用户名: 密码: 验证码:
酪蛋白胶束结构与功能特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两亲嵌段共聚物以合成的聚合物体系和天然的大分子体系为主,前者如聚酸酐,聚丙烯酸及其衍生物等,后者如酪蛋白,明胶,壳聚糖等。由于天然高分子材料具有性能稳定、无毒、应用安全、生物相容性好及成膜或成球性好、价格低廉等优点,受到越来越多的关注。因此,在发展新材料的同时,对一些天然的两亲嵌段型蛋白分子进行改造、更新和发展,可拓展其在相关领域的应用。从物理化学基础研究来看,分子结构和环境因素的调节对两亲嵌段共聚物聚集体的结构形成与演变有着极其重要的影响,而聚集体结构的变化为其在相关领域的功能性应用提供了更加多样化的选择。本论文的工作是基于上述研究背景以及发展趋势展开的,围绕不同物理化学条件下两亲嵌段型酪蛋白胶束的结构、形态以及环境因素对体系聚集态行为的影响进行深入研究,同时研究酪蛋白胶束与纳米金之间的相互作用,并在酪蛋白溶液中,制备了尺寸和形貌可控的纳米金胶,主要得到了以下几方面的实验结果:
     1.首次以荧光光谱(以酪蛋白分子的内源荧光探针和外加荧光探针芘和1-苯胺基萘-8-磺酸为研究对象)测试技术,同时结合DLS,CD和浊度等方法研究了酪蛋白胶束形成,及pH值对胶束结构-特性的影响。酪蛋白在pH 2.0至3.0,和pH5.5至12.0条件下,皆可以形成胶束,疏水作用、氢键作用和盐键作用在酪蛋白胶束的形成过程中起到了重要作用。同步荧光研究结果表明,在酪蛋白自组装形成胶束过程中,Trp残基和Tyr残基之间的距离逐渐接近,两者之间相互作用加强,可发生能量转移。阴离子荧光探针ANS的研究表明酪蛋白单体分子的疏水区域无法结合ANS;酪蛋白分子的疏水区域自组装形成胶束时,可提供ANS结合所需的疏水区域,使其发射波长明显降低。随着体系pH值降低,ANS与酪蛋白胶束的结合作用明显加强,而当体系pH值较高时,仅有少部分ANS分子与酪蛋白胶束结合,表明ANS与酪蛋白胶束的结合过程中,疏水作用和静电作用同时发挥作用,并且后者更为重要。中性芘分子的研究表明,胶束结构的疏松程度对芘与酪蛋白胶束之间的结合影响非常显著。胶束结构较为致密时,芘分子的刚性结构阻碍芘分子与较深的疏水区域的结合,导致较高的I1/I3和较低的Ie/I1;当胶束结构较为疏松时,则反之。CD结果还表明,在形成胶束以后,酪蛋白分子的二级结构发生了明显变化,其β-折叠含量降低,α-螺旋含量增加。综合以上结果可知,酪蛋白胶束表面和内核皆存在疏水区域可结合有机小分子,pH值对探针分子与酪蛋白胶束之间的结合作用存在明显影响,这为酪蛋白胶束在生物医学上作为药物载体提供了有益的理论依据。
     2.以等温滴定微量热、浊度、荧光光谱、DLS和TEM等测试手段研究了阳离子表面活性剂十二烷基三甲基溴化铵(DTAB)与酪蛋白胶束的相互作用。研究结果表明,在DTAB浓度低于c1(1.38mM)时,DTAB单体分子以静电作用与酪蛋白胶束的负电荷位点结合,导致△Hobs增加。同时,酪蛋白胶束表面所荷净负电荷降低,胶束的结构更为致密,因此,Trp残基与芘分子所处微环境的极性降低。与此相反,由于阴离子探针ANS与DTAB极性头间的静电作用,其位于胶束表面的较亲水的环境。当DTAB浓度高于c1(1.38mM)时,DTAB在酪蛋白胶束上生成胶束状聚集体,导致了不溶酪蛋白/DTAB复合物的生成。当DTAB浓度增至c′时,由于与酪蛋白胶束结合的DTAB分子不断增加,而使酪蛋白/DTAB复合物带上净的正电荷,复合物极性增加,溶解度增加。此外,由于与酪蛋白结合的胶束状DTAB聚集体的存在及聚集体之间的静电作用,导致体系中酪蛋白/DTAB复合体的结构比较疏松,粒径相对于酪蛋白胶束有所增加。因此,Trp残基和芘分子所处微环境极性增加。当DTAB浓度大于c2时,与酪蛋白胶束结合的DTAB分子达到饱和,体系中生成DTAB自由胶束。研究结果还表明,在大量盐存在的情况下,酪蛋白与表面活性剂之间的静电作用受到很大屏蔽;盐的加入同时屏蔽了表面活性剂极性头基之间的静电斥力作用,从而有利于自由胶束的形成,抑制了DTAB分子与酪蛋白胶束的结合。
     3.以荧光光谱法、圆二色谱、等温滴定微量热和DLS等测试手段研究了阴离子表面活性剂十二烷基硫酸钠SDS对酪蛋白胶束特性的影响。由于SDS与酪蛋白胶束之间强烈的疏水作用,SDS的加入导致酪蛋白胶束的物理化学性质发生明显变化。SDS浓度低于临界聚集浓度(c1)时,SDS单体分子以疏水作用与酪蛋白胶束的疏水区域结合,当其浓度增加至c1时,SDS聚集体于酪蛋白链上形成,c1数值远低于SDS于水中的临界胶束浓度(cmc)。SDS浓度进一步增加至临界胶束浓度c2时,SDS自由胶束生成,与酪蛋白/SDS复合体共存于体系中。DLS结果确证了酪蛋白-SDS复合体的形成,结合于酪蛋白胶束疏水区域的SDS聚集体导致酪蛋白胶束膨胀,从而使复合体尺寸有所增加。酪蛋白内源荧光的研究表明,SDS与酪蛋白的疏水区域结合后,阻碍了色氨酸与酪氨酸残基之间的能量传递。外加探针芘和ANS的荧光研究表明,SDS的加入几乎未影响酪蛋白疏水区域的微极性,却抑制了芘的激基复合物生成。同时,SDS与ANS之间的静电斥力作用明显抑制了ANS与酪蛋白胶束的亲合性。CD测试显示,SDS的加入使酪蛋白分子的二级结构也发生了明显变化。
     4.在酪蛋白溶液中,以简单易行的方法制备了形态和尺寸可控的纳米金;同时以紫外光谱、XRD、透射电镜和电子衍射等测试手段对产品进行表征。荧光光谱和NMR测试结果表明,HAuCl4可直接与酪蛋白胶束表面及内部的氨基、羧基或二硫键等基团进行结合,并且可以均匀地分散到每个胶束核内。酪蛋白胶束与HAuCl4混合溶液在室温下,在不引入其它还原剂条件下,可生成形貌和尺寸可控的纳米金。酪蛋白浓度较低时,体系中主要生成三角片状和十面体纳米金,大尺寸三角片状纳米金比例较高;当酪蛋白浓度较高时,由于酪蛋白胶束较强的保护作用,体系中主要生成球状纳米金,仅有少量三角片状和十面体纳米金生成。在制备纳米金过程中,酪蛋白除起到模板和保护作用,还起到还原剂作用。当酪蛋白浓度较低时,酪蛋白分子可优先吸附于纳米金的(111)表面,而使纳米金沿着其它晶面接触互相结合生长,形成较大的多角纳米金。当酪蛋白浓度较高时,酪蛋白胶束较强烈的保护作用,使小尺寸的纳米金不再随时间继续“生长”,主要以小尺寸的球状纳米金存在。当体系中有纳米金晶种存在时,酪蛋白分子可进一步还原体系中未反应的Au(III)。所制备纳米金多为球状,有少部分三角状和十面体纳米金存在。pH值对制备纳米金的影响结果进一步表明,质子化的氨基在氯金酸的还原中起到了重要作用。
     5.以紫外-可见吸收光谱、TEM、荧光光谱法、zeta-电势法研究了纳米金胶(GNP)与酪蛋白胶束(CM)之间的相互作用。紫外-可见吸收光谱研究结果表明,由于GNPs与酪蛋白胶束的结合,GNPs所处环境的介电常数发生了变化,从而导致其特征共振吸收峰红移。TEM测试结果表明,酪蛋白胶束存在时,金纳米粒子之间的距离明显缩小,形成了球状纳米金团簇。金纳米粒子基本限定在球状结构之内,但在球状纳米金团簇中可观察到界面清晰的金纳米粒子,没有出现金纳米粒子的团聚和聚沉。金纳米粒子粒径的统计分析结果显示:酪蛋白胶束与纳米金的结合并未影响金纳米粒子的粒径。荧光光谱法测试结果表明,纳米金与酪蛋白胶束的结合并未使酪蛋白分子中色氨酸残基发生峰位移,也未使芘探针所处的微环境极性发生改变,表明酪蛋白胶束的结构在结合纳米金粒子以后并未发生明显改变,纳米金仅结合于酪蛋白胶束的表面。紫外-可见吸收光谱测试还表明,CM-GNP结合体对盐和pH值的变化表现出较高的稳定性。综合以上结果可知,GNPs与酪蛋白胶束可与酪蛋白分子上氨基、羧基或二硫键进行络合,或以疏水作用进行结合。荧光测试结果还表明,Trp残基与纳米金之间的亲近程度在不同pH值和盐存在情况下存在较大差异。
Amphiphilic block polymers including nature and synthetic polymers have attracted much attention because of their widespread applications and relatively complex behaviors. Because of many good properties such as low cost, stability, safety and good biocompatible of nature amphiphilic polymers (e.g. casein, gelatin, and chitosan), they have been shown to exhibit properties beneficial to food, cosmetic and medical science and will have significant implications in advances of future generations of materials. It is well-known that the environment conditioning can significantly alter the behavior and overall performance of biopolymers, which provides more choices for the wide use in practice. Therefore, in our work, the structure-property relationship of casein micelles modulated by the environment conditioning has been deeply studied. Furthermore, the interaction between casein micelles and gold nanoparticles, as well as the synthesis of gold nanoparticles in casein micelles has also been studied. The results will broaden the application range of the casein in food, cosmetic and medicine domains. The following are some main results from our work:
