.;Thuriere,A.;Bear,J.L.;Kadish.K.M.Regulation of film electrochemistry and CO binding of a diruthenium complex embedded in artificial lipids on an electrode,Thin Solid Films;2006;499(1-2):349-353.
    [110]Song,R.Q.;Xu.A.W.;Deng,B.;Fang.Y.P.Novel multilamellar mesostructured molybdenum oxide nanofibers and nanobelts:synthesis and characterization.J.Phys.Chem.B:2005;109(48):22758-22766.
    [111]Senthil,K.P.;Kasture.M.;Raghavan,U.;Pasricha,R.;Sastry.M.Synthesis of CdS and alloyed CdMnS nanocrystais using aqueous foams,J.Nanoscience and Nanotechnology;2005:5(12):2144-2154.
    [112]Sarkar,R.;Shaw,A.K.;Narayanan,S.S.;Dias,F.;Monkman.A.;Pal.S.K.Direct observation of protein folding in nanoenvironments using a molecular ruler,Biophysical Chemistry;2006;123(1):40-48.
    [113]Rosen,J.Surfactants and Interfacial Phenomena,2~(nd)ed;John Wiley & Sons;New York,1989,304-337.
    [114]Theander,K.;Pugh,R.J.The influence of pH and temperature on the equilibrium and dynamic surface tension of aqueous solutions of sodium oleate,J.Colloid Interface Sci.;2001:239:209-216.
    [115]Borne,J.;Nylander,T.;Khan,A.Vesicle formation and other structures in aqueous dispersions of monoolein and sodium oleate,J.Colloid Interface Sci.;2003;257:310-320.
    [116]Hildebrand,A.;Garidel,P.;Neubert,R.;Blume,A.Thermodynamics of demicellization of mixed micelles composed of sodium oleate and bile salts.Langmuir;2004:20(2):320-328.
    [117]Borne,J.;Nylander,T.;Khan,A.Phase behavior and aggregate formation for the aqueous monoolein system mixed with sodium oleate and oleic acid,Langmuir;2001;17(25):7742-7751.
    [118]Morigaki,K.;Walde,P.Giant vesicle formation from oleic acid/sodium oleate on glass surfaces induced by adsorbed hydrocarbon molecules,Langmuir;2002;18(26):10509-10511.
    [119]郭荣,张晓红,傅清红,油酸钠层状液品体系的聚合.物理化学学报,2000,16(7):129-135.
    [120]Touhami,Y.;Rana,D.;Neale.G.H.;Homof,V.Study of polymer-surfactant interactions via surface tension measurements,Colloid Polym Sci.;2001;279:297-300.
    [121]Schwuger,M.J.Mechanism of interaction between ionic surfactants and polyglycol ethers in water,J.Colloid Interface Sci.;1973;43(2):491-498.
    [122]徐桂英.苏红梅.李干佐.刘木辛.李方,毛宏志,聚丙烯酰胺与混合表面活性剂的相互作用,物理化学学报,1994,10:909-914.
    [123]Piculell,L.;Guillemet,F.;Thuresson,K.;Shubin.V.;Ericsson,O.Binding of surfactants to hydrophobically modified polymers,Adv.Colloid Interface Sci.;1996;63:1-21.
    [124]Goddard,E.D.Polymer-surfactant interaction.Part Ⅰ.Uncharged water-soluble polymers and charged surfactants,Colloids Surf;1986:19:255-300.
    [125]Goddard,E.D.Polymer-surfactant interaction.Part Ⅱ,Polymer and surfactant of opposite charge,Colloids Surf.;1986;19:301-329.
    [126]Dong,S.;Li,X.;Xu,G.;Hoffmann,H.A cationic fluorocarbon surfactant DEFUMACl and its mixed systems with cationic surfactants:~(19)F NMR and surface tension study,J.Phys.Chem.B.;2007;111(21):5903-5910.
    [127]Nozue.Y.;Sakurai,T.;Hozumi,H.;Kasahara,T.;Yamaguchi,N.;Shibayama.M.;Matsushita,Y.Investigation of miscibility between iPP and propylene-butene random copolymer by small-angle neutron scattering.Macromolecules;2007;40(2):273-277.
    [128]Taylor,D.J.F.;Thomas.R.K.;Penfold,J.Polymer/surfactant interactions at the air/water interface,Adv.Colloid and Interface Sci.;2007;132(2):69-110.
    [129]栾玉霞,徐桂英.陈爱民.选择性膜电极研究表面活性剂与大分子的相互作用.物理化学学报,2003,19(2):185-192.
    [130]Fishman,M.L.;Eirich,F.R.Interactions of aqueous poly(N-vinylpyrrolidone)with sodium dodecyl sulfate.Ⅰ.Equilibrium dialysis measurements.J.Phys.Chem.;1971;75(20):3135-3140.
    [131]Fishman,M.L.;Elrich.F.R.Interactions of aqueous poly(N-vinylpyrrolidone)with sodium dodecyl sulfate.Ⅱ.Correlation of electric conductance and viscosity measurements with equilibrium dialysis measurements.J.Phys.Chem.;1975:79(25):2740-2744.
    [132]Shirahama,K.The Binding equilibrium of sodium dodecyl sulfate to poly(ethylene oxide)in 0.1M sodium chloride solution at 30℃,Colloid Polym.Sci.;1974;252:978-981.
    [133]Li,Y.;Xu,R.;Couderc,S.;Bloor.D.M.;Wyn-Jones,E.;Holzearth.J.F.Binding if sodium dodecyl sulfate to the ABA block copolymer Pluronic F127(EO_(97)PO_(69)EO_(97)):F127 aggregation induced by SDS,Langmuir;2001;17:183-188.
    [134]Li,Y.;Xu,R.;Bloor,D.M.;Holzwarth.J.F.;Wyn-Jones E.The binding of sodium dodecyl sulfate to the ABA block copolymer moronic F127:An electromotive force,microcalorimetry,and light scatering investigation,Langmuir;2000;16:10515-10520.
    [135]Couderc,S.;Li.Y.;Bloor.D.M.;Holzwarth,J.F.;Wyn-Jones,E.Interaction between the nonionic surfactant hexaethylene glycol mono-n-dodecyl ether(C_(12)EO_6)and the surface activity nonionic ABA block copolymer Pluronic F127(EO_(97)PO_(69)EO_(97))-formation of mixed micelles studied using isothermal titration calorimetry and differential scanning caloririmetry,Langmuir:2001;17:4818-4824.
    [136]陈爱民,徐桂英,郑利强.沈强.魏西莲,十二烷基氧丙基-β-羟基三甲基溴化铵与阴离子聚电解质的缔合作用.高等学校化学学报.2002,23:665-669.
    [137]徐桂英,陈爱民,刘尚营.苑世领,魏西莲.C_(12)NBr对黄原胶/Cr(Ⅲ)凝胶体系粘弹性的影响,物理化学学报,2002,18(11):1043-1047.
    [138]徐桂英,隋卫平,李干佐,PVP与C_(12)BE之间的相互作用,化学学报,1997.55:1179-1184.
    [139]Luan,Y.X.;Xu,G.Y.;Yuan.S.L.;Xiao,L.:Zhang.Z.Q.Comparative studies of structurally similar surfactants:sodium bis(2-ethylhexyl)phosphate and sodium bis(2-ethylhexyl)sulfosuccinate.Langmuir;2002;18:8700-8705.
    [140]Bloor,D.M.;Holzwarth,J.F.;Wyn-Jones,E.Polymer/surfactant interactions.The use of isothermal titration calorimetry and emf measurements in the sodium dodecyl sulfate/poly(N-vinylpyrrolidone)system,Langmuir;1995:11(6):2312-2313.
    [141]曾利容,吴秀章,毛宏志,徐桂英.用电导法研究聚丙烯酰胺与十二烷基磺酸钠的相互作用,油田化学,1991.2:909-914.
    [142]Tokiwa,Y.;Iwamoto,A.;Koyama,M.Development of biodegradable plastics containing polycaprolactone and/or starch,Polym Mater Sci Eng;1990:63:742-746.
    [143]Arai,H.;Horin,S.;Nakasone,Y.Effect of the surfactant on the hydrolysis rate of polyvinyl acetate,J.Poly.Sci.Part A-I:Poly.Chem.;1971;9(6):1769-1770.
    [144]徐桂英.顾影慧.黏度法研究PAM与R_(12)SO_3Na之间的相互作用,物理化学学报,1992,3:352-357.
    [145]Cabane,B.Structure of some polymer-detergent aggregater in water,J.Phys.Chem.;1977:81:1639-1641.
    [146]Futterer,T.;Hellweg,T.;Findenegg,G.H.;Frahn,J.;Schluter,A.D.;Bottcher,C.Self-assembly of amphiphilic poly(paraphenylene)s:thermotropic phases,solution behavior,and monolayer films,Langmuir;2003:19(16):6537-6544.
    [147]Lindell,K,;Cabane,B.Structures of physical gels in the EHEC-SDS-water system.Langmuir;1998;14(22):6361-6370.
    [148]Taylor,D.J.F.;Thomas,R.K.;Penfold,J,The adsorption of oppositely charged polyelectrolyte/surfactant mixtures:neutron reflection from dodecyltrimethyl ammonium bromide and sodium poly(styrene sulfonate)at the air/water interface,Langmuir;2002;18:4748-4757.
    [149]Taylor,D.J.F.;Thomas,R.K.;Hines,J.D.;Humphreys,K.;Penfold,J.The adsorption of oppositely charged polyelectrolyte/surfactant mixtures at the air/water interface:neutron reflection from dodecyl trimethylammonium bromide/sodium poly(styrene sulfonate)and sodium dodecvl sulfate/poly(vinyl pyridinium chloride),Langmuir;2002;18:9783-9791.
