用户名: 密码: 验证码:
荧光共轭聚合物在化学传感器上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Chemical Sensors Based on Fluorescent Conjugated Polymers
  • 作者:叶心亮
  • 论文级别:博士
  • 学科专业名称:材料学
  • 学位年度:2014
  • 导师:黄飞
  • 学科代码:080502
  • 学位授予单位:华南理工大学
  • 论文提交日期:2013-04-16
摘要
应用荧光化学传感技术进行物质快速,高选择性,高灵敏地研究的检测是当前研究的热点之一。而敏感试剂和测量方法的探索是提高痕量物质分析选择性和灵敏度的关键因素。共轭聚合物(CPs)己被广泛应用于生物传感和成像领域,此外共轭聚电解质(CPEs)综合了传统的共轭聚合物(CPs)优异的光电性质(如分子导线效应)和聚电解质的水或是醇溶性特点,同样也被广泛应用于光电器件,化学传感器以及生物成像等领域。本文主要工作包括两个体系的研究:
     在第一章中,我们通过引入三嵌段的表面活性剂F127共聚物与共轭聚合物在水溶液中进行自组装,成功制备了粒径在50-100纳米的尺寸可控的球形纳米胶束。生物传感领域中共轭聚合物大多数不溶于水中,普通的共轭聚合物为了在水溶液中实现特定分析对象(DNA及生物分子相应的生化过程)的检测必须经过复杂修饰的共轭聚电解质。因此,我们研究并扩展能够在水溶液中实现传感性能的的共轭聚合物纳米材料。我们筛选出最佳的共轭聚合物和表面活性剂F127的浓度配比,比较不同共轭聚合物的猝灭效率后选择PFO和PF-PE作为的水溶液中的传感体系。通过动态光散射(DLS)、透射电镜(TEM)证实了在共轭聚合物(CPs)包覆后具有稳定纳米胶束结构,荧光(PL)和吸收光谱(UV)表明可以通过将不同的表面活性剂以及共轭聚合物(CPs)的浓度比来调节不同的发光性能。我们采用共轭聚合物纳米胶束来研究对苏丹红染料的传感检测,体系主要是通过利用染料色素的疏水性,当在水溶液中加入被检测物后,疏水的染料会被包含入纳米胶束内部和共轭聚合物有效接触,并且苏丹红染料能够有效猝灭共轭聚合物的荧光。苏丹红一号对PF-PE/F127和PFO/F127纳米胶束的猝灭常数分别1,040,480M-1和665,000M-1,要比它们在甲苯溶剂中的猝灭效率高出2个数量级。我们进一步研究了荧光猝灭机理发现由于苏丹红染料的电化学能级是被包含在共轭聚合物能级之间,因此较好的能及匹配使之能够发生电子的转移过程(PET),它们在对苏丹2-4号的检测中也显示了很高的灵敏度,因此共轭聚合物纳米胶水对苏丹红染料具有较高的灵敏度和选择性,有望成为对疏水染料的选择性检测手段。
     第二章中我们利用激光光散射技术(LLS)来研究三种不同侧链的共轭聚电解质(PF6NBr,PFSO3Na,PFN6SO)在甲醇中的光物理性质,通过光散射实验证明了三种聚电解质在甲醇中具有不同的构象和存在不同的聚集态,透射电镜的结果也证明了它们在溶液中存在不同的聚集态。我们进一步用荧光光谱证实了在水/甲醇混合溶液中聚集态对光
     物理性质的影响。我们分别用甲基紫精(MV2+)和1,2-萘醌-4-磺酸钠(NQS-)作为阳离子猝灭剂和阴离子猝灭剂来进一步研究它们聚集态行为对猝灭效率的影响。对于PF6NBr,随着聚电解质浓度的增加,会通过静电相互吸引使猝灭剂结合导致猝灭;高浓度下的链构象发生强烈聚集会导致猝灭效率降低。然而对于PFSO3Na和PF6NSO,由于它们在溶液中有稳定的聚集态,它们的猝灭效率相比则影响较小。我们研究了在不同甲醇和水混合溶剂中的影响时发现,用NQS-作为猝灭剂时,PF6NBr和PF6NSO显示出较好的猝灭放大效率,PFSO3Na对MV2+有较好的猝灭放大效率,这个结果可以由聚合物在溶剂中较容易形成聚集体来解释。但两性聚电解质PF6NSO相对于PF6NBr和PFSO3Na猝灭效率则较低,而阴离子猝灭剂NQS-相比MV2+能够更好打破聚电解质的聚集态,从而导致了NQS-对PF6NSO更高的猝灭效率。CPEs的猝灭放大效应主要是猝灭剂和CPEs之间的静电吸引从而导致电子转移过程,从而导致激子在CPEs骨架上的长程快速迁移,实验结果表明,引起共轭聚电解质(CPEs)的猝灭放大效应的一个主要原因则是因为不同电性小分子猝灭剂的静电作用对聚集态的影响和聚电解质(CPEs)聚集态结构变化下共同影响导致的。
The application of fluorescent biosensor for analytes sensing is one of the hot spot inscience research. Rapid, high selectivity and high sensitivity study of analytes in biologicalchemical information is one of the frontier subjects in the biosensing. And sensitive reagentand exploration is to improve the trace analysis of the measuring methods of selectivity andsensitivity of the key factors. Conjugated polymers have been widely applied in biosensing,and conjugated polyelectrolyte (CPEs) is a kind of ionized in polar solvent functional groupsin the main chain of the conjugated polymers, which is combines traditional conjugatedpolymers excellent photoelectric properties, such as signal amplification and with goodwater-soluble characteristics of polyelectrolyte. Conjugated polyelectrolyte is also widelyapplied light electric parts and chemical sensors and biological imaging, etc. This paper mainwork includes the following aspects:
     In this paper, Novel self-assembled water-soluble nanomicelles that by introducingcommercialized three block of surfactant Pluronic F127self-assembly with conjugatedpolymers in aqueous solution, and particle size distribution of spherical nanometer micelleswas successfully achieved in50-100nm. Conjugated polymers (CPs) with uniquephotophysical properties and electrical conductivity are considered as promising candidatesfor the development of fluorescent sensors. However, the application of Conjugated polymers(CPs) to bioimaging and sensing in aqueous environment is hindered by their poor watersolubilities, and Conjugated polymers (CPs) is not conducive to implement specific analysisobject in the aqueous solution (Such as DNA and corresponding biochemical processes ofbiological molecules) detection. Therefore, great efforts have been devoted to developingcolloidal stable conjugated polymer nanoparticles (NPs) in aqueous solution. We screeningout the appropriate concentration ratio of Pluronic F127and conjugated polymer, andoptimize the sensor system in the aqueous solution of conjugated polymers. The morphologyof the F127and conjugated polymers/F127micelles were observed with by dynamic lightscattering (DLS) and transmission electron microscopy (TEM). Fluorescence and absorptionspectroscopy characterization methods confirmed that different surfactants and conjugatedpolymer concentration ratios to adjust different luminous efficiency. The Fluorescent nanomicelles exhibited a highly selective fluorescence quenching by the prohibited foodadditive Sudan dyes, while not for the natural pigments: Capsanthin and Beta-carotene. It isalso possible that the trace amount of hydrophobic dye in the aqueous solution can becollected and enriched in the hydrophobic inner part of F127nanomicelles by thehydrophobic–hydrophobic interaction resulting in the enhancement of quenching effect. TheStern-Volmer constants (Ksv) of PF-PE/F127and PFO/F127for Sudan I were1,040,480M-1and665,000M-1, respectively, which were over100times higher than those of the sameconjugated polymers in the orgainc solvents. The detailed photochemical mechanism foramplified fluorescence quenching was revealed to be due to the more suitable matching of theLUMOs (lowest unoccupied molecular orbital) of the conjugated polymers with that of SudanI molecules, thusthe charge transfer between CPs and analytes and the enriching andcollecting effect micelles hydrophobic core. In the same conditions, CPs nanomicellesexhibited strong fluorescence responses toward other azo dyes, such as Sudan II, Sudan IIIand Sudan IV. It allowed the selectively determination of Sudan dye by a fluorescence method.Moreover, this strategy provides a general approach for extending the applications ofconjugated polymers.
     In the second chapter, the effect of aggregation on the photophysical properties of threewater/alcohol-soluble conjugated polymers (CPEs),poly[9,9-bis((N,N,N-triethylammonium)-hexyl)-2,7-fluorene] dibromide (PF6NBr),poly[9,9-bis(4’-sulfonatobutyl)fluorene-co-alt-1,4-phenylene] sodium salt (PFSO3Na) andpoly[9,9-bis((N-(3-sulfonate-1-propyl)-N,N-diethylammonium)-hexyl)-2,7-fluorene](PF6NSO) has been studied through laser light scatterings (LLS) and quenching experiment.The results obtained by light scatterings reveal that three CPEs form different fluorescenceaggregates in methanol. Furthermore, fluorescence spectroscopy also reveals that CPEs formfluorescent aggregates in a mixture of methanol and water. Fluorescence quenching of thepolymers was examined using methyl viologen (MV2+)and1,2-naphthoquinone-4-sulfonate(NQS-) as a cationic quencher and anionic quencher, respectively.