     1. The association behavior of the casein over a broad pH range has been firstly investigated by fluorescent technique together with CD, DLS and turbidity measurements. Casein molecules can self-assemble into casein micelles in the pH range 2.0 to 3.0, and 5.5 to 12.0. The hydrophobic interaction, hydrogen bond and electrostatic action are main interactions in the formation of casein micelle. The casein micelle has the most compact structure at pH 5.5, when the casein micelle has almost zero charge. The structure of the casein micelle becomes looser with the increase of pH because of the stronger electrostatic repulsive interaction. The compact extent of casein micelle structure plays an important role in the binding of pyrene molecules to casein micelles. The rigid configuration of pyrene molecules limits the affinity of pyrene molecules to the hydrophobic domain of casein micelles with more compact structure. ANS has high affinity with casein micelle only at acidic condition and the affinity decrease sharply with the increase of pH. Therefore, apart from the hydrophobic interaction, the electrostatic interaction between ANS and casein micelles plays an important role in the binding of ANS to casein micelles. The sheet structure transfer to helix and turn structure during the self-assembling process of casein, and more helix structure are formed at acid condition.
     2. The interactions between the cationic surfactant dodecyltrimethylammonium bromide (DTAB) and 2.0 mg/ml casein were investigated using isothermal titration calorimetry (ITC), turbidity, dynamic light scattering (DLS), and fluorescence spectra measurements. At DTAB concentration lower than the c1 (1.38 mM), the cationic headgroups of surfactant individually bind to the negative charged amino acid sites on the casein chains due to electrostatic attraction, which results in an increase of△Hobs. At the same time, the structure of casein micelles becomes more compact due to the decrease in the net negative charge of the casein micelle shell, and hence a decrease of the casein micelle’s hydrodynamic radius. When the DTAB concentration exceeds c1, the casein bound surfactant aggregates result in the formation of large insoluble casein/surfactant complexes because of the markedly electrical neutralization of negative charge of casein micelles by cationic DTAB. This leads to the sharp increase of the turbidity of the system beyond c1. Therefore, the turbidity increases sharply and then reaches a maximum value with the addition of DTAB. Beyond c′, the net positive charges on the complexes owing to the binding by more cationic surfactant molecules lead to a redissolution of the complexes, corresponding to the formation of the new casein/DTAB complexes. At DTAB concentration of 18 mM (c2), all the caseins are saturated by DTAB aggregates and free DTAB micelles appear in solution. In excess of salt, where the electrostatic attractive force between casein and surfactant is considerably screened, and the electrostatic repulsion between the surfactant headgroups is also shielded by the addition of salt, which favors the formation of free micelles of DTAB.
     3. The influence of the typical anionic surfactant sodium dodecyl sulfate (SDS) on the properties of casein micelles was investigated using fluorescence spectra, isothermal titration calorimetry, CD, DLS and TEM techniques. The hydrophobic interaction between SDS and casein micelles leads to important changes in physicochemical parameters of casein micelles. At SDS concentration lower than critical aggregation concentration (c1), SDS monomers bind to the hydrophobic domain of the casein micelles by hydrophobic interaction. When SDS concentration reaches c1, the micelle-like SDS aggregate are formed in casein chain. When SDS concentration reaches the critical micelle concentration (c2), free SDS micelles coexist with casein/SDS complexes in the system. The intrinsic fluorescence results show that the addition of SDS hampers the energy transfer between Trp and Tyr residues after SDS binding to the hydrophobic domain of casein micelles. The extrinsic probe (pyrene and ANS) fluorescence results show that the bound SDS molecules limit the formation of pyrene excimer, but don’t affect the microenvironment polarity around pyrene molecules. In addition, the addition of SDS decreases the affinity of ANS to casein micelles obviously because of the electrostatic repulsive interaction between ANS and SDS. CD measurements show that the addition of SDS leads to the variation of the second structure of casein molecules. TEM imagines and DLS confirm the formation of casein-SDS mixed micelles. Thus, it seems that the presence of the anionic surfactant can be a tool to control the size and properties of casein aggregates in solution.