    [150]Shelley,J.C.;Shelley,M.Y.Computer simulation of surfactant solutions,Curr:Opin.Colloid Interface Sci.;2000:5:101-110.
    [151]Warren,P.B.Dissipative particle dynamics,Curr.Opin.Colloid Interface Sci.;1998:3:620-624.
    [152]Balazs,A.C.;Hu.J.Y.Effects of surfactant concentration on polymer-surfactant interactions in dilute solutions:a computer model,Langmuir;1989;5:1230-1234.
    [153]Balazs,A.C.;Hu,J.Y.A computer model for the effect of surfactants on the aggregation of associating polymers,Langmuir;1989;5:1253-1255.
    [154]Li,Y.M.;Xu,G.Y.;Chen,A.M.;Yuan.S.L.;Cao.X.R.Aggregation between Xanthan and Nonyphenyloxypropyl β-Hydroxyltrimethylammonium Bromide in aqueous solution:MesoDyn simulation and binding isotherm measurement,J.Phys.Chem.B;2005;109:22290-22295.
    [155]Choi,K.S.;Lichtenegger,H.C.;Stucky,G.D.;McFarland,E.W.Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid-liquid interfaces.J.Am.Chem.Soc;2002;124(42):12402-12403.
    [156]Garnweitner G.;Smarsly B.;Assink R.;Ruland W.;Bond E.;Brinker C.J.Self-assembly of an environmentally responsive polymer/silica nanocomposite.J.Am.Chem.Soc.;2003;125(19):5626-5627.
    [157]Liu,T.An unusually slow self-assembly of inorganic ions in dilute aqueous solution.J.Am.Chem.Soc.;2003;125(2):312-313.
    [158]Sohn.B.H.;Choi,J.M.;Yoo.S.I.;Yun.S.H.;Zin.W.C.;Jung,J.C.;Kanehara.M.;Hirata.T.;Teranishi.T.Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles.J.Am.Chem.Soc.;2003;125(21):6368-6369.
    [1]Guo,C.;Wang,J.;Liu,H.;and Chen.J.Hvdration and conformation of temperature-dependent micellization of PEO-PPO-PEO block copolymers in Aqueous solutions by FT-Raman,Langmuir;1999;15(8):2703-2708.
    [2]Zana,R.;Marques,C.;Johner,A.Dynamics of micetles of the triblock copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)in aqueous solution.Adv.Colloid and Interface Sci.;2006;123-126:345-351.
    [3]Alexandridis,P.;Holzwarth,J.F.;Hatton.T.A.Miceltization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)triblock copolymers in aqueous solutions:thermodynamics of copolymer association,Macromolecules;1994;27(9):2414-2425.
    [4]Holland,R,J.;Parker,E.J.;Guiney.K.;Zeld,F.R.Fluorescence probe studies of ethylene oxide/propylene oxide block copolymers in aqueous solution,J.Phys.Chem.;1995;99(31):11981-11988.
    [5]Altinok,H.;Nixon,S.K.;Gorry,P.A.;Attwood,D.;Booth,C.;Kelarakis,A.;Havredaki,V.Micellisation and gelation of diblock copolymers of ethylene oxide and propylene oxide in aqueous solution,the effect of P-block length,Colloids and Surfaces B:Biointerfaces;1999;16:73-91.
    [6]Guo,Q.;Thomann,R.;Gronski,W.Phase Behavior,Crystallization,and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-bloek-poly(propylene oxide)-block-poly(ethylene oxide)triblock copolymers.Macromolecules;2002;35(8):3133-3144.
    [7]Zheng,L.;Guo,C.;Wang,J.;Liang,X.;Chen,S.;Ma,J.;Yang,B.;Jiang,Y,;Liu,H.Effect of ionic liquids on the aggregation behavior of PEO-PPO-PEO block copolymers in aqueous solution,J.Phys.Chem.B.;2007;111(6):1327-1333.
    [8]Goldmints,I.;Holzwarth,J.F.;Smith,K.A.;and Hatton,T.A.Micellar dynamics in aqueous solutions of PEO-PPO-PEO block copolymers,Langmuir;1997;13(23):6130-6134.
    [9]Zhang,R.;Liu,J.;He,J.;Han,B.;Liu,Z.;Jiang,T.;Wu,W.;Rong,L.;Zhao,H.;Dong.B.;Hu,G.,Compressed Ethylene-Assisted Formation of the Reverse Micelle of PEO-PPO-PEO Copolymer,Maeromolecules;2003:36:1289-1294.
    [10]Munoz,G.M.;Monroy,F.;Ortega,F.;Rubio,R.G.;Langevin,D.Monolayers of symmetric triblock copolymers at the air-water interface.1.Equilibrium properties.Langmuir;2000;16(3):1083-1093.
    [11]Ma,J.H.;Guo,C.;Tang,Y.L.;Liu,H.Z.~1H NMR spectroscopic investigations on the micellization and gelation of PEO-PPO-PEO block copolymers in aqueous solutions.Langmuir;2007;23(19):9596-9605.
    [12]Guo,C.;Liu,H.;Wang,J.;Chen,J.Conformational structure of triblock copolymers by FT-Raman and FTIR spectroscopy,J.Colloid and Interface Sci.;1999;209:368-373.
    [13]Kiss,E.;Keszthelyi,T.;Kormany,G.;Hakkel.O.Adsorbed and spread layers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)block copolymers at the air-water interface studied by sum-frequency vibrational spectroscopy and tensiometry.Macromolecules;2006;39(26):9375-9384.
    [14]Su.Y.L.;Wei.X.F.;Liu.H.Z.Influence of 1-pentanol on the micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)block copotymers in aqueous solutions.Langmuir;2003;19(7):2995-3000.
    [15]Nivaggioli.T.;Alexandridis,P.;and Hatton,T.A.Fluorescence probe studies of pluronic copolymer solutions as a function of temperature,Langmuir;1995:11(3):730-737.
    [16]Esseffar,M.;Bouab,W.;Lamsabhi.A.;Abboud,J.M.;Notario.R.An experimental and theoretical study on some thiocarbonyl-I_2 molecular complexes,J,Am.Chem.Soc.;2000;122(10):2300-2308.
    [17]Ma,J.H.;Guo,C.;Tang.Y.L.;Wang,J.;Zheng,L.;Liang,X.F.;Chen.S.;Liu.H.Z.Salt-induced micellization of a triblock copolymer in aqueous solution:A ~1H nuclear magnetic resonance spectroscopy study.Langmuir;2007;23(6):3075-3083.
    [18]Alexandridis,P.;Ivanova,R.;Lindman,B.Effect of glycols on the self-assembly of amphiphilic block copolymers in water.2.Glycol location in the microstructure.Langmuir;2000:16(8):3676-3689.
    [19]Firestone,M.A.;Wolf,A.C.:Seifert.S.Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)triblock copolymers with lipid bitayers,Biomacromolecules;2003;4(6):1539-1549.
    [20]Alexandridis,P.:Hatton,T.A.Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)block copolymer surfactants in aqueous solutions and at interfaces:thermodynamics.structure,dynamics,and modeling.Colloids Surf.A;1995:96:1-46.
    [21]Ghosh,S.;Dey.S.;Adhikari.A.;Mandal,U.;Bhattacharyya,K.Ultrafast fluorescence resonance energy transfer in the micelle and the gel phase ofa PEO-PPO-PEO triblock copolymer:Excitation wavelength dependence.J.Phys.Chem.B.;2007;111(25):7085-7091.
    [22]Zipfel,J.;Lindner,P.;Tsianou,M.;Alexandridis,P.;Richtering,W.Shear-induced formation of multilamellar vesicles("Onions")in block copolymers.Langmuir;1999;15(8):2599-2602.
    [23]Wang,R.;Knoll,H.;Rittig.F.;Karger,J.Fluorescence probe and pulsed field gadient NMR study of aqueous solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)block copolymer F88,Langmuir;2001;17(24):7464-7467.
    [24]Bryskhe,K.;Jansson.J.;Topgaard,D.;Schillen,K.;Olsson,U.Spontaneous vesicle formation in a block copolymer system,J.Phys.Chem.B:2004;108(28):9710-3719.
    [25]张志庆,多枝状嵌段聚醚高分子表面活性剂的合成、表征与应用,博士学位论文,2005.71-93.
    [26]Nicholas,J.T.;Ahmad,Y.Luminescent probes for detergent solutions.A simple procedure for determination of the mean aggregation number of micelles,J.Am.Chem.Soc.;1978;100(18):5951-5952.
    [27]Kalyanasundaram,K.;Thomas,J.K.Solvent-dependent fluorescence of pyrene-3-carboxaldehyde and its applications in the estimation of polarity at micelle-water interfaces.J.Phys.Chem.;1977;81(23):2176-2180.
    [28]Sulthana,S.B.;Rao,P.V.C.;Bhat,S.G.T.;Nakano,T.Y.;Sugihara,G.;Rakshit.A.K.Solution properties of nonionic surfactants and their mixtures:Polyoxyethylene(10)alkyl ether [C_nE_(10)]and MEGA-10,Langmuir;2000;16(3):980-987.