     The fluorescence intensity of PF6NBr decreases with increasing concentration, indicatingthat dominated by electrostatic attraction and aggregation induced less fluorescence quenching and the chain conformation controlled, and high concentrations of PF6NBr leadingchain conformation strong aggregation in methanol and cause the less quenching efficiency.In contrast, for both PFSO3Na and PF6NSO, the emission is less quenched in methanol due tothey have a stable state of aggregation in solution.
     Accordingly, we investigated the quenching properties of three polyelectrolytes atdifferent methanol and water solvent ratio. However, PF6NBr and PF6NSO shows stronglyamplified quenching effect by NQS-, and PFSO3Na shows amplified quenching effect byMV2+in water. The results are explained by polymer is able to fold into an aggregation insolution. With regard to the PF6NBr and PFSO3Na, quenching efficiency of PF6NSO showeda high quenching efficiency due to NQS-break up polymers aggregates and show a betterquenching efficiency compare to MV2+. This work shows that the quenching of the CPEsinvolves electron transfer and is correlated to the conformational changes that occur uponbinding the quenchers to the polyelectrolyte (CPEs), which facilitates the long-distanceexciton rapid migration along CPEs backbone. Our work addresses an important fundamentalissue concerning quencher-induced amplified quenching effect for CPEs. The resultsunderscore the important role played by chain aggregation in promoting efficient excitontransport, which is the key to the amplified quenching effect.
引文
[1] Shirakawa H., Louis E J., Macdiarmid A G., et al. Synthesis of electrically conductingorganic Po]ymers-halogen derivatives of Polyacetylene [J], Journal of the ChemicalSociety,1977,16,578-580.
    [2] Kraft A., Grimsdale AC., Holmes AB. Electroluminescent conjugated Polymers-seeingPolymers in a new light [J], Angewandte Chemie International Edition,1998,37,402-428.
    [3] Pei Q B., Yu,G.; Zhang C. Polymer light-emitting Electroehemieal-cells [J], Science,1995,269,1086-1088.
    [4] Hide F., Díaz-García M A., Sehwartz B J., et al. New developments in the Photonicapplications of conjugated Polymers [J], Accounts of Chemical Research,1997,30,430-436.
    [5] Gunes S., Neugebauer H., Sarieiftei N S. Conjugated Polymer-basedorganie solar cells [J],Chemical Reviews,2007,107,1324-1338.
    [6] Torsi L, Dodabalapur A, Rothberg L J. Intrinsic transport Properties and performancelimits of organic field-effeettransistors [J], Science,1996,272,1462-1464.
    [7] Zhou Q., and Swager T M. Methodology for enhancing the sensitivity of fluorescentchemosensors-energy migration in conjugated polymers [J], Journal of the AmericanChemical Society,1995,117,7017-7018.
    [8] Zhou Q, Swager T M. Fluorescent chemosensors based on energy migration in conjugatedpolymers: the molecular wire approach to increased sensitivity [J], Journal of theAmerican Chemical Society,1995,117,12593-12602.
    [9] Lakowiez J R. Principles of Fluorescence Spectroscopy [M],2nded, Kluwer/Plenum, NewYork,1999.
    [10] Agmon N. Elementary Steps in Excited-State Proton Transfer [J], The Journal ofPhysical Chemistry A,2005,109,13-35.
    [11]黄春辉,李富友,黄岩谊.光电功能超薄膜[M],北京大学出版社,2001年.
    [12] Kim S H., Jillian R.. Gunther., et al. Monitoring a Coordinated Exchange Process in aFour-Component Biological Interaction System: Development of a Time-ResolvedTerbium-Based One-Donor/Three-Acceptor Multicolor FRET System [J], Journal of theAmerican Chemical Society,2010,132,4685-4692.
    [13] Green N J B., Simon M., Pimblott S M., Tachiya M. Generalizations of the Stern-Volmerrelation [J], The Journal of Physical Chemistry,1993,97,196-202.
    [14] Desilets D J., Kissinger P T., Lytle F E. Improved method for determination ofStern-Volmer quenching constants[J], Analytical Chemistry,1987,59,1244-1246.
    [15] Thompson R B. Fluorescence sensors and biosensors [M], Boca Raton:CRC Press,2005.
    [16] Janzen W P. High throughput screening: methods and protocols [M], Totowa,NJ:Humana Press,2002.