     4. We report the spontaneous, in-situ synthesis of gold nanoparticles within casein micelles. Simple and convenient methods were employed that resulted in gold particle formation as asserted by UV-vis spectroscopy and transmission electron microscopy (TEM), selected area-electron diffraction (SAED) and XRD measurements. Au colloids with various morphologies (e.g., spherical nanoparticles, triangular, hexagonal plates and decahedron) are formed through auto reduction of HAuCl4 in casein aqueous solution at room temperature without any additional chemical. The casein molecules provided the dual function of Au(III) reduction and directing the anisotropic growth of Au (0) into plate-like structures. XRD and SAED showed that the nanoplates were oriented with {111} planes as their basal planes. There is no additional template agent in the synthesis process, which makes the synthetic procedures and the related treating processes very simple. The present synthetic route is fast and the size of the resultant nanosheets is very large, and it is favorable to produce gold nanosheets in large scale. The percentage of the gold nanotriangles and decahedron can be easily varied by merely adjusting the raio of Au/casein. These are most likely determined in terms of a competition between metal ion reduction activity and on the surface of particles and/or among particle aggregates and the colloidal stabilization modulated by the casein molecules. In the presence of Au seed, large portion of spherical gold particles, and only a small portion of triangle gold particles are formed. The effect of pH on the formation of gold nanoparticles suggests that the protonated amino plays an important role in the reduditon of Au(III).
     5. For the first time, the interaction of casein micelles (CMs) with gold nanoparticles (GNPs) was studied using UV-visible spectroscopy, TEM, fluorescence spectroscopy, andζ-potential measurements, respectively. The red shift in the position of the plasmon absorption band is produced by a perturbation in the dielectric constant around GNPs due to their adsorption on CMs. No significant broadening of the spectrum is observed after the adsorption, indicating that the GNPs do not experience aggregation into larger nanoparticles upon the adsorption on CMs. TEM results show that the gold particles also exhibit similar particle diameter, but appear clustered on the micrographs rather than being evenly dispersed in the presence of CMs. In addition, the typical GNP cluster takes on spherical with a diameter of about 250 nm. Fluorescence studies further indicate the GNPs are located on the CM surfaces, and the CM structure is retained after the adsorption of GNPs. UV-visible spectroscopy also shows that the GNP-CM conjugates display good stability toward salt concentration and pH. The combination of these measurements suggests that GNPs bind to CM surfaces via complexation with the carboxylate, amine or S groups on CM surfaces and hydrophobic interaction, but not by electrostatic action. The proximity of GNPs on casein micelle surface to Trp residues differs much at different pH, and in the presence of different salt.
引文
[1] Price, C., Pure. Appl. Chem., 1983, 55: 1563-1572.
    [2] Pedersen, J. S., Svaneborg, C., Curr. Opin. Colloid Interface Sci., 2002, 7: 158-166.
    [3] Discher, D. E., Eisenberg, A., Science, 2002, 297: 967-973.
    [4] Eisenberg, A., Chem. Mater., 1998, 10: 1021-1028.
    [5] Underhill, R. S., Liu, G., J. Chem. Mater., 2000, 12: 3633-3641.
    [6] Klingelhofer S., Heitz, W., Greiner, A., J. Am. Chem. Soc., 1997, 119: 10116-10120.
    [7] Yu, K., Eisenberg, A. Macromolecules, 1998, 31: 3509-3518.
    [8] Zhang, L. F., Eisenberg, A., Macromolecules, 1999, 32: 2239-2249.
    [9] Zhao, H. Y., Douglas, E. P., Harrision, B. S., Langmuir, 2001, 17: 8428-8433.
    [10] Zhang, L. F., Eisenberg, A., Science, 1995, 268: 1728-1731.
    [11] Ranquin, A., Versées, W., Meier, W., Steyaert, J., Gelder, P. V., Nano Lett., 2005, 5: 2220 -2224.
    [12] He, Y. Y., Li, Z. B., Simone, P., Lodge, T. P., J. Am. Chem. Soc., 2006, 128: 2745 -2750.
    [13] Li, X., Tang, P., Qiu, F., Zhang, H. D., Yang, Y. L., J. Phys. Chem., 2006, 110: 2024 -2030.
    [14] Bang, J., Jain, S., Li, Z., Lodge, L. P., Macromolecules, 2006, 39: 1199 -1208.
    [15] Yeh, Y. Q., Chen, B. C., Lin, H. P., Tang, C. Y., Langmuir, 2006, 22: 6 -9.
    [16] Jiang, Y., Zhu, J. T., Jiang, W., Liang, H. J., J. Phys. Chem. B, 2005, 109: 21549 -21555.
    [17] Cerritelli, S., Fontana, A., Velluto, D., Adrian, M., Dubochet, J., Maria, P. D., Hubbell, J. A., Macromolecules, 2005, 38: 7845 -7851.
    [18] Zhu, J. T., Yu, H. Z., Jiang, W., Macromolecules, 2005, 38: 7492 -7501.
    [19] Jiang, Y., Chen, C., Ye, F. W., Liang, H. J., Shi, A., Macromolecules, 2005, 38: 6710 -6717.
    [20] Geng, Y., Ahmed, F., Bhasin, N., Discher, D. E., J. Phys. Chem. B, 2005, 109: 3772 -3779.
    [21] Adams, D. J., Butler, M. F., Weaver, A. C., Langmuir, 2006, 22, 4534 -4540.
    [22] He, X. H., Schmid, F., Macromolecules, 2006, 39: 2654 -2662.
    [23] Awan, M. A., Dimonie, V. L., Ou-Yang, D., El-Aasser, M. S., Langmuir, 1997, 13: 140 -146.
    [24] Dai, S., Ravi, P., Leong, C. Y., Tam, K. C., Gan, L. H., Langmuir, 2004, 20: 1597 -1604.
    [25] Lodge, T. P., Xu, X., Ryu, C. Y., Macromolecules, 1996, 29 (18), 5955 -5964.
    [26] Heck, B., Arends, P., Ganter, M., Kressler, J., Stühn, B., Macromolecules, 1997, 30: 4559 -4566.
    [27] Wang, F., Bronich, T. K., Kabanov, A. V., Rauh, R. D., Roovers, J., Bioconjugate Chem., 2005, 16: 397 -405.
    [28] Khougaz, K., Zhong, X. F., Eisenberg, A., Macromolecules, 1996, 29: 3937 -3949.
    [29] Petit-Agnely, F., Iliopoulos, L., Zana, R., Langmuir, 2000, 16: 9921 -9927.
    [30] Gil, E. S., Hudson, S. A., Prog. Polym. Sci., 2004, 29: 1173-1222.
    [31] Jeong, B., Gutowska, A., Trends Biotechnol., 2002, 20(7): 305-311.
    [32] Galaev, I. Y., Mattiasson, B., Trends Biotechnol., 1999, 17: 335-340.
    [33] Borchert, U., Lipprandt, U., Bilang, M., Kimpfler, A., Rank, A., Langmuir, 2006, 22: 5843 -5847.
    [34] Du, J. Z., Tang, Y. Q., Lewis, A. L., Armes, S. P., J. Am. Chem. Soc., 2005, 127 (51), 17982 -17983.
    [35] Du, J. Z., Armes, S. P., J. Am. Chem. Soc., 2005, 127 (37): 12800 -12801.