    [29]Wangsakan,A.;Chinachoti,P.;McClements,D.J.Effect of surfactant type on surfactant-maltodextrin interactions:Isothermal titration calorimetry,surface tensiometry,and ultrasonic velocimetry study,Langmuir;2004;20(10):3913-3919.
    [30]Lin.S.Y.;Lee,Y.C.:Yang,M.W.Surface equation of state of nonionic C_mE_n surfactants.Langmuir;2003;19(8):3164-3171.
    [31]赵国玺,表面活性剂物理化学.北京大学出版社,1991,p5-25.
    [32]Alexandridis,P.;Athanassiou,V.;Fukuda,S.;Hatton,T.A.Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide)copolymers.Langmuir;1994:10(8):2604-2612.
    [33]De Lisi,R.;Milioto,S.Poly(ethylene oxide)_(13)-poly(propylene oxide)_(30)-poty(ethylene oxide)_(13)electrolyte interactions in aqueous solutions at some temperatures,Langmuir;2000;16:5579-5583.
    [34]Marinov,G.;Michels,B.;Zana,R.Study of the state of the triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)L64 in aqueous solution,Langmuir;1998;14:2639-2644.
    [35]Gallaugher.A.F.;Hibbert,H.Studies on reactions relating to carbohydrates and polysaccharides.LIV.The surface tension constants of the polyethylene glycols and their derivatives~1,J.Am.Chem.Soc.,1937;59:2514-2521.
    [36]Li,X.;Mya,K.Y.;Ni.X.;He.C.;Leong,K.W.;Li.J.Dynamic and static light scattering studies on self-aggregation behavior of biodegradable amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide)triblock copolymers in aqueous solution.J.Phys.Chem.B;2006:110:5920-5926.
    [37]Nilsson,S.;Holmberg,C.;Sundelof.L.O.Aggregation numbers of SDS micelles formed on EHEC.A steady state fluorescence quenching study,Colloid Polymer Science;1995;273:83-95.
    [38]Asakawa,T.;Okada,T.;Hayasaka.T.;Kuwamoto,K.;Ohta.A.;Miyagishi.S.The unusual micelle micropolarity of partially fluorinated gemini surfactants sensed by pyrene fluorescence.Langmuir,2006;22(14):6053-6055.
    [39]Xu.G.Y.;Chen,A.M.;Yang,Y.L.;Yuan,S.L.;Zheng.L.Q.Aggregation behavior of hydrophobically modified polyacrylate in aqueous solution.Colloids Surf.A:2005;256:69-75.
    [40]Zhou,Z.;Chu,B.Light-scattering study on the association behavior of triblock polymers of ethylene oxide and propylene oxide in aqueous solution,J.Colloid Interface Sci.;1988:126:171-180.
    [41]Malmsten,M.;Linse,P.;Zhang,K.W.Phase behavior of aqueous poly(ethytene oxide)/poly(propylene oxide)solutions.Macromolecules;1993;26:2905-2910.
    [42]Linse,P.Phase behavior of poly(ethylene oxide)-poly(propylene oxide)block copolymers in aqueous solution,J.Phys.Chem.;1993;97:13896-13902.
    [1]Iijima,S.Helical microtubes of graphitic cabon,Nature:1991:354:56-58.
    [2]Iijima,S.;Ichihashi,T.Single-shell carbon nanotubes of l-nm diameter.Nature:1993:363:603-605.
    [3]Vaisman,L.;Wagner.H.D.;Marom,G.The role of surfactants in dispersion of carbon nanotubes,Advances in Colloid and Interface Science:2006;128-130:37-46.
    [4]Yang.Y.L.;Zhang,J.;Nan.X.L.;Liu Z.F.Toward the chemistry,of carboxylic single-walled carbon nanotubes by chemical force microscopy,J.Phvs.Chem.B:2002;106(16):4139-4144.
    [5]Liu,C.;Fan,Y.Y.;Liu.M.;Cong,H.T.;Cheng,H.M.;Dresselhaus.M.S.Hydrogen storage in single-walled carbon nanotubes at room temperature.Science.1999;286:1127-1129.
    [6]Sugie,H.;Tanemura.M.;Filip.V.;Iwata,K.;Takahashi,K.;Okuyama.F.nanotubes as electron source in an x-ray tube.Appl Phvs Lett;2001;78:2578-2580.
    [7]Zou,H.L.;Yang,Y.L.;Li.Q.W.;Zhang.J.;Liu.Z.F.;Guo.X.Y.;Du.Z.L.Electron beam induced structure transformation of single-walled-carbon nanotubes.Carbon:2002;40(12):2282-2284.
    [8]Kong,J.;Franklin.N.R.;Zhou,C.;Chapline,M.G.;Peng.S.;Cho.K.Nanotube molecular wires as chemical sensors,Science;2000;287:622-625.
    [9]Dai,H.J.;Harrier,J.H.;Rinzler,A.G.;Colbert,D.T.;Smalley.R.E.Nanotubes as nanoprobes in scanning probe microscopy.Nature:1996;384:147-150.
    [10]Sandlera,J.;Shaffera.M.S,P.;Prasseb.T.Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties,Polymer;1999;40:5967-5971.
    [11]Mishra,S.R.;Rawat,H.S.;Mehendale.S.Cl.Optical limiting in single-walled carbon nanotube suspensions,Chemical Physics Letters;2000;317:510-514.
    [12]张宇军,李鹏.胡元中,碳纳米管的操纵和剪切.科学通报,2002,47:1066-1070.
    [13]Dresselhaus,M.S.;Dresselhaus,G.;Avouris.P.Carbon Nanotubes:Synthesis.structure.properties,and applications.NewYork:Springer;2000:148-151:381-383.
    [14]Bonard,J.M.;Stora,T.;Salvetat,J.P.;Maier.F.;Stochli.T.;Dischl,C.;Forro,L.;Heer.W.;Chatelain.A.Purification and size-selecti on of carbon nanotubes,Adv.Mater.;1997;9:827-831.
    [15]Vigolo,B.;Penicaud,A.;Coulon.C.;Sauder,C.;Pailler,R.;Kpirmet,C.;Bermoer,P.Macroscopic fibers and ribbons of oriented carbon nanotubes.Science.2000;290:1331-1134.
    [16]O'Connell,M.J.;Bachilo,S.M.;Huffman,C.B.;Moore,V.C.;Strano,M.S.;Haroz,E.H.;Rialon,K.L.;Boul,P.J.;Noon.W.H.;Kittrell,C.;Ma,J.;Hauge.R.H.;Weisman.R.B.;Smalley.R.E.Band gap fluorescence from individual single-walled carbon nanotubes.Science;2002:297: 593-596.
    [17]Bachilo,S.M.;Strano,M.S.;Kittrell,C.;Hauge.R.H.;Smalley,R.E.;Weisman.R,B.Structure-assigned optical spectra of single-walled carbon nanotubes,Science;2002;298:2361-2365.
    [18]Strano,M.S.;Dyke,C.A.;Usrey,M.L.;Barone,P.W.;Allen.M.J.;Shah,H.;Kittrell.C.;Hauge,R.H.;Tour,J.M.;Smalley,R.E.Electronic structure control of single-walled carbon nanotube functionalization,Science;2003;301:1519-1522.
    [19]Moore,V.C.;Strano,M.S.;Haroz,E.H.;Hauge.R.H.;Smalley,R.E.Individually suspended single-wailed carbon nanotubes in various surfactants,Nano Letters;2003;3:1379-1382.
    [20]Nap,R.;Szleifer,I.Control of carbon nanotube-surface interactions:The role of grafted polymers,Langmuir;2005;21:12072-12075.
    [21]Shvartzman-Cohen,R.;Nativ-Roth,E.;Baskaran.E.;Levi-Kalisman,Y.;Szleifer.I.;Yerushalmi-Rozen,R.Selective dispersion of single-walled carbon nanotubes in the presence of polymers:the role of molecular and colloidal length scales.J.Am.Chem.Soc.;2004;126:14850-14857.
    [22]Shvartzman-Cohen,R.;Levi-Kalisman,Y.;Nativ-Roth,E.;Yerushalmi-Rozen,R.Generic approach for dispersing single-walled carbon nanotubes:The strength of a weak interaction.Langmuir;2004;20:6085-6088.
    [23]Grunlan,J.C.;Liu,L.;Kim,Y.S.Tunable single-walled carbon nanotube microstructure in the liquid and solid states using poly(acrylic acid),Nano Letters;2006;6:911-915.
    [24]Li,H.;Zhou,B.;Lin,Y.;Gu,L.;Wang,W.;Fernando,K.A.S.;Kumar,S.;Allard,L.F.;Sun.Y.P.Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes.Am.Chem.Soc.;2004;126:1014-1015.
    [25]Kang,Y.;Taton,T.A.Micelle-encapsulated carbon nanotubes:A route to nanotube composites,J.Am.Chem.Soc.;2003;125:5650-5651.
    [26]Chen,J.;Liu,H.;Weimer,W.A.;Halls,M.D.;Waldeck,D.H.;Walker,G.C.Noncovalent engineering of carbon nanotube surfaces by rigid,functional conjugated polymers,J.Am.Chem.Soc.;2002;124:9034-9035.
    [27]Zheng,M.;Jagota,A.;Smeke,E.D.;Diner,B.A.;Mclean,R.S.;Lustig,S.R.;Richardson.R.E.;Tassi,N.G.DNA-assisted dispersion and separation of carbon nanotubes,Nat.Mater.;2003:2:338-342.
    [28]Star,A.;Steuerman,D.W.;Heath,J.R.;Stoddart,J.F.Starched carbon nanotubes,Angew.Chem.Int.Ed.;2002;41;2508-2512.
