用户名: 密码: 验证码:
玻璃配合料窑外预分解与熔化澄清机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来为了解决能源日趋紧张以及大气污染加剧的问题,平板玻璃熔窑的单线产量越来越大,目前最高已达1200t/d。但是与此同时,熔窑自身重量、跨度也都随之增大,这对耐火材料、钢结构的性能提出了更高的要求。因此,单纯从扩大单线规模来扩大生产规模,降低能源消耗及减少废气排放已经越来越困难。所以开发出一种新型的、先进的玻璃熔制技术工艺,对我国玻璃产业的进步与发展具有极大的现实意义和价值。本课题提出的玻璃配合料窑外预分解技术是将玻璃配合料中的硅酸盐形成过程从传统的浮法玻璃熔制工艺中全部或部分地“分割”出来,使得配合料在窑外完成碳酸盐的分解,再直接在高温状态下以硅酸盐的形式进入熔窑,并使其在一进入熔窑后,就得到强制熔化。
     本文以普通Na2O-CaO-SiO2系平板玻璃为研究对象,利用万能试验机、X射线荧光光谱仪、导热系数仪和差式扫描量热仪等测试手段研究了玻璃配合料由粉状压制成粒状后的性能变化;利用失重分析仪、X射线衍射分析仪、超高温接触角测量仪、偏光显微镜、体视显微镜等测试手段研究了粒状玻璃配合料在775-850℃预分解的变化规律,并通过实验测得反应程度、反应速率常数及反应活化能;用熔化时间、澄清时间、熔化效率及熔化面积等参数对比了粉状、粒状及高温预处理的粒状配合料的熔制性能;理论计算了玻璃配合料的玻璃形成过程热量消耗及熔窑热效率。得到了以下结论:
     粉状配合料在775-850℃失重量最大,硅酸盐形成反应最剧烈,1050℃时观察不到晶体二氧化硅的特征衍射峰。当配合料由粉状压制成粒状时,体积密度和导热系数增大,体积气孔率下降,硅酸盐形成反应速率加快,高温熔制的玻璃中未熔固体颗粒及气泡减少。
     粒化配合料在从室温升至775-850℃的过程中,随着羧甲基纤维素钠溶液和水玻璃溶液浓度的增大,硅酸盐形成反应速率,抗压碎力、反应程度增大,在850℃保温1h时生成的液相大到足以使生料球之间相互粘连。粒状配合料在775-850℃恒温处理时,随保温时间和粘结剂浓度的增大,抗压碎力、反应程度增大,拟合得到的反应活化能逐渐减小。粒化配合料的熔化时间和澄清时间均低于粉状配合料,随着预处理温度的升高,粒状配合料熔化所需的时间是先增加后降低的,而澄清时间逐渐延长。
     随着粒状配合料中二氧化硅粒度减小,在775-850℃预处理后的样品的抗压碎力增大,残留的晶体二氧化硅含量减少,硅酸盐反应活性增大,反应所需要克服的能量势垒降低。未处理的粒状配合料的熔化时间要短于粉状配合料,但长于经高温预分解的粒状配合料。另外,随着二氧化硅粒度的增大,粉状样和生料球在1350-1450℃的熔化时间均延长。
     理论计算了粉状玻璃配合料的玻璃形成过程中生成硅酸盐耗热、玻璃形成耗热、玻璃加热到熔化温度耗热、逸出气体加热到熔化温度耗热、水分蒸发耗热及配合料带入的热量。粉状配合料、生料球及熟料球的玻璃形成所需热量差距不大。只用从蓄热室出来的废气预热生料球,还不足以使生料球部分或完全完成硅酸盐形成过程,还需要额外的加入热量。采用配合料窑外预分解技术,产量可从1200.00t/d提高至2159.89t/d,热效率可从40.00%提高至64.70%。
Recently, in order to solve the problem of increasingly nervous energy and atmospheric pollution, the single-line production of glass melting furnace has become larger and larger and the largest has reached1200t/d. However, at the same time, it has found few problems, such as the enlarged furnace weight and span put forward higher requirement of refractory and steel performance. Therefore, it has become more and more difficult to reduce energy consumption and emissions simply by expanding single-line to expand production scale. So developing a novel and advanced glass melting technology has maximal practical significance and value on progress and development of glass industry. The glass batch silicate kiln decomposition technology mentioned in this topic is whole or partly "split" the process of silicate formation from the conventional melting process of float glass. Glass batch would complete the carbonate decomposition process outside the furnace, and then enter the kiln in form of silicate under high temperature, so it would mandatory be melted.