    [17] Thomas S W., Joly G D., Swager T M. Chemical sensors based on amplifying fluorescentconjugated polymers [J], Chemical Reviews,2007,107,1339-1386.
    [18] Ho H A., Najari A., Leclerc M. Optical detection of DNA and proteins moth cationicpolythiophenes [J], Accounts of Chemical Research,2008,41,168-178.
    [19] Kraft A., Grimsdale A C., Holmes A B. Electroluminescent conjugated polymers-seeingpolymers in a new light [J]. Angewandte Chemie International Edition,1998,37,402-428.
    [20] Montall A., Smith P., Weder C. Poly(p-phenylene ethynylene)-based lightemittingdevices [J], Synthetic Metals,1998,97,123-126.
    [21] Pei Q B., Yu G., Zhang C., et al. Polymer light-emitting electrochemical-cells [J],Science,1995,269,1086-1088.
    [22] Hide F., Diazgarcia M A., Schwartz B J., et al. New developments in the photonicapplications of conjugated polymers [J], Accounts of Chemical Research,1997,30,430-436.
    [23] Gunes S., Neugebauer H., Sariciftci N S. Conjugated polymer-based organic solar cells[J], Chemical Reviews,2007,107,1324-1338.
    [24] Torsi L., Dodabalapur A., Rothberg L J., et al. Intrinsic transport properties andperformance limits of organic field-effect transistors [J], Science,1996,272,1462-1464.
    [25] Sirringhaus H. Device physics of solution-processed organic field-effect transistors [J],Advanced Materials,2005,17,2411-2425.
    [26] Park M J., Lee J., Kwak J., et al. Synthesis and Electroluminescence of NewPolyfluorene Copolymers Containing Iridium Complex Coordinated on the Main Chain[J], Macromolecules,2009,42,5551-5557.
    [27] Asawapirom U., Bulut F., Farrell T. Materials for polymer electronics applications-semiconducting polymer thin films and nanoparticles [J], Macromolecular Symposia,2004,212,83-92.
    [28] Landfester K., Montenegro R., Scherf U. Semiconducting Polymer Nanospheres inAqueous Dispersion Prepared by a Miniemulsion Process [J], Advanced Materials,2000,14,651-655.
    [29] Geng J Y., Li K., Pu K Y., et al. Conjugated Polymer and Gold Nanoparticle Co-loadedPLGA Nanocomposites with Eccentric Internal Nanostructure for Dual-modal TargetedCellular Imaging [J], Small,2012,8,2421–2429,
    [30] Szymanski C., Wu C., Hooper J., Single Molecule Nanoparticles of the ConjugatedPolymer MEH-PPV, Preparation and Characterization by Near-Field Scanning OpticalMicroscopy[J], The Journal of Physical Chemistry B,2005,109,85438546.
    [31] Wu C., Szymanski C., McNeill J. Preparation and Encapsulation of Highly FluorescentConjugated Polymer Nanoparticles [J], Langmuir,2006,22,2956.
    [32] Wu C, McNeill J. Swelling-Controlled Polymer Phase and Fluorescence Properties ofPolyfluorene Nanoparticles [J], Langmuir,2008,24,5855.
    [33] McQuade D T., Pullen AE., Swager T M. Conjugated Polymer-Based Sensory Materials[J], Chemical Reviews,2000,100,2537-2574.
    [34] Yang J S., Swager T M. Porous shape persistent fluorescent polymer films: An approachto TNT Sensory materials [J], Journal of the American Chemical Society,1998,120,5321-5322.
    [35] Honglae Sohn., Rebecca M.. Calhoun Sailor M J., et al. Detection of TNT and PicricAcid on Surfacesand in Seawater by using Photoluminescent Polysiloles [J], AngewandteChemie International Edition,2001,40,2104-2105.
    [36] Yang J S., Swager T M. Fluorescen tPorousPolymer films as TNT chemosensors:Electronic and structural effects [J], Journal of the American Chemical Society,1998,120,11864-11873.
    [37] Yu M., He F., Tang Y., et al. Nonionic Water-Soluble Crown Ether-SubstitutedPolyfluorene as Fluorescent Probe for Lead Ion Assays [J], Macromolecular RapidCommunications,2007,28,1333-1338.
    [38] An L., Tang Y., Feng F., et al. Water-Soluble Conjugated Polymers for Continuous andSensitive Fluorescence Assays for Phosphatase and Peptidase [J], Journal of MaterialsChemistry,2007,17,4147-4152.
    [39] Chong H,, Chen Y N., Zhu C L,, et al. Conjugated Polymer Nanopart icles forLight-Activated Anticancer and Antibacterial Activity with Imaging Capability [J],Langmuir,2012,31,28,2091-2098.