    [29]Bandyopadhyaya,R.;Nativ-Roth.E.;Regev,O.;Yerushalmi-Rozen,R.Stabilization of individual carbon nanotubes in aqueous solutions.Nano Letters:2002;2:25-28.
    [30]Zhu,J.;Yudasaka,M.;Zhang,M.;lijima.S.Dispersing carbon nanotubes in water:A noncovalent and nonorganic way.J.Phys.Chem.B,2004;108:11317-11320.
    [31]Chert,R.J.;Zhang,Y.;Wang,D.;Dai,H.Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization.J.Am.Chem.Soc.;2001;123:3838-3839.
    [32]Nakashima,N.;Tomonari.Y.;Murakami,H.Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion,Chem.Lett.;2002;31:638-639.
    [33]Nakashima,N.;Tanaka,Y.;Tomonari,Y.;Murakami,H.;Kataura,H.;Sakaue.T.;Yoshikawa,K.Helical superstructures of fullerene peapods and empty,single-walled carbon nanotubes formed in water,J.Phys.Chem.B;2005;109:13076-13082.
    [34]Monteiro-Riviere,N.A.;Inman.A.O.;Wang,Y.Y.;Nemanich,R.J.Surfactant effects on carbon nanotube interactions with human epidermal keratinocytes,Nanomedicine;2005:1:293-299.
    [35]Vaisman,L.;Marom,G.;Wagner,H.D.Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers,Adv Funct Mater;2006;16:357-363.
    [36]Zhang,Z.Q.;Xu.G.Y.;Wang.F.;Dong,S.L.;Chen,Y.J.Demulsification by amphiphilic dendrimer copolymers.J.Colloid Interface Sci.;2005:282:1-4.
    [37]Wang,F.;Xu,G.Y.;Zhang,Z.Q.;Xin.X.Synthesis of monodisperse CdS nanospheres in an inverse microemulsion system formed with a dendritic polyether copolymer,Eur.J.Inorg.Chem.:2006;1:109-114.
    [38]Xin,X.;Xu,G.Y.;Zhang.Z.Q.;Chen,Y.J.;Wang.F.Aggegation behavior of star-like PEO-PPO-PEO block copolymer in aqueous solution,European Polvmer Journal;2007;43:3106-3111.
    [39]Collins,P.G.;Arnold,M.S.;Avouris.P.Engineering carbon nanotubes and nanotubo circuits using electrical breakdown,Science;2001;292:706-709.
    [40]Saito,R.;Dresselhaus.G.;Dresselhaus,M.S.Trigonal warping effect of carbon nanotubes,Phys.Rev.B;2000;61:2981-2990.
    [41]Bandow.S.;Asaka.S.;Saito.Y.;Rao.A.M.;Grigorian,L.;Richter,E.;Eklund.P.C.Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes,Phys.Rev.Lett.;1998;80:3779-3782.
    [42]Kim,P;Odom.T.W.;Huang.J.L.;Lieber,C.M.Electronic density,of states of atomically resolved single-walled carbon nanotubes:Van Hove singularities and end states,Phys.Rev.Lett.;1999;82:1225-1228.
    [43]Dresselhaus,M.S.;Dresselhaus,G.;Eklund,P.Science of fullerenes & carbon nanotubes.Academic Press,San Diego,1996.
    [44]Dresselhaus,M.S.;Eklund,P.C.Phonons in carbon nanotubes,Adv.Phys.;2000;49:705-814.
    [45]欧阳雨.方炎,单壁碳纳米管RBM的拉曼光谱研究.光散射学报,2004,15:246-249.
    [46]窦新元,单壁碳纳米管的控制制备及其拉曼散射研究,博士学位论文,2005,47-51.
    [47]Chen,X.;Lee,G.S.;Zettle,A.;Betozzi.C.R.Biomimetic engineering of carbon nanotubes by using cell surface mucin mimics,Angew.Chem.,Int.Ed.;2004;43:6111-6116.
    [48]Zhang,Q.;Lippits,D.R.;Rastogi.S.Dispersion and rheological aspects of SWNTs in ultrahigh molecular weight polyethylene.Macromolecules;2006;39(2):658-666.
    [1]Goddard,E.D.;Ananthapadmanaban,K.P.Interactions of surfactants with polymer and proteins,CRC Press:Boca Raton.FL,1993.
    [2]Shchipunov,Y.A.;Hoffmann,H.;Growth,branching,and local ordering of lecithin polymer-like micelles,Langrnuir;1998;14:6350-6360.
    [3]Wang,C.;Tam,K.C.Interactions between poly(acrylic acid)and sodium dodecyl sulfate:isothermal titration calorimetric and surfactant ion-selective electrode studies,J.Phys.Chem B:2005;109:5156-5161.
    [4]Panmai,S.;Prud'homme.R.K.;Peiffer,D.G.;Jockusch.S.;Turro,N.J.;Interactions between hydrophobically modified polymers and surfactants:A fluorescence study,Langmuir;2002:18(10):3860-3864.
    [5]Smith,G.L.;McCormick,C.L.;Water-Soluble Polymers.79.Interaction of microblocky twin-tailed acrylamido terpolymers with anionic,cationic,and nonionic surfactants.Langmuir:2001;17(5):1719-1725
    [6]Hoff,E.;Nystrom,B.;Lindman.B.Polymer-surfactant interactions in dilute mixtures of a nonionic cellulose derivative and an anionic surfactant.Langmuir;2001:17(1):28-34.
    [7]Seng,W.P.;Tam,K.C.;Jenkins,R.D.;Bassett,D.R.:Model alkali-soluble associative (HASE)polymers and ionic surfactant interactions examined by isothermal titration calorimetry.Langrnuir;2000;16(5):2151-2156.
    [8]Yang.B.S.;Lal,J.;Richetti,P.;Marques,C.M.;Russel.W.B.;Prud'homme,R.K.Interaction of hydrophobically modified polymers and surfactant lamellar phase,Langmuir;2001;17(19): 5834-5841.
    [9]Meszaros.R.;Thompson.L.;Bos,M.;Varga,I.;Gilanyi.T.Interaction of sodium dodecyl sulfate with polyethyleneimine:surfactant-induced polymer solution colloid dispersion transition,Langmuir;2003;19(3);609-615.
    [10]De Lisi,R.;De Simone,D.;Milioto,S.Polymer-surfactant interactions.A quantitative approach to the enthalpy of transfer of poly(ethylene glycol)s from water to the aqueous sodium perfluoroalkanoates solutions,J.Phys.Chem.B.;2000;104(51):12130-12136.
    [11]Hal,M.T.;Han,B.X.Study of interaction between sodium dodecyl sulfate and polyacrylamide by rheological and conductivity measurements,J.Chem.Eng.Data;2006;51:1498-1501.
    [12]Zhang,K.;Xu,B.;Winnik,M.A.;Macdonald.P.M.Surfactant interactions with HEUR associating polymers,J.Phys.Chem.;1996;100:9834-9841.
    [13]Chakraborty,T.;Chakraborty,I.;Ghosh,S.Sodium carboxymethylcellulose -CTAB interaction:A detailed thermodynamic study of polymer-surfactant interaction with opposite charges,Langmuir;2006;22:9905-9913.
    [14]Trabelsi,S.;Langevin,D.Co-adsorption of carboxymethyl-cellulose and cationic surfactants at the air-water interface,Langmuir;2007;23:1248-1252.
    [15]Bai,G.;Wang,Y.;Yan,H.;Thomas,R.K.;Kwak,J.C.T.Thermodynamics of interaction between cationic gemini surfactants and hydrophobically modified polymers in aqueous solutions.J.Phys.Chem.B;2002;106:2153-2159.
    [16]Chu,B.Structure and dynamics &block copolymer colloids,Langmuir;1995;11:414-421.
    [17]Luan.Y.X.;Xu,G.Y.:Yuan,S.L.;Xiao,L.;Zhang,Z.Q.Comparative studies of structurally similar surfactants:sodium bis(2-ethylhexyl)phosphate and sodium bis(2-ethylhexyl)sulfosuccinate,Langmuir;2002;18:8700-8705.
    [18]徐桂英,隋卫平,李干佐,PVP与C_(12)BE之间的相互作用,化学学报,1997.55:1179-1184.
    [19]Muzzalupo,R.;Infante,M.R.;Perez,L.;Pinazo,A.;Marques,E.F.;Antonelli.M.L.:Strinati,C.;La Mesa.C.Interactions between gemini surfactants and polymers:thermodynamic studies,Langmuir;2007;23(11):5963-5970.
    [20]Kabanov,A.V.;Bronich,T.K.;Kabanov,V.A.;Yu.K.;Eisenberg.A.Spontaneous formation of vesicles from complexes of block ionomers and surfactants,J.Am.Chem.Soc.;1998;120(38):9941-9942.
    [21]Huang,J.B.;Zhu,Y.;Zhu,B.Y.;Li,R.K.;Fu,H.L.Spontaneous vesicle formation in aqueous mixtures of cationic surfactants and partially hydrolyzed polyacrylamide,Journal of Colloid and Interface Science;2001;236;201-207.
    [22]Zana,R.Surfactant solutions-new methods of investigation,Marcel Dekker Inc.New York and Basel:1987;193-220.
    [23]赵国玺.表面活性剂物理化学.北京大学出版社.北京,1991;64-97
    [24]Jonsson,B.;Lindman.B.;Holmberg,K.;Kronberg,B.Surfactants and polymers in aqueous solution.John Wiley and Sons:Chichester,U.K.,1998.