     This work set Na2O-CaO-SiO2system flat glass as research object. The performance change of loose glass batch and compacted glass batch was investigated by universal testing machine, X-ray fluorescence spectrometer, thermal conductivity analyzer and Pressure Differential Scanning Calorimetry. The laws in silicate formation of granular glass batch in775-850℃was investigated by gravimetric analyzer tester, X-ray diffraction analyzer, ultra-high temperature contact angle measuring instrument, polarizing microscope and stereo microscope. The degree of reaction, the reaction rate constant and the activation energy were measured. The melting properties of loose glass batch, granulated glass-forming batch and sintered compacted glass batch were contrasted by measuring melting time, fining time, melting efficiency and melting area. Finally, the heat consumption and the thermal efficiency of the furnace during the glass forming process were calculated theoretically. The results were shown as follows:
     The weight loss of loose glass batch reached the largest at775-850℃, at this time, silicate formation reaction became dramatic. There were no characteristic diffraction peaks of crystalline silica be observed at1050℃. When glass batch was compressed from loose to a granular, the bulk density and thermal conductivity of batch were increased, and the volume porosity was decreased, meanwhile, the temperature of silicates forming followed towards lower temperatures. The unmelted solid particles and bubbles in high-temperature melting glass were reduced.
     In the procedure of granulated glass batch treated from room temperature to775-850℉, as the increasing of sodium carboxymethyl cellulose solution and sodium silicate solution concentration, the temperature of silicate reaction was reduced, the anti-crushing ability and the degree of reaction were increased. The cohesive force between samples was strong enough to bond together when a large amount of liquid phases was produced at850℃for lh. When glass batch was treated in a constant temperature of775-850℃, as the increasing of holding time and concentration of binder, the anti-crushing ability and the degree of reaction were increased, and the calculated activation energy was decreased. The melting time and fining time of granulated glass batch were less than that of loose glass batch. As the increasing of pretreatment temperature, the time for melting granulated glass batch was increased first and then decreased, however, the fining was gradually extended,
     As the smaller of silica particle size, the anti-crushing ability of sample treated at775-850℃was increased, the content of residual silica crystal was reduced, the silicate reaction activation was increased, the energy barrier which was needed to overcome was decreased. The melting time of the untreated granulated glass batch was shorter than that of loose glass batch, but longer than that of the treated compacted glass batch. In addition, with the increasing of silica, the melting time of loose glass batch and pellets at1350-1450℃were both extended.
     The heat consumption of loose glass batch in the process of glass formation, including the silicate forming heating, the glass forming heating, the heating when glass was heated to melting temperature, the heating when escaping gas was heated to melting temperature, moisture evaporation heating and the heating brought by glass batch, were calculated theoretically. The heat consumption of loose glass batch, the untreated granulated glass batch and sintered granulated glass batch had little difference. Only using the exhaust gas which came from regenerator to preheat granulated glass batch was not enough, because the energy was barely provided to partially or fully completed the process of silicate forming, so it needed extra added heating energy. The output of furnace was increased from1200.00t/d to2159.89t/d and the thermal efficiency of furnace was increased from40.00%to65.70%when using the glass batch silicate kiln decomposition technology.
引文
[1]安艳云.优化粒级配比提高玻璃熔化质量[J].玻璃,2002,(6):46-47.