    [40] Li Z., Lou X.,Yu H., et al. An imidazole-functionalized polyfluorene derivative assensitive fluorescent probe for metal ions and cyanide [J], Macromolecules,2008,41,7433-7439.
    [41] Gaylord B S., Heeger A J., Bazan G C. SNP detection using peptide nucleic acid probesand conjugated polymers: Applications in neurodegenerative disease identification [J],PNAS, Proceedings of the National Academy of Sciences,2005,102,34-39.
    [42] Qin C J., Tong H., Wang L X. Water-soluble phosphate-functionalized polyfluorene asfluorescence biosensors toward cytochromec [J], Science in China Series B,2009,52,833-839.
    [43] Feng X., Duan X., Liu L., et al. Fluorescence logic-signal-based multiplex detection ofnucleases with the assembly of a cationic conjugated polymer and branched DNA [J],Angewandte Chemie International Edition,2009,4,5316-5321.
    [44] Liu B., Bazan G C. Homogeneous fluorescence-based DNAdetection with water-solubleconjugated polymers [J], Chemistry of Materials,2004,16,4467-4476.
    [45] Kushon S A., Ley K D., Bradford K., et al.Detection of DNA Hybridization viaFluorescent Polymer Superquenching [J], Langmuir,2002,18,7245-7249.
    [46] Alvarez-aiaz A., Salinas-castillo A., Camprubi-robles M. Conjugated polymermicrospheres for “turn-off”/“turn-on” fluorescence optosensing of inorganic ions inaqueous media [J], Analytical Chemistry,2011,83,2712-2718.
    [47] Najari A., Ho H A., Gravel J F. Reagentless ultrasensitive specific DNA array detectionbased on responsive polymeric biochips [J], Analytical Chemistry,2006,78,7896-7899.
    [48] Kumar M., Vij V., Bhalla V. Vapor-Phase Detection of Trinitrotoluene by AIEE-ActiveHetero-oligophenylene-Based Carbazole Derivatives [J], Langmuir,2012,28,12417-12421.
    [50] Niamnont N., Siripornnoppakhun W., Rashatasakhon P. A Polyanionic DendriticFluorophore for Selective Detection of Hg2+in Triton X-100Aqueous Media [J],Organic Letters,2009,11,2768-2771.
    [51] Bhalla V., Gupta A., Kumar M.. luorescent Nanoaggregates of PentacenequinoneDerivative for Selective Sensing of Picric acid in Aqueous Media [J], Organic Letters,2012,14,3112-3115.
    [52] Grigalevicius S., Forster M., Ellinger S., et al. Excitation energy transfer fromsemi-conducting polymer nanoparticles to surface-bound fluorescent dyes [J],Macromolecular Rapid Communications,2006,27,200-203.
    [53] He G., Yan N., Yang J Y., et al. Pyrene-Containing Conjugated Polymer-BasedFluorescent Films for Highly Sensitive and Selective Sensing of TNT in AqueousMedium [J], Macromolecules,2011,44,4759-4766.
    [54] Hu J M., Zhang G Y., Geng Y H., et al. Micellar Nanoparticles of Coil-Rod-Coil TriblockCopolymers for Highly Sensitive and Ratiometric Fluorescent Detection of Fluoride Ions[J], Macromolecules,2011,44,8207-8214.
    [55] Dogra N., Li X L., Kohli P. Investigating Ligand-Receptor Interactions at BilayerSurface Using Electronic Absorption Spectroscopy and Fluorescence Resonance EnergyTransfer [J], Langmuir,2012,28,12989-12998.
    [56] Wang X H., Guo Y Z., Li D., et al. Fluorescent amphiphilic cellulose nanoaggregates forsensing trace explosives in aqueous solution [J], Chemical Communications,2012,48,5569-5571.
    [57] Kwon O S., Ahn S R., Park S J., et al. Ultrasensitive and Selective Recognition ofPeptide Hormone UsingClose-Packed Arrays of hPTHR-Conjugated PolymerNanoparticles [J], ACS Nano,2012,6,5549-5558.
    [58] Kumar M., Vij V., Bhalla V. Vapor-Phase Detection of Trinitrotoluene by AIEE-ActiveHetero-oligophenylene-Based Carbazole Derivatives [J], Langmuir,2012,28,12417-12421.
    [59] Wang S R., Hu J M., Liu T., et al. Highly sensitive and selective fluorometric off-on K+probe constructed via host-guest molecular recognition and aggregation-inducedemission [J], Journal of Materials Chemistry,2012,17,8622-8628.