    [25]Kwak,J.C.T.Polymer-surfactant systems.Marcel Dekker:New York,1998.
    [26]Rosen M.J.;Zhu B.Y.;Synergism in binary mixtures of surfactants Ⅲ.Betaine-containing system,J.Colloid Interface Sci.;1984;99(2):427-434.
    [27]Rosen M.J.;Hua X.Y.Surface concentrations and molecular interactions in binary,mixtures of surfactants,J.Colloid Interface Sci.;1982;86(1):164-172.
    [28]Hua X.Y.;Rosen M.J.Synergism in binary mixtures of surfactants.J.Colloid Interface Sci.;1982;90(1):212-219.
    [29]Alexandridis,P.;Nivaggioli,T.;Hatton,T.A.Temperature effects on structural properties of Pluronic P104 and F108 PEO-PPO-PEO block copolymer solutions.Langmuir;1995;11(5):1468-1476.
    [30]Alexandridis,P.;Athanassiou.V.;Hatton.T.A.Pluronic-P105 PEO-PPO-PEO block copolymer in aqueous urea solutions:Micelle formation,structure,and microenvironment,Langmuir;1995;11(7):2442-2450.
    [31]Xiong,X.Y.;Tam,K.C.;Gan,L.H.Synthesis and aggregation behavior of Pluronic F127/poly(lactic acid)block copolymers in aqueous solutions.Macromolecules;2003;36(26):9979-9985.
    [32]Ivanova.R.;Lindman,B.;Alexandridis.P.Evolution in structural polymorphism of Pluronic F127 poly(ethylene oxide)-poly(propylene oxide)block copolymer in ternary systems with water and pharmaceutically acceptable organic solvents:from "glycols" to "oils",Langmuir:2000:16(23):9058-9069.
    [33]De Lisi,R.;Mitioto,S.;Muratore.N.Binding of short alkyl chain surfactants to the(ethylene oxide)_(13)-(propylene oxide)_(30)-(ethylene oxide)_(13)and(ethylene oxide)_(75)-(propylene oxide)_(30)-(ethylene oxide)_(75)copolymers studied by microcalorimetry,Macromolecules;2002;35(18):7067-7073.
    [34]Yang,L.;Alexandridis.P.;Steyler,D.C.;Kositza,M.J.;Holzwarth.J.F.Small-angle neutron scattering investigation of the temperature-dependent aggregation behavior of the block copolymer Pluronic L64 in aqueous solution.Langmuir;2000;16(23):8555-8561.
    [35]Brandani,P.;Stroeve,P.Kinetics and equilibria of adsorption of PEO-PPO-PEO triblock copolymers on a hydrophilic self-Assembled monolayer on gold,Macromolecules;2004;37(17):6640-6643.
    [36]Batsberg,W.;Ndoni.S.;Trandum,C.;Hvidt,S.Effects of poloxamer inhomogeneities on micellization in water,Macromolecules;2004;37(8):2965-2971.
    [37]Zhu,W.;Wang.B.B.;Zhang,Y.;Ding.J.D.Preparation of a thermosensitive and biodegradable microgel via polymerization of macromonomers based on diacrylated Pluronic/oligoester copolymers,Eur.Polym.J.;2005;41(9):2161-2170,
    [38]Brackman,J.C.;Engberts,J.B.F.N.Polymer-micelle interactions:physical organic aspects,Chem.Soc.Rev.;1993;22:85-92.
    [39]Jolrgen,J.;Karin,S.;Markus,N.;Olle,S.;Gerhard,F.;Alexander,B.;Otto,G.Small-angle X-ray scattering,light scattering,and NMR study of PEO-PPO-PEO triblock copolymer/cationic surfactant complexes in aqueous solution,J.Phys.Chem.B;2005;109(15):7073-7083.
    [40]Sastry,N.V.;Hoffmann,H.Interaction of amphiphilic block copotymer micelles with surfactants.Colloids and Surfaces A:Physicochem Eng.Aspects;2004;250:247-261.
    [41]董姝丽.聚合物/表面活性剂相互作用研究.硕士论文.2004.35-77.
    [42]Benjamins,J.;Cagna,A.;Lucassen-Reynders.E.H.Viscoelastic properties of triacylglycerol/water interfaces covered by proteins,Colloids Surf.A;1996;114:245-254.
    [43]Lucassen-Reynders,E.H.Surface elasticity and viscosity in compression/dilation,in anionic surfactants,New York,1981.
    [44]Fromyr,T.;Hansen,F.K.;Kotzev,A.;Laschewsky,A.Adsorption and surface elastic properties of corresponding fluorinated and nonfluorinated cationic polymer films measured by drop shape analysis,Langmuir,2001;17:5256-5264.
    [45]Lucassen,J.;Giles,D.Dynamic surface properties of nonionic surfactant solutions.J.Chem.Soc.Faraday Trans.;1975;71:217-232.
    [46]王宜阳.张路,孙涛垒,方洪波.赵濉.俞稼镛,不同结构破乳剂油水界面扩张粘弹性研究,物理化学学报,2003,19(4):297-301.
    [47]Rosen.M.J.;Zhou.Q.Surfactant-surfactant interactions in mixed monolayer and mixed micelle formation,Langmuir;2001;17(12):3532-3537.
    [48]Wu,D.;Feng,Y.J.;Xu,G.Y.;Chen,Y.J.;Cao,X.R.;Li,Y.M.Dilational theological properties of gemini surfactant 1,2-ethane bis(dimethyl dodecyl ammonium bromide)at air/water interface,Colloids and Surfaces A;2007;299:117-123.
    [49]Noskov,B.A.;Akentiev,A.V.;Bilibin,A.Y.;Zorin,I.M.;Miller.R.Dilational surface viscoelasticity,of polymer solutions,Adv.Colloid Interface Sci.;2003;104:245-271.
    [50]Noskov,B.A.;Akentiev,A.V.;Loglio.G.;Miller,R.Dynamic surface properties of solutions of poly(ethylene oxide)and polyethylene glycols,J.Phys.Chem.B;2000;104:7923-7931.
    [51]Noskov,B.A.;Akentiev,A.V.;Miller,R.Dynamic surface properties of poly(vinylpyrrolidone)solutions.J.Colloid Interface Sci.:2002:255:417-424.
    [52]王东贤.罗澜.张路,王宜阳.赵濉,俞稼镛.疏水缔合共聚物与表面活性剂的界面相互作用,物理化学学报,2005,21(11):1205-1210.
    [53]Bahadur.P.;Dubin,P.;Rao,Y.K.Complex formation between sodium dodecyl sulfate and poly(4-vinylpyridine N-oxide),Langmuir;1995;11(6):1951-1955.
    [54]Wesley,R.D.;Cosgrove.T.:Thompson,L.Interactions of star'polymers with surfactants,Langmuir;1999;15(24):8376-8382.
    [55]Roscigno,P.;Paduano.L.;D'Errico.G.;Vitagliano,V.On the presumed specific interaction of anionic surfactants with nonionic polymers.Aqueou solution of sodium alkylsulfonate in the presence of poly(vinylpyrrolidone):An "excluded volume" effect.Langmuir;2001;17(15):4510-4518.
    [56]Sesta,B.;Segre.A.L.;D'Aprano.A.;Proietti.N.~1H NMR.surface tension,viscosity,and volume evidence of micelle-polymer hydrophobic interactions:LiPFN-PVP system.J.Phys.Chem.B;1997;101:198-204.
    [57]Wang,G.;Olofsson.G.Titration calorimetric study of the interaction between ionic surfactants and uncharged polymers in aqueous solution.J.Phvs.Chem.B:1998:102:9276-9283.
    [58]方云,刘雪锋,夏咏梅.宗李燕,十二烷基硫酸钠-水溶性非离子大分子间团簇化作用部位的~1H和~(13)C及2D NMR表征.高等学校化学学报,2006,27:731-734。
    [59]Xu,G.Y.;Zhang,L.;Yang,Y.U;Huang,X.R.Fluorescence property on solutions of zwitterionic surfactant tetradecylbetaine in the presence of macromolecules,Spectrochimica Acta Part A;2000;56:2431-2437.
    [60]Hernainz Bermudez de Castro,F.;Galvez Borrego.A.Modification of surface tension in aqueous solutions of sodium oleate according to temperature and pH in the flotation bath.J.Colloid Interface Sci.;1995:173:8-15.
    [61]Hisatomi,M.;Abe,M.;Yoshino.N.;Lee,S.;Nagadome.S.;Sugihara,G.;Thermodynamic Study on Surface Adsorption and Micelle Formation of a Hybrid Anionic Surfactant in Water by Surface Tension(Drop Volume)Measurements,Langmuir;2000;16(4):1515-1521.
    [62]Maeda,H.;Kanakubo,Y.;Miyahara.M.;Kakehashi,R.;Garamus,V.;Pedersen.J.S.Effects of protonation on tetradecyldimethylamine oxide micelles.J.Phys.Chem.B.;2000;104(26):6174-6180.
    [63]Corrin,M.L.;Harkins,W.D.The effect of salts on the critical concentration for the formation of micelles in colloidal electrolytes,J.Am.Chem.Soc.;1947;69:683-688.
    [64]Ray A.,Nemethy G.,Molecular orbital studies on bifunctional catalysis of glucose mutarotation.Hydrogen bond with 2-pyridone,J.Am.Chem.Soc.;1971;93:6787-6793.
    [65]Lucassen-Reynders,E.H.Anionic surfactant physical chemistry of surfactant action.Marvel Dekker Inc., 1981, chap. 3.
    