    [2]刘建安.粒化料在玻璃窑炉中的应用[J].山东轻工业学院学报,1994,8(3):54-56.
    [3]C. V. S. Ratnam, D. N. Sibal, C. L. Seshadri. Pilot Plant Investigation on the Briquetting and Carbonization of South Arcot Lignite [J]. Glass technology,1945:125-135.
    [4]张碧栋.国外对玻璃原料粒度的要求[J].武汉建材学院学报,1983,(1):57-62.
    [5]宋瑞芝.对改善我国玻璃原料粒度的意见[J].玻璃,1986:8-11.
    [6]H. Campbell, W. C. Bauer. Cause and Cure of Remixing in Solid-Solid Mixers [J]. Chemical Energy,1966.
    [7]朱明.硅酸盐工业热工基础实验[M].湖北:武汉理工大学出版社,1996.
    [8]V. G Kalygin, V. I. Nazarov, O. S. Chekov, etc. Compaction of Batch for Flat Glass [J]. Glass and Ceramics,1985,42(3):121-124.
    [9]孙承绪.谈玻璃配合料的密实[J].玻璃与搪瓷,2010,38(1):32-36.
    [10]Stanley A. Byers, James R. McKee, Marvin C. Gridley, et. al. Rapid Strength Development in Compacting Glass Batch Materials [P]. United States Patent:4236929, Dec.2,1980.
    [11]Michael Cable. A Century of Developments in Glass melting Research [J]. Journal of the American Ceramic Society-Cable,81(5):1083-1093.
    [12]Magnus L. Froberg, Granville, Ohio. Method for Preparing Molten Glass [P]. United States Patent:4358304, Nov.9,1982.
    [13]蔡启南.玻璃配合料球团化的发展概况[J].玻璃,1982,(1):24-26.
    [14]林宗寿.无机非金属材料工学[M].武汉:武汉理工大学出版社,2006.
    [15]张文玲.配合料粒化工艺在平板中的应用研究[J].中国硅酸盐学会玻璃分会2009年全国玻璃科学技术年会论文集,2009:319-322.
    [16]曾雄伟,赵恩录,张文玲.浮法玻璃配合料粒化的研究[J].玻璃,2007,(6):14-16.
    [17]V. G Kalygin, V. I. Nazarov, O.S. Chekhov, et al. Chemical-exchange Reactions During the Compaction of Glass Batches [J]. State Scientific-Research Institute of Glass,1986, (2):47-50.
    [18]William C. Bauer, Boulder, Cob. Manufacture of Glass Using Briquettes [P]. United States Patent:4023976, May 17,1977.
    [19]Krasheninnikova N.S., Vereschagin V.I., Petrovskaja I.V. The Effete of Soda-containing Components Upon the Mechanism of Granular-formation in Glass Charge [J]. IEEE,2000: 321-323.
    [20]Wfflimn Carty. Selective Glass Batching Methods for Improving Melting Efficiency and Reducing Gross Segregation of Glass Batch Components [P]. United States Patent:0227188, Oct,2007.
    [21]胡昌盛,王介峰.影响玻璃配合料传热若干因素的定量探讨[J].山东轻工业学院学报,1992,6(3):20-25.
    [22]钟世权,张秉旺,凤超然.玻璃原料的粒度与防尘[J].工业安全与环保,1986:7-12.
    [23]刘传炳.玻璃原料质量对熔窑的影响[J].玻璃,1994,(6):25-26.
    [24]陈兰武.精确控制浮法玻璃原料及混合料质量[J].2007年中国浮法玻瑞及玻瑞新技术发展研讨会论文集,2007:213-217.
    [25]刘胜.粒料与粉料熔制对比试验[J].灯与照明,1990,(1):29-30.
    [26]胡昌盛,王介峰.影响玻璃配合料传热若干因素的定量探讨[J].山东轻工业学院学报,1992,6(3):20-25.
    [27]王志平,张文玲,赵恩录等.玻璃配合料粒化产业化思路[J].玻璃,2008,(10):44-46.