    [60] Wu W C,, Chen C Y,, Tian Y Q,. Enhancement of Aggregation-Induced Emission inDye-Encapsulating Polymeric Micelles for Bioimaging [J], Advanced FunctionalMaterials,2010,20,1413-1423.
    [61] Yu Y., Feng C., Hong Y N. Cytophilic Fluorescent Bioprobes for Long-Term CellTracking [J], Advanced Functional Materials,2011,23,3298-3302.
    [62] Feng L J., Li H., Qu Y. Detection of TNT based on conjugated polymer encapsulated inmesoporous silica nanoparticles through FRET [J], Chemical Communications,2012,48,4633-4635.
    [63] Fan C H., Wang S., Hong J W., et al. Beyond superquenching: Hyper-efficient energytransfer from conjugated polymers to gold nanoparticles [J], Proceedings of the NationalAcademy of Sciences of the United States of America,2003,100,6297-6301.
    [64]刘丽娜,林天乐,曹永.偶氮染料-苏丹红[J],精细与专用化学品,2005,13,16-17.
    [65] Sudan I. IARC Monographs [M], France: IARC Lyon,1975,225-231.
    [66] Searle CE. Chemical Carcinogens [M],2nded, WashingtonDC: AmericanChemical Soc,ACS Monograph182,1984.
    [67] Westmoreland C., Gatehouse D G. The differential clastogenicity of Solvent Yellow14and FD&CYellow No.6in vivo in the rodent micronucleus test (observationson specieand tissue specificity)[J], Carcinogenesis,1991,12,1403-1407.
    [68] Stiborova M., Asfaw B., Frei E. Peroxidase2activatedcarcinogenicazodye Sudan I(Solvent Yellow14) binds to guanosine in transfer ribonucleic acid [J], GeneralPhysiology and Biophysics,1995,14,39-49.
    [69] Stiboroá M., Asfaw B., Anzenbacher P., et al. The first identification of thebenzenediazonium ion formation from a non-aminoazo dye,1-phenylazo-2-hydroxynaphthalene (Sudan I) by microsomes of rat livers [J], Cancerletters,1988,40,319-326.
    [70] Tsuda S., Matsusaka N., Madarame H., et al. The comet assayineight mouseorgans:results with24azo compounds [J], Mutation Research,2000,465,11-26.
    [71] Vérétout O., Demesse L., Szymanski L. NEWS notification:03/99: Corrected method forthe detection of Sudan[R]//European Commisson. Analysis and dosage of the colorantsSudan and Bixin in chilli powder and pepper-based products.[S. l.]: EuropeanCommission,2005.
    [72]国家质量监督检验检疫总局,GBPPT19681-2005,食品中苏丹红染料的检测方法[S],北京:中国标准出版社,2005.
    [73]黄曙海,庞维群.苏丹红染料毒性研究及食品中苏丹红检测方法简述[J],广西预防医学,2005,11(6):380-383.
    [74]国家质量监督检验检疫总局,国家标准化管理委员会,食品中苏丹红染料的检测方法-高效液相色谱法)[S], GB/T19681-2005.
    [75]喻凌寒,杨运云,闫世平,等. LC-ESIPMS分析食品中微量苏丹红Ⅰ-Ⅳ[J],分析测试学报,2005,24,28-31.
    [76]吴惠琴,黄晓兰,黄芳,等.食品中苏丹红I的GC-MSPSIM快速分析方法研究[J].分析测试学报,2005,24,1-5.
    [77]李东刚,李春娟,孙长华,等.串级质谱法鉴定食品中的苏丹红一号[J],理化检验:化学分册,2006,46,608-610.
    [78] Wang J., WeiK.-Y., Li H., et al. A Sensitive and Selective Enzyme-LinkedImmunosorbent Assay for the Analysis of Para Red in Foods [J], Analyst.2012,137,2136-2146.
    [79] Han, D., Yu, M., Knopp, D. Development of a Highly Sensitive and SpecificEnzyme-Linked Immunosorbent Assay for Detection of Sudan I in Food Samples [J],Journal of Agricultural and Food Chemistry,2007,55,6424-6430.
    [80] Yan H., Qiao J., Pei Y. Molecularly Imprinted Solid-Phase Extraction Coupled to LiquidChromatography for Determination of Sudan Dyes in Preserved Beancurds [J], FoodChemistry,2012,132,649-654.
    [81] Zheng M M., Wu J H., Feng Y Q. Rapid and Sensitive Determination of Sudan Dyes inHot Chilli Products by Solid-Phase Extraction Directly Combined with Time-of-FlightMass Spectrometry [J], Analytical Methods.2011,3,1851-1858.