    [36] Gillies, E. R., Fréchet, J. M. J., Bioconjugate Chem., 2005, 16 (2): 361 -368.
    [37] Rodríguez-Hernández, J., Lecommandoux, S., J. Am. Chem. Soc., 2005, 127 (7): 2026 -2027.
    [38] Deo, P., Deo, N., Somasundaran, P., Jockusch, S., Turro, N. J., J. Phys. Chem. B, 2005, 109 (44): 20714 -20718.
    [39] Lee, S. C., Kim, K. J., Jeong, Y., Chang, J. H., Choi, J., Macromolecules, 2005,38 (22): 9291 -9297.
    [40] Zhang, Y. W., Jiang, M., Zhao, J. X., Wang, Z. X., Dou, H. J., Chen, D. Y., Langmuir, 2005, 21 (4), 1531 -1538.
    [41] Lee, S. C., Choi, H. S., Ooya, T., Yui, N., Macromolecules, 2004, 37 (20): 7464 -7468.
    [42] Mandracchia, D., Pitarresi, G., Palumbo, F. S., Carlisi, B., Giammona, G., Biomacromolecules, 2004, 5 (5): 1973 -1982.
    [43] Chiu, H., Lin, Y., Hung, S., Macromolecules, 2002, 35 (13), 5235 -5242.
    [44] Francis, M. F., Dhara, G., Winnik, F. M., Leroux, J., Biomacromolecules, 2001, 2 (3): 741-749.
    [45]Ma, Y. H., Tang, Y. Q., Billingham, N. C., Macromolecules 2003,36(10): 3475-3484.
    [46]Castelletto, V., Hamley, I. W., Ma, Y., Bories-Azeau, X., Langmuir, 2004, 20(10): 4306-4309.
    [47]Ma, Y. H., Tang, Y. Q., Billingham, N. C., Biomacromolecules 2003, 4(4): 864-868.
    [48]Liu, S. Y., Armes, S. P., Angew. Chem. Int. Ed., 2002, 41(8): 1413-1416.
    [49] Hayakawa, K., Kwak, J. C. T. J. Phys. Chem. 1982, 86(19): 3866-3870.
    [50] Schulz, D. N., Kaladas, J. J., Maurer, J. J., Bock, J., Pace, S. J., Schulz, W. W., 1987, 28:2110-2115.
    [51] Effing, J. J., McLennan, I. J., Kwak, J. C. T., J. Phys. Chem., 1994, 98(10): 2499-2502.
    [52] Hansson, P., Langmuir, 2001, 17(14):4167-4108.
    [53] Bakshi, M. S., Kaur, I., Colloids Surf. A: Physicochem. Eng. Aspects, 2003, 224:185-197.
    [54]李干佐,隋卫平,日用化学工业,1996 5: 2731-2736.
    [55] Schillen, K., Anghel, D. F., da Graca Miguel, M., Lindman, B., Langmuir, 2000,16: 10528-10539.
    [56] Hoff, E., Nystrom, B., Lindman, B., Langmuir, 2001, 17: 28-34.
    [57] Dai, S., Tam, K. C., Li, L., Macromolecules 2001, 34: 7049-7055.
    [58] Vlachy, N., Dolenc, J., Jerman, B., Kogej, K., J. Phys. Chem. B. 2006, 110: 9061-9071.
    [59] Starodoubtsev, S. G., Lavrentyeva, E. K., Khokhlov, A. R., Allegra, G., Famulari, A., Meille, S. V., Langmuir 2006, 22: 369-374.
    [60] Bastardo, L. A., Meszaros, R., Varga, I., Gilanyi, T., Cleasson, P. M., J. Phys. Chem. B. 2005, 109: 16196-16202.
    [61] Rosa, M., Dias, R., da Graca Miguel, M., Lindman, B., Biomacromolecules 2005, 6: 2164-2171.
    [62] Li, Y, J., Wang, X. Y., Wang, Y. L., J. Phys. Chem. B 2006, 110: 8499-8505.
    [63] Jones, M. N., J. Colloid Interface Sci., 1967, 23: 36-42.
    [64] Burke, S. E., Eisenberg, A., Langmuir, 2001, 17: 8341-8347.
    [65] Hirata, F., Levy, R. M., J. Phys. Chem., 1989, 93: 479-484.
    [66] Einarson, M. B., Berg, J. C., Langmuir, 1992, 8: 2611-2615.
    [67] Bromberg, L., J. Phys. Chem., 1994, 98: 10628-10633.
    [68] McLin, M. G., Angell, C. A., J. Phys. Chem., 100 (4): 1181 -1188.
    [69] Saito, M., Ikuta, H., Uchimoto, Y., Wakihara, M., J. Phys. Chem. B, 2003. 107 (42): 11608 -11614.
    [70] Ma, X. J., Wang, X. Y., Wang, J. B., Guo, D. H., Wang, Y. L., Ye, J. P., Wang, Z. P., Yan, H. K., Langmuir, 2004, 20 (14), 5679 -5682.
    [71] Mouri, E., Kaewsaiha, P., Matsumoto, K., Matsuoka, H., Torikai, N., Langmuir, 2004, 20 (24): 10604 -10611.
    [72] Lonetti, B., Nostro, P. L., Ninham, B. W., Baglioni, P., Langmuir 2005, 21: 2242-2249.
    [73] Làòópez-León, T., Jódar-Reyes, A. B., Bastos-González, D., Ortega-Vinuesa, J.L., J. Phys. Chem. B 2003, 107: 5696-5708
    [74] Xu, Y., Wang, C., Tam, K. C., Li, L., Langmuir, 2004, 20: 646-652
    [75] Li, W., Ou, Y. F., BiotechInform, 2000, (4): 37-40.
    [76] Preston, K. R., Cereal Chem., 1981, 58: 317-324.
    [77] Zha, L. S., Hu, J. H., Wang, C. C., Colloid Polym. Sci., 2002, 280: 1116-1121.
    [78] Elsabahy, M., Perron, M. E., Bertrand, N., Yu, G. E., Leroux, J. C., Biomacromolecules, 2007, 8(7): 2250-2257.
    [79] Giacomelli, C., Schmidt, V., Borsali, R. Langmuir, 2007, 23(13): 6947-6955.
    [80] Giacomelli, C., Schmidt, V., Borsali, R. Macromolecules, 2007, 40(6): 2148-2157.
    [81] Wang, Y., Wang, L. S., Goh, S. H., Yang, Y. Y., Biomacromolecules, 2007, 8(3): 1028-1037.
    [82] Jiang, G. B., Quan, D., Liao, K., Wang, H., Molecular Pharmaceutics, 2006, 3(2): 152-160.
    [83] Wang, F., Bronich, T. K., Kabanov, A. V., Rauh, R. D., Roovers, J., Bioconjugate Chem., 2005, 16(2): 397-405.
    [84] Tang, Y., Liu, S. Y., Armes, S. P., Billingham, N. C., Biomacromolecules, 2003, 4(6): 1636-1645.
    [85] Yokoyama, M., Kwon, G. S., Okano, T., Sakurai, Y., Seto, T., Kataoka, K., Bioconjugate Chem., 1992, 3(4): 295-301.
    [86] Rijcken, C. J. F., Veldhuis, T. F. J., Ramzi, A., Meeldijk, J. D., Nostrum, C. F., Hennink, W. E., Biomacromolecules, 2005, 6(4): 2343-2351.