    [66] Pi, Y. Y.; Shang. Y. Z.; Liu, H. L.; Hu, Y.; Jiang. J. W. Salt effect on the interactions between gemini surfactant and oppositely charged polyelectrolyte in aqueous solution, J. Colloid Interface Sci.; 2007; 306: 405-410.
    
    [67] Wang, Y. Y.; Zhang, L.; Sun, T. L.; Zhao, S.; Yu, J. Y. A study of interfacial dilational properties of two different structure demulsifiers at oil-water interfaces, J. Colloid Interface Sci.; 2004; 270: 163-170.
    
    [68] Miller, R.; Fainerman, V. B.; Makievskia, A.V.; Kragel, J.; Grigoriev, D. O.; Kazakov, V. N.; Sinyachenko, O. V. Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface,Adv. Colloid Interface Sci.; 2000; 86: 39-82.
    
    [69] Stubenrauch, C.; Fainerman, V. B.; Aksenenko, E. V.; Miller. R. Adsorption Behavior and Dilational rheology of the cationic alkyl trimethylammonium bromides at the water/air interface. J. Phys. Chem. B; 2005; 109: 1505-1509.
    
    [70] Kopperud, H. B. M.; Hansen. F. K. Surface tension and surface dilatational elasticity of associating hydrophobically modified polyacrylamides in aqueous solutions, Macromolecules; 2001; 34: 5635-5643.
    [1]Shashkina,J.A.;Philippova,O.E.;Zaroslov,Y.D.;Khokhlov,A.R.;Pryakhina,T.A.;Blagodatskikh,I.V.Rheology of viscoelastic solutions of cationic surfactant.Effect of added associating polymer,Langmuir;2005;21:1524-1530.
    [2]Schubert,B.A.;Wagner,N.J.;Kaler,E.W.Raghavan S.R.Shear-induced phase separation in solutions of wormlike micelles,Langmuir;2004;20:3564-3573.
    [3]Wang,C.;Tam,K.C.Interactions between polyarylic acid and sodium dodecyl sulfaate:Isothermal titration calorimetri and surfactant ion-selective electrode studies,J.Phys.Chem.B;2005;109:5156-5161.
    [4]Jain,N.;Trabelsi.S.;Guillot.S.;Mcloughlin,D.;Langevin,D.;Letellier,P.;Turmine,M.Critical aggregation concentration in mixed solutions of anionic polyelectrolytes and cationic surfactants,Langmuir;2004,20:8496-8503.
    [5]McCormick,C.L.;Bock,J.;Schulz.D.N.Encyclopedia of polymer and Engineering,New York:John Wileny & Sons Inc;1989.
    [6]Jonsson,B.;Lindman,B.;Holmberg.K.;Kronberg,B.Surfactants and polymers in aqueous solutions,New York:John Wileny & Sons Inc;1998.
    [7]Alexandridis,P.Amphiphilic copolymers and their applications.Curr.Opin.Colloid Intecface Sci.1996;1:490-501.
    [8]Bai,G.;Catita.J.A.M.:Nichifor.M.:Bastos.M.Microcalorimetric evidence of hydrophobic interactions between hydrophobically modified cationic polysaccharides and surfactants of the same charge,J.Phys.Chem.B.:2007:111:11453-11462.
    [9]Kim.D.H.;Kim,J.W.:Oh.S.G.:Kim.J.:Han,S.H.:Chung,D.J.:Sub.K.D.Effects of nonionic surfactant on the rheological property,of associative polymers in complex formulations.Polymer:2007;48:3817-3821.
    [10]Shashkina,J.A.;Philippova,O.E.:Zaroslov.Y.D.:Khokhlov,A.R.;Pryakhina.T.A.:Blagodatskikh,I.V.Rheology of viscoelastic solutions of cationic surfactant,effect of added associating polymer,Langmuir:2005:21:1524-1530.
    [11]English,R.B.;Laurer,J.H.;Spontak,R.J.:Khan.S.A.Hydrophobically modified associative polymer solutions:Rheology and microstructure in the presence of nonionic sur(?)actants,Ind.Eng.Chem.Res.;2002:41:6425-6435.
    [12]Schubert,B.A.:Wagner.N.J.;Kaler,E.W.;Raghavan.S.R.Shear-induced phase separation in solutions of wormlike micelles,Langmuir;2004;20:3564-3573.
    [13]Wang,C.;Tam,K.C.Interactions between polyarylic acid and sodium dodecyl sulfaate:Isothermal titration catorimetri and surfactant ion-selective electrode studies.J.Phys.Chem.B:2005;109:5156-5161.
    [14]Jain.N.;Trabelsi.S.:Guillot.S.:Mcloughlin.D.:Langevin,D.:Letellier,P.:Turmine.M.Critical aggregation concentration in mixed solutions of anionic polyelectrolytes and cationic surfactants,Langmuir;2004;20:8496-8503.
    [15]Schulz,D.N.;Glass.J.E.:Zukoski,C.F.Polymers as rheology modifiers,ACS Syrup.Ser;1991;462:2-17.
    [16]Dalvi-Malhotra,J.;Chen.L.Enhanced conjugated polymer fluorescence quenching by dipyridinium-based quenchers in the presence of surfactant.J.Phys.Chem.B.;2005:109:3873-3878.
    [17]Middleton,H.;English,R.J.:Williams,P.A.:Broze,G.Interaction of sodium dodecyl sulfate with methacrylate-PEG comb copolymers,Langmuir:2005;21:5174-5178.
    [18]Meszaros,R.;Varga,I.:Gilanyi.T.Effect of polymer molecular weight on the polymer/surfactant interaction,J.Phys.Chem.B.:2005;109:13538-13544.
    [19]Couillet,I.;Hughes,T.;Maitland.G.Synergistic effects in aqueous solutions of mixed wormlike micelles and hydrophobically modified polymers,Macromolecules;2005:38:5271-5282.
    [20]Michel,E.;Appell.J.:Molino.F.:Kieffer,J.;Porte.G.Unstable flow and nonmonotonic flow curves of transient networks,J.Rheol.;2001;45:1465-1477.
    [21]Croce,V.;Cosgrove,T.;Maitland,G.;Hughes,T.;Karlsson,G.Rheology,gryogenic transmission electron spectroscopy,and small-angle neutron scattering of highly viscoelastic wormlike micellar solutions,Langmuir:2003;19:8536-8541.
    [22]Rubinstein,M.;Semenov,A.N.Dynamics of entangled solutions of associating polymers,Macromolecules;2001;34:1058-1068.
    [23]Gong,H.J.;Xin.X.;Xu,G.Y.;Wang,Y.J.The dynamic interfacial tension between HPAM/C_(17)H_(33)COONa mixed solution and crude oil in the presence of sodium halide,Colloids and surfaces A;2008;317:522-527.
    [24]Caputo,M.R.;Selb,J.;Candau,F.Effect of temperature on the viscoelastic behaviour of entangled solutions of multisticker associating polyacrylamides,Polymer;2004:45:231-240.
    [25]严瑞瑄.水溶性高分子.北京.化学工业出版社,1998,84-167.
    [26]张宏方.王德民.岳湘安,王立军.HPAM分子对多孔介质中残余油的作用机理.高分子材料科学与工程,2004.20:161-164.
    [27]林梅钦,董朝霞,宋锦宏.唐亚林.李明远,吴肇亮,部分水解聚丙烯酰胺柠檬酸铝体系临界交联浓度的研究.高分子学报,2003,6:816-820.
    [28]赵国玺.朱步瑶.表面活性剂作用原理,北京,中国轻工业出版社,2003.416-418.
    [29]徐桂英,李干佐.李方,毛宏志,刘木辛,苏红梅,PAM与月桂酸钠的相互作用,化学学报,1995.53:837-841.
    [30]董姝丽,聚合物/表面活性剂相互作用研究.硕士论文,2004.15-25.
    [31]赵国玺,表面活性剂物理化学,北京大学出版社,北京,1991,383-420.
    [32]徐桂英.李锡忠,李干佐.毛宏志,刘木辛,郑立强,天然羧酸盐对水解聚丙烯酰胺流变性的影响.化学物理学报,1996.9:77-82.
    [33]李一鸣.多糖高分子与表面活性剂之间的相互作用.博士学位论文,2007,50-69.
    [34]徐桂英,苏红梅.李干佐,刘木辛,李方.毛宏志.聚丙烯酰胺与混合表面活性剂的相互作用,物理化学学报,1994,1D:909-1014.
    [35]Zhang,D.Q.;Cao,Y.:Zhang,H.D.;Yang,Y.L.:Zhang,Y.X.Interaction of fluorocarbon and hydrocarbon hydrophically co-modified PAA with a nonionic surfactant:rheological properties of polymer solutions in the absence of salt,Polymer;2002;43:2075-2084.
    [36]Tam,K.C.;Jenkins,R.D.;Winnik,M.A.;Bassett,D.R.A structural model of hydrophobically modified urethane-ethoxylate(HEUR)associative polymers in shear flows.Macromolecules;1998;31(13);4149-4159.
    [37]Tirtaatmadja.V.;Tam.K.C.:Jenkins.R.D.Rheological properties of model alkali-soluble associative(HASE)polymers:Effect of varying hydrophobe chain length.Macromolecules:1997:30(11);3271-3282.
    [38]江体乾,化工流变学,上海,华东理工大学出版社.2004.118-120.
    [39]Franqois.J.;Dayantis,J.;Sabbadin,J.Hydrodynamical behaviour of the poly(ethylene oxide)-sodium dodecylsulphate complex.Eur.Polvm.J.;1985:21:165-174.
    [40]Cross,M.M.Rheology of non-newtonian fluids:a new flow equation for pseudo-plastic systems,Journal of Colloid and Interface Science:1965:20:417-437.
    [41]Mu,J.H.;Li,G.Z.;Jia,X.L.;Wang,H.X.:Zhang.G.Y.Rheological properties and microstructures of anionic micellar solutions in the presence of different inorganic salts,J.Phys.Chem.B;2002:106:11685-11693.
    [42]Norinaga,K.;Kuniya,M.;Iino.M.Effect of associative interaction on the dynamic viscoelastic property of coal concentrated solution,Energy & Fuels:2002:16:62-68.
    [43]Hulden,M.Hydrophobically modified urethane-ethoxylate(HEUR)associative thickeners 1.Rheology of aqueous solutions and interactions with surfactants.Colloids Surf.A:1994:82:263-277.
    [44]Goddard,E.D.;Leung,P.S.Studies of gel formation,phase behavior and surface tension in mixtures of a hydrophobically modified cationic cellulose polymer and surfactant,Colloids Surf:1992;65:211-219.
    [45]Kj(?)niksen,A.L.;Nilsson,S.;Thuresson,K.;Lindman,B.;Nystrom.B.Effect of surfactant on dynamic and viscoelastic properties of aqueous solutions of hydrophobically modified ethyl(hydroxyethyl)cellulose,with and without spacer,Macromolecules;2000:33:877-886.
    [46]Penott-Chang,E.K.;Gouveia,L.:Fernandez,I.J.:Muller.A.J.:Diaz-Barrios,A.;Eduardo Saez.A.Rheology of aqueous solutions of hydrophobically modified polyacrylamides and surfactants,Colloids Surf.A;2007;295:99-106.
    [47]Panmai,S.;Prud'homme,R.K.:Peiffer,D.G.Rheology of hydrophobically modified polymers with spherical and rod-like surfactant micelles.Colloids Surf.A:1999:147:3-15.
    [48]Li,Y.M.;Xu,G.Y.;Wu,D.;Sui,W.R The aggregation behavior between anionic carboxymethylchitosan and cetyltrimethylammonium bromide:MesoDyn simulation and experiments,Eur.Polym.J.;2007;43:2690-2698.
    [49]Xu,G.;Li,G.:Li,F.:Mao,H.:Liu,M.;Su,H.The interaction between polyacrylamide and sodium laurate,Acta Chim.Sinica:1995;53:837-841.
    [50]Xu,G.;Su,H.;Li,G.;Liu,M.;Li,F.:Mao,H.The interaction between ployacrylamide and mixed surfactants,Acta Phys.-Chim.Sin.:1994;10:909-914.
    [51]Liu,M.;Xu,G.:Li.G.;Mao.H.:Li,F.The transient interfacial tension between oleic acid-sodium oleate aqueous solution and crude oil.Acta Phvs.-Chim.Sin.:1995;11:1040-1043.
    [52]Bhattarcharya,S.K.:Misra,A.Rheological properties of a liquid-crystalline copolyester,Polymer Engineering and Science;2004:30:124-128.
    [53]Horbaschek,K.;Hoffmann,H.:Thunig,C.J.Formation and properties of lamellar phases in systems of cationic surfactants and hydroxy-naphthoate,Journal of Colloid and Interface Science:1998:206:439-456.
    [54]Kumaraswamy,G.;Wadekar,M.N.:Agrawal,V.V.;Pasricha,R.Polycondensation in liquid crystalline phases of nonionic surfactants:Kinetics and morphology,Polymer:2005;46:7961-7968.
    [55]Krishnaswamy,R.;Ghosh,S.K.;Lakshmanan,S.;Raghunathan,V.A.;Sood,A.K.Phase behavior of concentrated aqueous solutions of cetyltrimethylammonium bromide(CTAB)and sodium hydroxy naphthoate(SHN),Langmuir:2005:21:10439-10443.
    [56]Sugimoto,T.;Ozaki.M.;Usui,S.:Furusawa,K.:Kitahara,A.:Matsumoto,T.;Hachisu.S.Colloid Science I.Tokyo Kagaku Doujin,Tokyo.Japan,1995;135-268.
    [57]Ottewill,R.H,Emulsion Polymerization and Emulsion Polymers,Wiley,1997.
    [58]Fitch,R.M.;Polymer Colloids:A Comprehensive Introduction,Academic Press.New York.1997;145-172.
    [59]Kujawa.P.:Audibert-Hayet,A.;Selb.J.;Candau.F.Effect of ionic strength on the rheological properties of multisticker associative polyelectrolytes,Macromolecules;2006;39:384-392.
    [60]Long,J.;Xu,Z.H.;Masliyah,J.H.Role of illite-illite interactions in oil sands processing,Colloids and Surfaces A:Physicochem.Eng.Aspects;2006;281:202-214.
    [61]Khatory,A.;Lequeux,F.;Kern,F.:Candau,S.J.Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high salt content,Langmuir;1993;9:1456-1464.
    [62]Schulte,J.;Eners,S.;Quitzsch,K.Rheological studies of aqueous alkylpolyglucoside surfactant solutions,Colloid Polym.Sci.:1999;277:827-836.
    [63]Norinaga,K.;Kuniya,M.;Iino.M.Effect of associative interaction on the dynamic viscoelastic property of coal concentrated solution,Energy & Fuels;2002;16:62-68.
    [64]Hulden,M.Hydrophobically modified urethane-ethoxylate(HEUR)associative thickeners 1.Rheology of aqueous solutions and interactions with surfactants.Colloids Surf.A;1994:82:263-277.
    [65]Stauffer,D.Gelation in concentrated critically branched polymer solutions.Percolation scaling theory of intramolecular bond cycles,J.Chem.Soc.,Faraday Trans.:1976;272:1354-1364.
    [1] P. Alexandridis, T. A. Hatton, Colloids Surf. A 96 (1995) 1.
    