    [82] Du M J., Xiao G, Zhou Z H., etal. Determination of SudanIin hot chili powder by usinganactivated glassy carbonelectrode [J], Food Chemistry,2007,105,883-888.
    [83] Tian G., Li K.,Wu K B.Multi-wall carbon nanotube-based electrochemical sensor forsensitive determination of SudanⅠ[J], Sensors and Actuators B: Chemical,2008,132,134-139.
    [84]高愿军,张永峰,许光日.利用3G噻吩丙二酸修饰玻碳电极快速检测苏丹红[J],食品科学,2010,31,233-236.
    [85] Lin H G., Li G., Wu K B. Electrochemical determination of sudanⅠusingmontmorillonite calcium modified carbon paste electrode [J], Food Chemistry,2008,107,531-536.
    [86] Landfester K. Miniemulsion Polymerization and the Structure of Polymer and HybridNanoparticles [J], Angewandte Chemie International Edition,2009,48,4488-4507.
    [87] Baier M C., Huber J., Mecking S. Fluorescent Conjugated Polymer Nanoparticles byPolymerization in Miniemulsion [J], Journal of the American Chemical Society,2009,131,14267-14273.
    [88] Rong Y., Wu C., Yu J., et al. Multicolor Fluorescent Semiconducting Polymer Dots withNarrow Emissions and High Brightness [J], ACS Nano,2013,7,376-384.
    [89] Wu C., Bull B., Szymanski C., et al. Multicolor Conjugated Polymer Dots for BiologicalFluorescence Imaging [J], ACS Nano,2008,2,2415-2423.
    [90] Li Y F., Cao Y., Gao J., et al. Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells [J], Synthetic Metals,1999,99,243-248.
    [91] Li Y., Xu R., Couderc S., et al. Binding of sodium dodecyl sulfate (SDS) to the ABAblock copolymer pluronic F127(EO97PO69EO97): F127aggregation induced by SDS[J], Langmuir,2000,17,183-188.
    [92] Zhang W., Gilstrap K., Wu L., et al. Synthesis and Characterization of ThermallyResponsive Pluronic F127-Chitosan Nanocapsules for Controlled Release andIntracellular Delivery of Small Molecules [J], ACS Nano,2010,4,6747-6759.
    [93] Lam Y M., Grigorieff N., Goldbeck-Wood G. Direct visualisation of micelles of pluronicblock copolymers in aqueous solution by cryo-TEM [J], PCCP: Physical ChemistryChemical Physics,1999,1,3331-3334.
    [94] Mortensen K., Talmon Y. Cryo-TEM and SANS microstructural study of pluronicpolymer solutions [J], Macromolecules,1995,28,8829-8834.
    [95] Tan H., Liu N. S., He B., et al. Facile synthesis of hybrid silica nanocapsules byinterfacial templating condensation and their application in fluorescence imaging [J],Chemical Communications,2009,6240-6242.
    [96] Chen JS., Dong W F., Mohwald H., et al. Amplified fluorescence quenching ofself-assembled polyelectrolyte-dye nanoparticles in aqueous solution [J], Chemistry ofMaterials,2008,20,1664-1666.
    [97] Wang J., Wang D., Miller E K., et al. Photoluminescence of Water-Soluble ConjugatedPolymers: Origin of Enhanced Quenching by Charge Transfer [J], Macromolecules,2000,33,5153-5158.
    [98] Attar H AAl., Monkman AP. Effect of Surfactant on Water-Soluble Conjugated PolymerUsed in Biosensor [J], The Journal of Physical Chemistry B,2007,111,12418-12426.
    [99] Wasielewski M R. Photoinduced electron transfer in supramolecular systems for artificialphotosynthesis [J], Chemical Reviews,1992,92,435-461.
    [100] Mail nder V., Landfester K. Interaction of Nanoparticles with Cells [J],Biomacromolecules,2009,10,2379-2400.
    [101] Wang S., Gaylord B S., Bazan G C. Fluorescein Provides a Resonance Gate for FRETfrom Conjugated Polymers to DNA Intercalated Dyes [J], Journal of the AmericanChemical Society,2004,126,5446-545.
    [102] Liu B., Wang S., Bazan, G. C., et al. Shape-Adaptable Water-Soluble ConjugatedPolymers [J], Journal of the American Chemical Society,2003,125,13306-13307.