    [87] Soga, O., van Nostrum, C. F., Ramzi, A., Visser, T., Soulimani, F., Frederik, P. M., Bomans, P. H. H., Hennink, W. E., Langmuir, 2004, 20(21), 9388-9395.
    [88] Lackey, C. A., Murthy, N., Press, O. W., Tirrell, D. A., Hoffman, A. S., Stayton, P. S., Bioconjugate Chem., 1999, 10(3): 401-405.
    [89] Gillies, E. R., Goodwin, A. P., Fréchet, J. M. J., Bioconjugate Chem., 2004, 15(6): 1254 -1263.
    [90] Murthy, N., Campbell, J., Fausto, N., Hoffman, A. S., Stayton, P. S., Bioconjugate Chem., 2003, 14 (2): 412 -419.
    [91] Roux, E., Lafleur, M., Biomacromolecules, 2003, 4 (2): 240 -248.
    [92] Lackey, C. A., Press, O. W., Hoffman, A. S., Stayton, P. S., Bioconjugate Chem., 2002, 13 (5): 996 -1001.
    [93] Liang, H. F., Hong, M. H., Ho, R. M., Chung, C. K., Lin, Y. H., Chen, C. H., Sung, H.W., Biomacromolecules, 2004, 5(5): 1917-1925.
    [94] Lecomte, F., Siepmann, J., Walther, M., MacRae, R. J., Bodmeier, R., Biomacromolecules, 2005, 6(4): 2074-2083.
    [95] Otsuka, H., Akiyama, Y., Nagasaki, Y., Kataoka, K., J. Am. Chem. Soc., 2001, 123: 8226-8230.
    [96] Rojas, T. C., de la Fuente, J. M., Barrientos, A. G., Adv. Mater., 2002, 14: 585-588.
    [97] Whaley, S. R., English, D. S., Hu, E. L., Nature, 2000, 405: 665-668.
    [98] Bruchez, M., Moronne, Jr, M, Gin, P., Science, 1998, 281:2013-2016.
    [99] Cao, Y. W., Jin, R., Mirkin, C. A., J. Am. Chem. Soc., 2001, 123: 7961-7962.
    [100] Kim, J. H., Lee, T. P., Chem. Mater., 2004, 16 (19): 3647 -3651.
    [101] Hayat, M. Colloidal Gold: Principles, Methods and Applications, Academic Press, San Diego, 1989.
    [102] Sato, T., Ruch, R., Stabilization of Colloid Dispersion by Polymer Adsorption; Surfactant Science series, No.9, Marcel Dekker, New York, 1980.
    [103] Wuelfing, W. P., Gross, S. M., Miles, D. T., Murray, R. W., J. Am. Chem. Soc., 1998, 120: 12696-12697.
    [104] Akiyama, Y., Otsuka, H., Nagasaki, Y., Kataoka, K., Biocongjugate Chem, 2000, 11: 947-950.
    [105] Narambuena, C. F., Ausar, F. S., Bianco, I. D., Beltramo, D. M., Leiva, E. P. M.,J. Agric. Food Chem., 2005, 53: 459-463.
    [106] Garnier, C., Michon, C., Durand, S., Cuvelier, G., Doublier, J. L., Launay, B. Colloids and Surfaces B: Biointerfaces, 2003, 31: 177-184.
    [107] Tuinier, R., Rolin, C., De Kruif, C. G., Biomacromolecules, 2002, 3: 632-638.
    [108] Verma, A., Simard, J. M., Rotello V. M., Langmuir, 2004, 20: 4178-4181.
    [109] Ausar, S. F., Bianco, I. D., Castagna, L. F., Alasino, R. V., Beltramo, D. M., J. Agric. Food Chem., 2003, 51: 4417-4423.
    [110] Anema, S. G., Li, Y. M., J. Agric. Food Chem., 2003, 51: 1640-1646.
    [111] Maroziene, A., De Kruif, C. G., Food Hydrocolloids, 2000, 14: 391–394.
    [112] Creamer, L. K., Journal Dairy Science, 1998, 81: 3004-3012.
    [113] Farrell, J. R., Journal Dairy Science, 1998, 81: 2974-2984.
    [114]方海田,德力格尔桑,刘慧燕,农业科学研究, 2006, 27: 86-89.
    [115] Slattery, C. W., Evard, R., Biochimica et Biophysica Acta (BBA) - Protein Structure, 1973, 317: 529-538.
    [116] Walstra, P., Jenness, R., Dairy Chemistry and Physics [M]. Newyork: A Willey-Interscience Publication, 1983:140-200.
    [1] Raguse, T. L., Lai, J. R., LePlae, P. R., Gellman, S. H., Org. Lett., 2001, 3(24): 3963-3966.
    [2] Gu, Y. S., Decker, A. E., McClements, D. J., Langmuir, 2005, 21(13): 5752-5760.
    [3] Li, S., He, P., Dong, J., Guo, Z., Dai, L., J. Am. Chem. Soc.; 2005, 127(1): 14-15.
    [4] Barauskas, J., Johnsson, M., Tiberg, F., Nano Lett., 2005, 5(8): 1615-1619.
    [5] Narambuena, C. F., Ausar, F. S., Bianco, I. D., Beltramo, D. M., Leiva, E. P. M., J. Agric. Food Chem., 2005, 53(2): 459-463.
    [6] Stephen R. E., David S. H., Food Hydrocolloids, 2005, 19: 379–386.
    [7] Horne, D. S. Current Opinion in Colloid & Interface Science, 2006, 11: 148-153.
    [8] Farrell Jr., H. M., Malin, E. L., Brown, E. M., Qi, P. X., Current Opinion in Colloid & Interface Science; 2006, 11: 135-147.
    [9] Euston, S. R., Horne, D. S., Food Hydrocolloids, 2005, 19: 379-386.
    [10] Walstra, P., International Dairy Journal, 1999, 9: 189-192.
    [11] Mekhloufi, G., Sanchez, C., Renard, D., Guillemin, S., Hardy, J., Langmuir, 21 (1): 386–394.
    [12] Burke, S. E., Barrett, C. J., Biomacromolecules, 4 (6), 1773 -1783: 2003.
    [13] Sui, Z. J., Jaber, J. A., Schlenoff, J. B., Macromolecules, 39 (23): 8145 -8152, 2006.
    [14] Henry, S. M., El-Sayed, M. E. H., Pirie, C. M., Hoffman, A. S., Stayton, P. S., Biomacromolecules, 7 (8), 2407 -2414: 2006.
    [15] Mekhloufi, G., Sanchez, C., Renard, D., Guillemin, S., Hardy, J., Langmuir, 2005, 21(1): 386-394.
    [16] Burke, S. E.; Barrett, C. J.; Biomacromolecules; 2003; 4(6): 1773-1783.
    [17] Anema, S. G., Lowe, E. W., Li, Y. M., International Dairy Journal, 2004, 14: 541-548.
    [18] Guillaume, C., Jiménez, L., Cuq, J. L., Marchesseau, S., International Dairy Journal 2004, 14: 305-311.
    [19] Jaubert, A., Kobilinsky, C. D. A., Martin, P., International Dairy Journal, 1999, 3: 369-370.