    [28]陈健民,童月珍,耿海棠.玻璃配合料压块熔化新工艺中间试验[J].玻璃,1986,(4):1-6.
    [29]赵书珉.玻璃配合料温度控制[J].玻璃,2000,27(3):27-31.
    [30]Sergei A.Zelepouga, Alexei V.Saveliev, Lawrence A.Kennedy, et al. Relative Effect of Acetylene and Pahs Addition on Soot Formation in Laminar Diffusion Flames of Methane with Oxygen and Oxygen-enriched Air [J]. The Combustion Institute,2000.
    [31]蔡悦民.硅酸盐工业热工技术[M].湖北:武汉理工大学出版社,1997.
    [32]Stanley A. Byers; James R. McKee, Sr.; Marvin C. Rapid Strength Development in Compacting Glass Batch Materials [P]. United States Patent:4236929, Dec.2,1980.
    [33]V. G. Kalygin, V. I. Nazarov, O.S. Chekhov, et al. Chemical-exchange Reactions During the Compaction of Glass Batches [J]. State Scientific-Research Institute of Glass,1986, (2):47-50.
    [34]N. S. Krasheninnikova, O. V. Kazmina, I. V. Frolova. Batch Pulping on The Basis of Natural Substandard Siliceous Materials [J]. Bulletin of the Tomsk Polytechnic University,310(1): 120-124.
    [35]Andre Pons, Villejrif. Raw Materials for Glass Making and Method of Making Them [P]. United States Patent:4028131, June 7,1977.
    [36]V. I. Nazarov, V. G. Kalygin, N. F. Naslovslcii, etc. Use of Compacted Batch in the Production of Glass Fiber [J]. Glass and Ceramic,1983,40(7):372-374.
    [37]William A. Mod, Donald L. Caidwefi. Glass Manufacture From Prereacted Batch and Composition [P]. United States Patent:3726697, Apr.10,1973.
    [38]孙承绪.配合料预处理与池窑节能[J].玻璃与搪瓷,1981,(4):33-35.
    [39]Masatala Kawaguchi, Tsutomu Kato, Yukinobu Imamura, etc. Challenge to Improve Glass Melting and Fining Process [J]. Ceramics Silikaty,2008,52(4):217-224.
    [40]白雪,贾堤,程博闻等.粘结剂对玻璃配合料压实性的影响[J].硅酸盐通报,2009,28(3):585-588.
    [41]张筱园,朱沁秋.配合料预热工艺在玻璃熔化技术中的应用[J].中国建筑材科科学研完院学报,1991,3(3):71-76.
    [42]刘晓勇,刘贵海,王永纯.利用窑炉烟气余热预热玻璃配合料[J].玻璃,2004,(6):14-16.
    [43]王世忠.带配合料预热器的全氧燃烧玻璃熔窑[J].中国建材科技,1999.
    [44]俘艳娟,杨健.提高空气预热温度降低燃料消耗[J].玻璃,2005,(4):55-56.
    [45]冯明良.流化床预热配合料改善熔窑作业[J].玻璃,1986(6):42-45.
    [46]R. A. Boldyrev, E. R. Ushmaikin, V. G. Zheltov. Glass Batch Preheating Performance:A Review [J]. Glass and Ceramics,1987:483-486.
    [47]李修瑞.玻璃配合料预热技术[J].现代节能,1990,(4):18-21.
    [48]Yongguo Wu. Optimization of heat recovery in glass melting [D]. USA, Case Western Reserve University,1994.
    [49]Gary Peter Tomaino, Easton. Synthetic Silicate Pellet Composition and Methods of Making and Using Thereof [P]. United States Patent:6336346, Jan.8,2002.
    [50]Ruud Beerkens. Energy Efficiency of Glass Furnaces and Application of Batch & Cullet Preheating [J]. Path to Sustainability,2007.
    [51]钱世准.介绍几家公司的玻璃熔制新技术[J].玻璃纤维,2000,(2):40-42.