    [2] P. Alexandridis. T. Nivaggioli, T. A. Hatton. Langmuir 11 (1995) 1468.
    
    [3] P. Alexandridis, V. Athanassiou. T. A. Hatton. Langmuir 11 (1995) 2442.
    
    [4] D. Zhou. P. Alexandridis, A. Khan, J. Colloid Interface Sci. 183 (1996) 339.
    
    [5] P. Alexandridis, P. Holmqvist. B. Lindman, Colloids Surf. A 129-130 (1997) 3.
    
    [6] X. Y. Xiong, K. C. Tam, L. H. Gan, Macromolecules 36 (2003) 9979.
    
    [7] P. Holmqvist, P. Alexandridis, B. Lindman. J. Phys. Chem. B 102 (1998) 1149.
    [8] R. Ivanova, B. Lindman. P. Alexandridis. Langmuir 16 (2000) 9058.
    
    [9] M. A. Bevan, D. C. Prieve. Langmuir 16 (2000) 9274.
    
    [10] M. A. Firestone, A. C. Wolf, S. Seifert, Biomacromolecules 4 (2003) 1539.
    
    [11] M. A. Firestone, D. M. Tiede, S. Seifert. J. Phys. Chem. B 104 (2000) 2433.
    
    [12] R. Ivanova, B. Lindman, P. Alexandridis. Langmuir 16 (2000) 3660.
    
    [13] D. Varade, R. Sharma, V. K. Aswal, P. S. Goyal, P. Bahadur, Eur. Polym. J. 40 (2004) 2457.
    
    [14] R. Ivanova, P. Alexandridis, B. Lindman, Colloids Surf. A 183-185 (2001) 41.
    
    [15] P. Brandani, P. Stroeve, Macromolecules 37 (2004) 6640.
    
    [16] W. Batsberg, S. Ndoni, C. Trandum, S. Hvidt Macromolecules 37 (2004) 2965.
    
    [17] Alexandridis P, Olsson U, Lindman B. Langmuir 1998; 14: 2627.
    
    [18] Zhu W, Wang BB, Zhang Y, Ding JD. Eur. Polym. J. 2005: 41:2161.
    
    [19] Wang LY, Chen X. Chai YC, Hao JC, Sui ZM, Zhuang WC, Sun ZW. Chem. Commun. 2004;24:2840.
    
    [20] Liu T, Xie Y, Liang D, Zhou S, Jassal C, McNabb M, Hall C, Chuang CL, Chu B. Langmuir 1998; 14:7539.
    
    [21] Liu T, Xie Y. Liu LZ. Chu B. Langmuir 2000: 16: 7533.
    
    [22] Zhang ZQ, Xu GY, Wang F. J. Colloid Interface Sci. 2005; 282: 1.
    
    [23] Zhang ZQ, Xu GY, Wang F. J. Colloid Interface Sci. 2004; 277: 464.
    
    [24] Wang F, Xu GY, Zhang ZQ, Xin X. Eur. J. Inorg. Chem., 2006; 1: 109.
    
    [25] Cao XR, Xu GY, Li YM, Zhang ZQ. J. Phys. Chem. A. 2005; 109: 10418.
    
    [26] Wu G, Zhou Z, Chu B. Macromolecules 1993; 26: 2117.
    
    [27] Alexandridis P, Holzwarth JF, Hatton TA. Macromolecules 1994; 27: 2414.
    
    [28] Alexandridis P, Olsson U. Lindman B. Macromolecules 1995; 28: 7700.
    
    [29] Alexandridis P, Zhou D, Khan A. Langmuir 1996; 12: 2690.
    
    [30] Alexandridis P, Andersson K. J. Phys. Chem. B 1997; 101: 8101.
    
    [31] Alexandridis P, Holzwarth JF. Langmuir 1997; 13: 6074.
    
    [32] Alexandridis P, Athanassiou V, Fukuda S, Hatton TA. Langmuir 1994; 10: 2604.
    
    [33] De Lisi R, Milioto S. Langmuir 2000; 16: 5579.
    
    [34] Marinov G, Michels B, Zana R. Langmuir 1998; 14: 2639.
    
    [35] Gallaugher AF, Hibbert H. J. Am. Chem. SOC. 1937; 59: 2514.
    
    [36] Li X, Mya KY, Ni X, He C, Leong KW, Li J, J. Phys. Chem. B 2006; 110: 5920.
    
    [37] Xu GY, Chen AM, Yang YL, Yuan SL, Zheng LQ, Colloids Surf. A 2005; 256: 69.
    
    [38] Zhou Z, Chu B. J. Colloid Interface Sci. 1988; 126: 171.
    
    [39] Malmsten M, Linse P, Zhang KW. Macromolecules 1993; 26: 2905.
    
    [40] Linse P. J. Phys. Chem. 1993; 97: 13896.
    [1] E. D. Goddard, K. P. Ananthapadmanaban. Interactions of Surfactants with Polymer and Proteins, CRC Press: Boca Raton. FL, 1993.
    
    [2] Y. A. Shchipunov, H. Hoffmann. Langmuir 14 (1998) 6350.
    
    [3] C. Wang, K. C. Tam. J. Phys. Chem. B. 109 (2005) 5156.
    
    [4] M. T. Hai, B. X. Han, J. Chem. Eng. Data 51 (2006) 1498.
    
    [5] K. Zhang, B. Xu, M. A. Winnik, P. M. Macdonald, J. Phys. Chem. 100 (1996) 9834.
    