    [20] McSweeney, S. L., Mulvihill, D. M., O'Callaghan, D. M., Food Hydrocolloids, 2004, 18: 109-125
    [21] Tuinier, R., Rolin, C., de Kruif, C. G., Biomacromolecules, 2002, 3(3); 632-638.
    [22] Muller-Buschbaum, P., Gebhardt, R., Maurer, E., Bauer, E., Gehrke, R., Doster, W., Biomacromolecules, 2006, 7(6): 1773-1780.
    [23] Vala, B., Smiddy, M. A., Kelly, A. L., Huppertz, T., J. Agric. Food Chem. 2006,54: 8288-8293.
    [24] Grant, C. D., DeRitter, M. R., Steege, K. E., Fadeeva, T. A., Castner, E. W., Jr., Langmuir, 2005, 21(5): 1745-1752.
    [25] Yusa, S., Sakakibara, A., Yamamoto, T., Morishima, Y., Macromolecules, 2002, 35(27): 10182-10188.
    [26] Virtanen, J., Holappa, S., Lemmetyinen, H., Tenhu, H., Macromolecules, 2002, 35(12): 4763-4769.
    [27] Chakraborty, A., Basak, S., Journal of Photochemistry and Photobiology B: Biology
    [28] Uma, L., Sharma, Y., Balasubramanian, D., International Journal of Biological Macromolecules, 1996, 19: 75-78.
    [29] Ju, C., Xiao, G. Q., Tian, H. L., Shou, J. D., Yue, W., Microchemical Journal, 1995, 52: 159-165.
    [30] Miteva, T., Palmer, L., Kloppenburg, L., Neher, D., Bunz, U. H. F., Macromolecules, 2000, 3: 652-654.
    [31] Christine, K. B., Jean, D., Shan,Y. F., Jeremy, B., Chen, P., J. Am. Chem. Soc. 2004, 126: 7522-7525.
    [32] Lewis, P. N., Momany, F. A., Scheraga, H. A. Proc. Nat. Acad. Sci. USA 1971, 68: 2293-2296.
    [33] Zhong, Q. X., Daubert, C., Velev, O. D., J. Agric. Food Chem. 2007, 55: 2688-2697.
    [34] Scrutton, N. S., Raine, A. R. C., Biochem. J. 1996, 319: 1-5.
    [35] Gallivan, J. P., Dougherty, D. A., J. Am. Chem. Soc., 2000, 122: 870-871.
    [36] Minoux, H., Chipot, C., J. Am. Chem. Soc. 1999, 121: 10366-10367.
    [37] Bushueva, T.L., Tonvitsky, A. G., FEBS Lett, 1987, 215:155–159.
    [38] Manderson, G. A., Hardman, M. J., Creamer, L. K., J. Agric. Food Chem., 1999, 47(9): 3617-3627.
    [1] Lee, L.T.; Jha, B. K.; Malmsten, M.; Holmberg, K. J. Phys. Chem. B 1999, 103, 7489-7494.
    [2] Meier, W.; Ramsden, J. J. J. Phys. Chem. 1996, 100, 1435-1438.
    [3] De Oliveira, V. A.; Tiera, M. J.; Neumann, M. G. Langmuir 1996, 12, 607-612.
    [4] Thuresson, K.; Lindman, B. J. Phys. Chem. B 1997, 101, 6460-6468.
    [5] Schillen, K.; Anghel, D. F.; da Graca Miguel, M.; Lindman, B. Langmuir 2000, 16, 10528-10539.
    [6] Hoff, E.; Nystrom, B.; Lindman, B. Langmuir 2001, 17, 28-34.
    [7] Dai, S.; Tam, K. C.; Li, L. Macromolecules 2001, 34, 7049-7055.
    [8] Goddard, E. D. Journal of Colloid and Interface Science 2002, 256, 228-235.
    [9] Ritacco, H.; Kurlat, D.; Langevin, D. J. Phys. Chem. B 2003, 107, 9146-9158.
    [10] Jain, N.; Trabelsi, S.; Guillot, S.; McLoughlin, D.; Langevin, D.; Letellier, P.; Turmine, M. Langmuir 2004, 20, 8496-8503.
    [11] Nizri, G.; Magdassi, S.; Schmidt, J.; Cohen, Y.; Talmon, Y. Langmuir 2004, 20, 4380-4385.
    [12] Turro, N. J.; Lei, X. G. Langmuir 1995, 11, 2525-2533.
    [13] Bai, G. Y.; Nichifor, M.; Lopes, A.; Bastos, M. J. Phys. Chem. B 2005, 109, 518-525.
    [14] Castro, E.; Taboada, P.; Barbosa, S.; Mosquera, V. Biomacromolecules 2005, 6, 1438-1447.
    [15] Garnier, C.; Michon, C.; Durand, S.; Cuvelier,G., D.; J. L.; Launay, B. Colloids and Surfaces B: Biointerfaces 2003, 31, 177-184.
    [16] Euston, S. R.; Horne, D. S. Food Hydrocolloids 2005; 19, 379–386.
    [17] Pan, X. Y.; Mu, M. F.; Yao, P.; Jiang, M. Biopolymer 2006, 81, 29-38.
    [18] Horne, D. H. Current Opinion in Colloid & Interface Science 2006, 11, 148– 153.
    [19] Tuinier, R.; Rolin, C.; De Kruif, C. G. Biomacromolecules 2002, 3, 632-638.
    [20] Verma, A.; Simard, J. M.; Rotello V. M. Langmuir 2004, 20, 4178-4181.
    [21] Ausar, S. F.; Bianco, I. D.; Castagna, L. F.; Alasino, R. V.; Beltramo, D. M. J. Agric. Food Chem. 2003, 51, 4417-4423.
    [22] Anema, S. G.; Li, Y. M. J. Agric. Food Chem. 2003, 51, 1640-1646.
    [23] Maroziene, A.; De Kruif, C. G. Food Hydrocolloids 2000, 14, 391–394.
    [24] Wang, X. Y.; Li, Y. J.; Li, J. X.; Wang, J. B.; Wang, Y. L.; Guo, Z. X.; Yan, H. K. J. Phys. Chem. B 2005, 109, 10807-10812.
    [25] Wang, C; Tam, K. C. J. Phys. Chem. B 2004, 108, 8976-8982.
    [26] Gianni, P.; Barghini, A.; Bernazzani, L.; Mollica, V.; Pizzolla, P. J. Phys. Chem. B 2006, 110, 9112 -9121.
    [27] Kujawa, P.; Raju, B. B; Winnik, F. M. Langmuir 2005, 21, 10046 -10053.
    [28] Dai, S.; Tam, K. C. J. Phys. Chem. B 2001, 105, 10759-10763.
    [29] Michael, H. A.; Harold, M. F. J.; Markus, W. G. Biochimica et Biophysica Acta 1999, 1431, 410-420.
    [30] Harold, M. F. J.; Wickham, E. D.; Unruh, J. J.; Qi, P. X.; Hoargland, P. D. FoodHydrocolloids 2001, 15, 341-354.
    [31] Li, Y. J.; Wang, X. Y.; Wang, Y. L. J. Phys. Chem. B 2006, 110, 8499-8505.