    [52]V. E. Manevich, K. Yu. Subbotin, V. D. Tokarev. Physicochemical Processes in Transportation and Storage of Glass Batch [J]. Glass and Ceramic,2003, (60):353-356.
    [53]Jurgen Leimk□hler.玻璃配合料预热提供节能的选择[J].山西建材,1998,(4):41-45.
    [54]E. Meechoowas, P. Ketboonruang, K. Tapasa, etc. Improve Melting Glass Efficiency by Batch-to melt Conversion [J]. ISEEC,2012,32:956-961.
    [55]Bauer et al. Manufacture of Glass Using Briquettes [P]. United States Patent:4032976, May 17,1997.
    [56]F. G. Solinov and N. A. Pankova. Investigation of the Glass Refining Process with the Aid of Motion Pictures [J]. Glass and Ceramics,16(10):537-542.
    [57]Ernst F. Beutin and Jurgen H. Leimkuhler. Long-Term Experience with Nienburger Glass Batch Preheating Systems [J]. Ceramic Engineering and Science Proceedings,2008,21: 109-121.
    [58]M.G Carvalho, M. Nogueira. Modeling of Glass Melting Industrial Process [J]. Journal De physique IV,1993,3:1357-1366.
    [59]Lubomir Nemec, Jaroslav Klouzk. Modeling of Glass Refining Kinetics PART 1. Single Bubbles [J]. Ceramics Silikaty,2003,47(3):81-87.
    [60]肖洁,崔登国.利用烟气余热预加热玻璃配合料机理研究[J].国外建材科技,2008,29(6):46-48.
    [61]孙晋涛.硅酸盐工业热工基础[M].湖北:武汉理工大学出版社,2006.
    [62]西北轻工业学院主编.玻璃工艺学[M].北京:中国轻工业出版社,1982.
    [63]方荣利.无机材料反应工程学[M].北京:化学工业出版社,2008.
    [64]钟代发.平板玻璃成份五组份配合料在加热时的硅酸盐形成过程的研究[J].玻璃,1980(4):56-59.
    [65]William M.Carty, Udayan Senapati. Porcelain-Raw Materials, Processing, Phase Evolution, and Mechanical Behavior [J]. Journal of the American Ceramic Society-Carty and Senapati, 1998,81(1):3-20.
    [66]Bauer, Jon Frederick, Castle Rock. Method for Preparing a Pre-reacted Clinker for the Formation of Glass and Glass Fibers [P].European Patent:1867608, Apr.2007.
    [67]Antonio Pita Szczesniewski; HugoBolio Arceo. Method For Preparing Pre-reacted Batches of Raw Materials for the Production of Glass Formula [P]. United States Patent:6358870, Mar. 19,2002.
    [68]Heithoff, et al. Transition Between Batch Preheating and Liquefying Stages Apparatus [P]. United States Patent:4496387,1985.
    [69]S. V. Krivenko, A. A. Tomash, and V. P. Russkikh. Sintering of Preheated Batch with Oxygen Enriched Air [J]. Steel in Translation,2011,41:31-35.
    [70]R. Boerefijn, M.J.Hounslow. Studies of Fluid Bed Granulation in an Industrial R&D Context [J]. Chemical Engineering Science,2005,60:3879-3890.
    [71]Antonio Pita-Szczesniewski, Fribourg. Method for Preparing Pre-reacted Raw Material Batches for the Production of Synthetic Silicate [P]. United States Patent:7937970, May, 2011.
    [72]Michael Cable. A Century of Developments in Glass Melting Research [J]. Journal of the American Ceramic Society-Cable,1999,81(5):1083-1093.
    [73]B. Ya. Ten. Calculation of SiO2 Diffusion Coefficients Based on Kinetic Curves of Silica Grain Dissolution[J]. Glass and Ceramics,2004,61:111-113.
    [74]陈健民.玻璃配合料熔化速率实验室研究测定[J].玻璃,1980,(4):21-25.