    [103] Zhang X., Wu Y B., Ji S M., et al. Effect of the Electron Donor/Acceptor Orientation onthe Fluorescence Transduction Efficiency of the d-PET Effect of Carbazole-BasedFluorescent Boronic Acid Sensors [J], The Journal of Organic Chemistry,2010,75,2578-2588.
    [104] Jia L., Guo C., Xiang J., et al. Interaction between PEO-PPO-PEO copolymers and ahexapeptide in aqueous solutions [J], Langmuir,2011,28,1725-1732.
    [105] Han Y., Li M Q. Polymer-Assisted Crystallization and Optical Properties of UniformMicrorods of Organic Dye Sudan II [J], Langmuir,2009,25,6781-6786.
    [106] Rayleigh,L. Philosophical Magazine,1871,41,447.
    [107] Rayleigh,L. Philosophical Magazine,1881,12,81.
    [108] Rayleigh,L. Proe. Roy. Soe,1910, A86,25.
    [109] Rayleigh,L. Proe. Roy. Soe,1914, A90,219.
    [110] Smoluehowski,M. Annals of Physic,1908,25,205.
    [111] Einstein,A. Annals of Physic,1910,33,1275.
    [112] Chu B. Laser Light Scattering,2nd ed.: Academic Press: New York,1991.
    [113] Berne B., R. Pecora R. Dynamic Light Scattering; Plenum Press: New York,1976.
    [113] Ding L., Chi E Y., Chemburu S., et al. Insight into the Mechanism of AntimicrobialPoly(phenylene ethynylene) Polyelectrolytes: Interactions with PhosphatidylglycerolLipid Membranes [J], Langmuir,2009,25,13742-13751.
    [114] Duan C H., Wang L., Zhang K., et al. Conjugated Zwitterionic Polyelectrolytes andTheir Neutral Precursor as Electron Injection Layer for High-Performance PolymerLight-Emitting Diodes [J], Advanced Materials,2011,23,1665-1669.
    [115] Traiphol R., Sanguansat P., Srikhirin T., et al. Spectroscopic Study of PhotophysicalChange in Collapsed Coils of Conjugated Polymers: Effects of Solvent andTemperature [J], Macromolecules,2006,39,1165-1172.
    [116] Nguyen T Q., Doan V., Schwartz B J. Conjugated Polymer aggregates in solution:Control of Interchain Interactions [J], Journal of Chemical Physics,1999,110,4068-4078.
    [117] Zhao X., Pinto M R., Hardison L M., et al. Variable Bandgap poly(Arylene Ethynylene)Conjugated Polyelectrolytes [J], Macromolecules,2006,39,6355-6366.
    [118] Wang D L., Wang J., Moses D.,et al. Photoluminescence Quenching of ConjugatedMacromolecules by Bipyridinium Derivatives in Aqueous Media: Charge Dependence[J], Langmuir,2001,17,1262-1266.
    [119] Jiang H., Zhao X., Schanze K S. Amplified Fluorescence Quenching of a ConjugatedPolyelectrolyte Mediated by Ca2+[J], Langmuir,2006,22,5541-5543.
    [120] Huang Y Q., Fan Q L., Liu X F.,et al. Solvent-and pH-Induced Self-Assembly ofCationic Meta-Linked Poly(phenylene ethynylene): Effects of Helix Formation onAmplified Fluorescence Quenching and F rster Resonance Energy Transfer [J],Langmuir,2010,26,19120-19128.
    [121] Xie D., Parthasarathy A., Schanze K S. Aggregation-induced amplified quenching inconjugated polyelectrolytes with interrupted conjugation [J], Langmuir,2011,27,11732-11736.
    [122] Fan Q L., Zhou Y., Lu X M., et al. Water-Soluble CationicPoly(p-phenyleneethynylene)s (PPEs): Effects of Acidity and Ionic Strength onOptical Behavior [J], Macromolecules,2005,38,2927-2936.
    [123] Nesterov E E., Zhu Z G., Swager T M. Conjugation Enhancement of IntramolecularExciton Migration in Poly(p-phenylene ethynylene)s [J], Journal of the AmericanChemical Society,2005,127,10083-10088.
    [124] Huang Y Q., Fan Q L., Liu X F., et al. Solvent-and pH-Induced Self-Assembly ofCationic Meta-Linked Poly(phenylene ethynylene): Effects of Helix Formation onAmplified Fluorescence Quenching and F rster Resonance Energy Transfer [J],Langmuir,2010,26,19120-19128.
    [125] Jiang H., X. Zhao X., Schanze K S. Effects of Polymer Aggregation and Quencher Sizeon Amplified Fluorescence Quenching of Conjugated Polyelectrolytes [J], Langmuir,2007,23,9481-9486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700