    [32] Christine, K. B.; Jean, D.; Shan,Y. F.; Jeremy, B.; Chen, P. J. Am. Chem. Soc. 2004, 126, 7522-7532.
    [33] Daisy, S.; Vasanthy, N.; Cyril, M. K.; Robert, O. R. Biochemistry 2000, 39, 6594-6601.
    [34] Manderson, G. A.; Hardman, M. J.; Creamer, L. K. J. Agric. Food Chem. 1999, 47, 3617-3627.
    [35] Poklar, N.; Lah, J.; Salobir, M.; Macek, P.; Vesnaver, G. Biochemistry 1997, 36, 14345-14352.
    [36] Matulis, D.; Lovrien, R. E. Biophys. J. 1998, 74, 422-429.
    [1] Narambuena, C. F.; Ausar, F. S.; Bianco, I. D.; Beltramo, D. M.; Leiva, E. P. M. J. Agric. Food Chem.; 2005; 53(2); 459-463.
    [2] Stephen R. E.; David S. H. Food Hydrocolloids; 2005; 19; 379–386.
    [3] Zelent, B.; Yano, T.; Ohlsson, P.-I.; Smith, M. L.; Paul, J.; Vanderkooi, J. M. Biochemistry; 2005; 44(48); 15953-15959.
    [4] Lazaridis, T.; Mallik, B.; Chen, Y. J. Phys. Chem. B.; 2005; 109(31);15098-15106.
    [5] Margulis, C. J.; Stern, H. A.; Berne, B. J. J. Phys. Chem. B.; 2002; 106(41); 10748-10752.
    [6] Nielsen, A. D.; Arleth, L.; Westh, P. Langmuir; 2005; 21(10); 4299-4307.
    [7] Ruso, J. M.; Deo, N.; Somasundaran, P. Langmuir; 2004; 20(21); 8988-8991.
    [8] Schillen, K.; Anghel, D. F.; da Graca Miguel, M.; Lindman, B. Langmuir; 2000; 16(26); 10528-10539.
    [9] Hoff, E.; Nystrom, B.; Lindman, B. Langmuir; 2001; 17(1); 28-34.
    [10] Dai, S.; Tam, K. C.; Li, L. Macromolecules; 2001; 34(20); 7049-7055.
    [11] Vlachy, N.; Dolenc, J.; Jerman, B.; Kogej, K. J. Phys. Chem. B.; 2006; 110(18); 9061-9071.
    [12] Starodoubtsev, S. G.; Lavrentyeva, E. K.; Khokhlov, A. R.; Allegra, G.; Famulari, Langmuir; 2006; 22(1); 369-374.
    [13] Bastardo, L. A.; Meszaros, R.; Varga, I.; Gilanyi, T.; Cleasson, P. M. J. Phys. Chem. B.; 2005; 109(33); 16196-16202.
    [14] Rosa, M.; Dias, R.; da Graca Miguel, M.; Lindman, B. Biomacromolecules; 2005; 6(4); 2164-2171.
    [15] Jones, M. N. J. Colloid Interface Sci.; 1967; 23; 36-42.
    [16] Deo, P.; Deo, N.; Somasundaran, P. Langmuir; 2005; 21; 9998-10003.
    [17] Deo, P.; Jockusch, S.; Ottaviani, M. F.; Moscatelli, A.; Turro, N. J.; Somasundaran, P. Langmuir; 2003; 19(26); 10747-10752.
    [18] Lefebvre-Cases, E.; Gastaldi, E.; de la Fuente, B. T. Colloids and Surfaces B: Biointerfaces; 1988; 11; 281-285.
    [19] Green, M. L. J. Dairy Res.; 1982; 49; 87-92.
    [20] Michael H. A.; Harold M. F. J.; Markus W. G. Biochimica et Biophysica Acta; 1999; 1431; 410-420.
    [21] Harold M. F. J.; Wickham, E. D.; Unruh, J. J.; Qi, P. X.; Hoargland, P. D.; FoodHydrocolloids; 2001; 15; 341-354.
    [22] Miller, J. N.; Ahmad, T. A.; Fell, A. F. Anal. Proc.; 1982; 19; 37-40.
    [23] Ju, C.; Xiao, G. Q.; Tian, H. L.; Shou, J. D.; Yue, W. Microchemical Journal 1995, 52, 159.
    [24] Lad, M. D.; Ledger, V. M.; Briggs, B.; Green, R. J.; Frazier, R. A. Langmuir; 2003; 19(12); 5098-5103.
    [25] Christine, K. B.; Jean, D.; Shan,Y. F.; Jeremy, B.; Chen, P.; J. Am. Chem. Soc. 2004, 126, 7522.
    [26] Daisy S.; Vasanthy N.; Cyril M. K.; Robert O. R. Biochemistry; 2000; 39; 6594-6601.
    [27] Manderson, G. A.; Hardman, M. J.; Creamer, L. K., J. Agric. Food Chem.; 1999; 47(9); 3617-3627.
    [28] Poklar, N.; Lah, J.; Salobir, M.; Macek, P.; Vesnaver, G., Biochemistry; 1997; 36(47); 14345-14352.
    [29] Wang, X. Y.; Li, Y. J.; Li, J. X.; Wang, Y. L. J. Phys. Chem. B.; 2005; 109; 10807-10812.
    [30] Wang, C.; Tam, K. C. J. Phys. Chem. B.; 2004; 108; 8976-8982.
    [1] Regev, O.; Backov, R.; Faure, C. Chem. Mater.; 2004; 16(25); 5280-5285.
    [2] Kwon, K.; Lee, K. Y.; Lee, Y. W.; Kim, M.; Heo, J.; Ahn, S. J.; Han, S. W.J. Phys. Chem. C. 2007; 111(3); 1161-1165.
    [3] Fukuoka, A.; Araki, H.; Sakamoto, Y.; Sugimoto, N.; Tsukada, H.; Kumai, Y.; Akimoto, Y.; Ichikawa, M. Nano Lett. 2002; 2(7); 793-795.
    [4] Gole, A.; Dash, C.; Ramakrishnan, V.; Sainkar, S. R.; Mandale, A. B.; Rao, M.; Sastry, M. Langmuir; 2001; 17(5); 1674-1679.
    [5] Pei, L.; Mori, K.; Adachi, M. Langmuir; 2004; 20(18); 7837-7843.
    [6] Mohamed, M. B.; Ismail, K. Z.; Link, S.; El-Sayed, M. A. J. Phys. Chem. B.; 1998; 102(47); 9370-9374.
    [7] Li, Z.; Liu, Z.; Zhang, J.; Han, B.; Du, J.; Gao, Y.; Jiang, T. J. Phys. Chem. B.; 2005; 109(30); 14445-14448.
    [8] Kabashin, A. V.; Meunier, M.; Kingston, C.; Luong, J. H. T. J. Phys. Chem. B.; 2003; 107(19); 4527-4531.
    [9] Mohamed, M. B.; Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. A.; 1999; 103(49); 10255-10259.
    [10] Gole, A.; Murphy, C. J. Chem. Mater.; 2005; 17(6); 1325-1330.
    [11] Wang, Z.; Tan, B.; Hussain, I.; Schaeffer, N.; Wyatt, M. F.; Brust, M.; Cooper, A.I. Langmuir; 2007; 23(2); 885-895.