    [6] T. Chakraborty, I. Chakraborty, S. Ghosh, Langmuir 22 (2006) 9905.
    
    [7] S. Trabelsi, D. Langevin. Langmuir 23 (2007) 1248.
    
    [8] G. Bai. Y. Wang. H. Yan. R. K. Thomas. J. C. T. Kwak. J. Phys. Chem. B. 106 (2002) 2153.
    
    [9] D. J. F. Taylor, R.K. Thomas. J. Penfold, Advances in Colloid and Interface Science 132 (2007) 69.
    
    [10] R. Humphry-Baker, M. Gr(a|¨)tzel, Y. Moroi, Langmuir 22 (2006) 11205.
    
    [11] J. Lee, Y. Moroi, Langmuir 20 (2004) 6116.
    
    [12] M. Tsianou, P. Alexandridis. Langmuir 15 (1999) 8105.
    
    [13] Y. M. Li, G. Y. Xu, A. M. Chen, S. L. Yuan, X. R. Cao, J. Phys. Chem. B 109 (2005) 22290.
    
    [14] D. W. McQuigg, J. I. Kaplan, P. L. Dubin. J. Phys. Chem. 96 (1992) 1973.
    
    [15] Y. Moroi, A. Otonishi, N. Yoshida, J. Phys. Chem. B 103 (1999) 8960.
    
    [16] K. Hayakawa, H. Murata, I. Satake, Colloid Polym. Sci. 268 (1990) 1044.
    
    [17] S. John Bosco, H. Zettl, J. J. Crassous, M. Ballauff. G. Krausch. Macromolecules 39 (2006) 8793.
    
    [18] V. I. Kovalchuk, R. Miller, V. B. Fainerman and G. Loglio, Adv. Colloid Interface Sci. 114-115 (2005) 303.
    [19] E. E. Makhaeva. H. Tenhu, A. R. Khokhlov, Macromolecules 35 (2002) 1870.
    
    [20] G. A. Stahl, D. N. Schulz, Water-soluble polymers for petroleum recovery. ACS, meeting. Anaheim. Calif., 1986.
    
    [21] B. Sesta. A. L. Segre, A. D'Aprano. N. Proietti, J. Phys. Chem. B 101 (1997) 198.
    
    [22] G..Wang, G. Olofsson, J. Phys. Chem. B 102 (1998) 9276.
    
    [23] G. Y. Xu, L. Zhang, Y. L. Yang. X. R. Huang. Spectrochimica Acta Part A 56 (2000) 2431.
    
    [24] Y. X. Luan, G. Y. Xu, S. L.Yuan, L. Xiao, Z. Q. Zhang, Langmuir 18 (2002) 8700.
    
    [25] J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J.Y. Kim, J. H. Park, N. M.Hwang, T. Hyeon, Nature Mater. 3 (2004) 891.
    
    [26] V. Croce, T. Cosgrove, C. Flood, C. A. Dreiss, G. Karlsson, Langmuir 21 (2005) 7646.
    
    [27] D. Wu, G. Y. Xu, Y. J. Feng, Y. M. Li, International J. Biological Macromolecules 40 (2007) 345.
    
    [28] X. Y. Wang, Y. J. Li, J. X. Li, J. B. Wang, Y. L. Wang, Z. X. Guo, H. K. Yan, J. Phys. Chem. B 109 (2005) 10807.
    
    [29] F. Hernáinz Bermúdez de Castro, A. Gálvez Borrego, J. Colloid Interface Sci. 173 (1995) 8.
    
    [30] M. L. Corrin, W. D. Harkins, J. Am. Chem. Soc., 69 (1947) 683.
    
    [31] B.G. Sharma, A.K. Rakshit, J. Colloid Interface Sci. 129 (1989) 139.
    
    [32] L. Zhang, P. Somasundaran, C. Maltesh. Langmuir 12 (1996) 2371.
    
    [33] Ray A., Nemethy G., J. Am. Chem. Soc. 93 (1971) 6787.
    
    [34] G. C. Kresheck, I. Constantinidis, Anal. Chem., 56 (1984) 152.
    
    [35] K. Hayakawa, J. P. Santerre, J. C. T. Kwak. Macromolecules 16 (1983) 1642.
    
    [36] A. Malovikova, K. Hayakawa, J. C. T. Kwak. J. Phys. Chem. 88 (1984) 1930.
    
    [37] Y.Y. Pi, Y. Z. Shang, H. L. Liu, Y. Hu, J. W. Jiang, J. Colloid Interface Sci. 306 (2007) 405.
    
    [38] T. F. Tadros, Colloid Stability: The role of Surface Forces, Part 1. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007.
    
    [39] T. L. Sun, L. Zhang, Y. Y. Wang, S. Zhao, Bo Peng, M.Y. Li, J. Y. Yu, J. Colloid Interface Sci. 255 (2002) 241.
    
    [40] R. Miller, V. B. Fainerman, A.V. Makievskia, J. Kragel, D. O. Grigoriev, V. N. Kazakov, O. V. Sinyachenko, Adv. Colloid Interface Sci. 86 (2000) 39.
    
    [41] C. Stubenrauch, V. B. Fainerman, E. V. Aksenenko, R. Miller, J. Phys. Chem. B 109 (2005) 1505.
    
    [42] H. B. M. Kopperud, F. K. Hansen, Macromolecules 34 (2001) 5635.
    [1] J. A. Shashkina, O. E. Philippova, Y. D. Zaroslov, A. R. Khokhlov, T. A. Pryakhina and I. V. Blagodatskikh, Langmuir 21 (2005) 1524.
    
    [2] B. A. Schubert, N. J. Wagner, E. W. Kaler and S. R. Raghavan, Langmuir 20 (2004) 3564.
    
    [3] C. Wang, and K. C. Tam, J. Phys. Chem. B 109 (2005) 5156.
    
    [4] N. Jain, S. Trabelsi, S. Guillot, D. Mcloughlin, D. Langevin, P. Letellier and M. Turmine, Langmuir 20 (2004) 8496.
    
    [5] D. N. Schulz, J. E. Glass and C. F. Zukoski, ACS Symp. Ser: 462 (1991) 2.
    
    [6] J. Dalvi-Malhotra and L. Chen, J. Phys. Chem. B. 109 (2005) 3873.
    
    [7] H. Middleton, R. J. English, P. A. Williams and G. Broze, Langmuir 21 (2005) 5174.
    
    [8] R. Meszaros, I. Varga and T. Gilanyi. J. Phys. Chem. B. 109 (2005) 13538.
    
    [9] I. Couillet, T. Hughes and G. Maitland. Macromolecules 38 (2005) 5271.
    
    [10] E. Michel, J. Appell, F. Molino, J. Kieffer and G. Porte, J. Rheol. 45 (2001) 1465.
    
    [11] V. Croce, T. Cosgrove, G. Maitland, T. Hughes and G. Karlsson. Langmuir 19 (2003) 8536.
    [12] M. Rubinstein and A. N. Semenov, Macromolecules 34 (2001) 1058.
    
    [13] W. J. Frith, P. d'Haene, R. Buscall and J. Mewis, J Rheol 40 (1996) 531.
    [14] M. R. Caputo, J. Selb and F. Candau. Polymer 45 (2004) 231.
    
    [15] R. B. English, J. H. Laurer, R. J. Spontak, S. A. Khan, Ind. Eng. Chem. Res. 41 (2002) 6425.
    
    [16] Y. J. Feng, B. Grassl, G. Billon, A. Khoukh and J. Francois. Polymer International 51 (2002) 939.
    
    [17] F. B. Ahmad and P. A. Williams, J. Agric. Food Chem. 47 (1999) 3359.
    
    [18] M. R. Gittings, L. Cipelletti, V. Trappe, D. A. Weitz, M. In and J. Lai, J. Phys. Chem. A 105 (2001) 9310.
    
    [19] B. Siffert and Y. Bocquenet, Colloids and Surfaces, 11 (1984) 137.
    
    [20] A. M. Wunderlich, P. O. Brunn and F. Durst, Journal of Non-Newtonian Fluid Mechanics. 28 (1988) 267.
    
    [21] M. H. Yang, Polymer Testing 20 (2001) 635.
    
    [22] X. P. Wang, J. A. Tang and L. Jiang. Chinese Science Bulletin 7 (1997) 710.
    
    [23] G. Z. Li, L. M. Zhai, G. Y.Xu, Q. Shen, H. Z. Mao, J. Dispersion Sci. Techn. 21 (2000) 367.
    
    [24] T. Sugimoto, M. Ozaki, S. Usui, K. Furusawa, A. Kitahara, T. Matsumoto, S. Hachisu, Colloid Science I, Tokyo Kagaku Doujin, Tokyo, Japan, 1995.
    
    [25] R. H. Ottewill, Emulsion Polymerization and Emulsion Polymers, Wiley, 1997.
    
    [26] R. M. Fitch, Polymer Colloids: A Comprehensive Introduction, Academic Press, New York, 1997.
    
    [27] P. Kujawa, A. Audibert-Hayet, J. Selb and F. Candau, Macromolecules 39 (2006) 384.
    
    [28] J. Long, Z. H. Xu, J. H. Masliyah, Colloids and Surfaces A: Physicochem. Eng. Aspects 281 (2006) 202.
    
    [29] A. Khatory, F. Lequeux, F. Kern and S. J. Candau, Langmuir 9 (1993) 1456.
    
    [30] J. Schulte, S. Eners and K. Quitzsch, Colloid Polym. Sci. 277 (1999) 827.
    
    [31] K. Norinaga, M. Kuniya, and M. Iino, Energy & Fuels 16 (2002) 62.
    
    [32] M. Huldén, Colloids Surf. A 82 (1994) 263.
    
    [33] D. Stauffer, J. Chem. Soc., Faraday Trans. 272 (1976) 1354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700