    [12] Luo, S.; Xu, J.; Zhang, Y.; Liu, S.; Wu, C. J. Phys. Chem. B.; 2005; 109(47); 22159-22166.
    [13] Kinyanjui, J. M.; Hatchett, D. W.; Smith, J. A.; Josowicz, M. Chem. Mater.; 2004; 16(17); 3390-3398.
    [14] Grohn, F.; Bauer, B. J.; Akpalu, Y. A.; Jackson, C. L.; Amis, E. J. Macromolecules; 2000; 33(16); 6042-6050.
    [15] Rusa, M.; Whitesell, J. K.; Fox, M. A. Macromolecules; 2004; 37(8); 2766-2774.
    [16] Li, D.; He, Q.; Cui, Y.; Li, J. Chem. Mater.; 2007; 19(3); 412-417.
    [17] Chandran, S. P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Biotechnol. Prog.; 2006; 22(2); 577-583.
    [18] Xie, J.; Lee, J. Y.; Wang, D. I.C. J. Phys. Chem. C.; 2007; 111(28); 10226
    [19] Fabris, L.; Antonello, S.; Armelao, L.; Donkers, R. L.; Polo, F.; Toniolo, C.; Maran, F. J. Am. Chem. Soc.; 2006; 128(1); 326-336.
    [20] Rangnekar, A.; Sarma, T. K.; Singh, A. K.; Deka, J.; Ramesh, A.; Chattopadhyay, A. Langmuir; 2007; 23(10); 5700-5706.
    [1] Zhang, Z. P.; Gao, D. M.; Zhao, H.; Xie, C. G.; Guan, G. J.; Wang, D. P.; Yu, S. H. J. Phys. Chem. B 2006, 110, 8613 -8618.
    [2] Loo, L.; Guenther, R. H.; Basnayake, V. R.; Lommel, S. A.; Franzen, S. J. Am. Chem. Soc. 2006, 128, 4502-4503.
    [3] Kneipp, J.; Kneipp, H.; Rice, W. L.; Kneipp, K. Anal. Chem. 2005, 77, 2381 -2385.
    [4] Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Nano Lett. 2006, 6, 662-668.
    [5] Hong, R.; Fischer, N. O.; Rotello, V. M. Chem. Mater. 2005, 17, 4617 -4621.
    [6] Mikhaylova, M.; Kim, D. K.; Berry, C. C.; Zagorodni, A.; Toprak, M.; Curtis, A. S. G.; Muhammed, M. Chem. Mater. 2004, 16, 2344 -2354.
    [7] Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410-8426.
    [8] Jen, C. P.; Chen, Y. H.; Fan, C. S.; Yeh, C. S. Langmuir 2004, 20, 1369-1374.
    [9] Esumi, K.; Houdatsu, H.; Yoshimura, T. Langmuir 2004, 20, 2536-2538.
    [10] Chen,S.; Guo, C.; Hu,G. H.; Wang,J.; Ma,J. H.; Liang,X. F.; Zheng,L.; Liu, H. Z. Langmuir 2006, 22, 9704 -9711.
    [11] Rahme,K.; Gauffre,F.; Marty, J. D.; Payré, B.; Mingotaud, C. J. Phys. Chem. C 2007, 111, 7273 -7279.
    [12] Sakai, T.; Alexandridis, P. J. Phys. Chem. B 2005, 109, 7766-7777.
    [13] Sakai, T.; Alexandridis, P. Langmuir 2005, 21, 8019-8025.
    [14] Brewer, S. H.; Glomm, W. R.; Johnson, M. C.; Knag, M. K.; Franzen, S. Langmuir 2005, 21, 9303 -9307.
    [15] Xie, J. P.; Lee, J. Y.; Wang, D. I. C. J. Phys. Chem. C 2007, 111, 10226 -10232.
    [16] Shang,L.; Wang, Y. Z.; Jiang, J. G.; Dong, S. J. Langmuir 2007, 23, 2714 -2721.
    [17] Zhao, W. T.; Lee, T. M. H.; S. S. Y.; Hsin, I. M. Langmuir 2007, 23, 7143 -7147.
    [18] Nakao, H.; Shiigi, H.; Yamamoto, Y.; Tokonami, S.; Nagaoka, T.; Sugiyama, S.; Ohtani, T. Nano Letters 2003, 3, 1391 -1394.
    [19] Cárdenas, M.; Barauskas, J.; Schillen, K.; Brennan, J. L.; Brust, M.; Nylande T. Langmuir 2006, 22, 3294 -3299.
    [20] Storhoff, J. J.; Elghanian, R.; Mirkin, C. A.; Letsinger, R. L. Langmuir 2002, 18, 6666 -6670.
    [21] Wang, Z. X.; Levy, R.; Fernig, D. G.; Brust, M. Bioconjugate Chem. 2005, 16, 497 -500.
    [22] Narambuena, C. F.; Ausar, F. S.; Bianco, I. D.; Beltramo, D. M.; Leiva, E. P. M. J. Agric. Food Chem. 2005, 53, 459.
    [23] Garnier, C.; Michon, C.; Durand, S.; Cuvelier, G.; Doublier, J. L.; Launay, B. Colloids and Surfaces B: Biointerfaces 2003, 31, 177.
    [24] Frens, G. Nature: Physical Science,1973,241, 20–22.
    [25] Shang, L.; Wang, Y. Z.; Jiang, J. G.; Dong, S. J. Langmuir, 2007, 23, 2714 -2721.
    [26] Alaimo, M. H.; Farrell Jr, H. M.; Germann, M. W. Biochimica et Biophysica Acta 1999, 1431, 410-420.
    [27] Harold, M. F. J.; Wickham, E. D.; Unruh, J. J.; Qi, P. X.; Hoargland, P. D. Food Hydrocolloids 2001, 15, 341-354.
    [28] Tom, R. T.; Suryanarayanan, V.; Reddy, P. G.; Baskaran, S.; Pradeep, T. Langmuir 2004, 20, 1909-1914.
    [29] Christine, K. B.; Jean, D.; Shan,Y. F.; Jeremy, B.; Chen, P. J. Am. Chem. Soc. 2004, 126, 7522.
    [30] Sahoo, D.; Narayanaswami, V.; Kay, C. M.; Ryan, R. O. Biochemistry 2000, 39, 6594-6601.
    [31] Sakura, T.; Takahashi, T.; Kataoka, K.; Nagasaki, Y. Colloid Polym. Sci. 2005, 284, 97-101.
    [32] Weinhold, M.; Soubatch, S.; Temirov, R.; Rohlfing, M.; Jastorff, B.; Tautz, F. S.; Doose, C. J. Phys. Chem. B 2006, 110, 23756 -23769.
    [33] Kumar, A.; Mandal S.; Selvakanna PR.; Pasricha, R.; Mandale, L. E.; Sastry, M. Langmuir 2003, 19, 6277-6282.
    [34] Leff, D. V.; Brandt, L.; Heath, J. R. Langmuir 1996, 12, 4723-4730.
    [35] Chechik, V.; Sch?nherr, H.; Vancso, G. J.; Stirling C. J. M. Langmuir, 1998, 14, 3003 -3010.
    [36] Lu, H. B.; Campbell, C. T.; Castner, D. G. Langmuir, 2000, 16, 1711 -1718.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700