    [75]J. R. Bourne, F. Kozicki, U. Moergeli, etc. Mixing and Fast Chemical Reaction—Ⅲ:Model Experiment Comparisons [J]. Chemical Engineering Science,1981,36:1655-1663.
    [76]Bryan Clair Hoke, Jr., Bethlehem. Glass Melting Process and Furnace Therefore with Oxy-fuel Combustion Over Melting Zone and Air-fuel Combustion Over Fining Zone [P]. United States Patent:6519973, Feb.18,2003.
    [77]Henry M. Demarest, Jr., Natrona Heights, Pa. Method of Making Glass with Preliminary Reaction of Batch Materials [P]. United States Patent:4920080, Apr.24,1990.
    [78]William E. Cole, Sudbury. Combined Batch and Cullet Pre-heater with Separation and Remixing [P]. United States Patent:5125943, Jun,30,1992.
    [79]Ammar Khawam, Douglas R. Flanagan. Solid-State Kinetic Models:Basics and Mathematical Fundamentals [J]. J. Phys. Chem. B 2006,110,17315-1728.
    [80]Magnus L. Froberg, Granville. Method For Preparing Molten Glass [P]. United States Patent:4358304,Nov.9,1982.
    [81]N. S. Krasheninnikova, I. V. Frolova, and O. V. Kaz'mina. A Method for Preparing Homogeneous Glass Batch[J]. Glass and Ceramics,2004,61:173-174.
    [82]N. S. Krasheninnikova, O. V. Kaz'mina, and I. V. Frolova. Phase Transformations in Moistened Glass Batches Under Compaction [J]. Glass and Ceramics,2002,59:424-428.
    [83]N. S. Krasheninnikova, I. V. Frolova, O.V. Kazmina. A Method for Preparing Homogeneous Glass Batch [J]. Glass and Ceramics,2004, (1):173-174.
    [84]N. S. Krasheninnikova, I. V. Frolova, and V. I. Vereshchagin. Application of Granulated Raw Concentrate in Glass Technology [J]. Glass and Ceramics,2004, (61):164-168.
    [85]Gu Ohu A Ch En, Xin Yu Liu. Fabrication, Characterization and Sintering of Glass-ceramics for Low-temperature Co-fired Ceramic Substrates [J]. Journal of Materials Science,2004: 595-600.
    [86]姜洪舟.无机非金属材料热工设备[M].湖北:武汉理工大学出版社,2009.
    [87]聂轶苗,马鸿文.材料科学研究中常用的热力学模型评述[J].陶瓷学报,2005,26(2):123-128.
    [88]Games Slayter, Newark, Ohio. Pre-reacted Glass Batch and Method for Producing Same [P]. United States Patent:3001881, sep.1961.
    [89]Robert W. Hopkins, Hamilton. Method of Preparing Glass [P]. United States Patent:3065090, Nov.1962.
    [90]Lubomir Nimec, Vladislava Tonarova. Glass Melting and Its Innovation Potentials:Bubble Removal Under the Effect of the Centrifugal Force [J]. Ceramics Silikaty,2008,52(4): 225-239.
    [91]Christopher C. Tournour and James E. Shelby. Effect of Diopside and Wollastonite on the Melting of Soda-Lime-Silicate Glasses [J].60th Conference on Glass Problems,2000: 264-273.
    [92]William M. Carry, Christopher W. Sinton. Selective Batching for Improved Commercial Glass Melting [J]. Ceramic transactions,2006,173:87-94.
    [93]Lubomir Nimec, Petra Cincibusova. Glass Melting and Its Innovation Potentials:The Role of Glass Flow in the Bubble-removal Process [J]. Ceramics Silikaty,2008,52(4):240-249.
    [94]Lubomir Nimec, Marcela Jebava, Petra Cincibusovd. The Removal of Bubbles from Glass Melts in Horizontal or Vertical Channels with Different Glass Flow Patterns [J]. Ceramics 'Silikaty,2008,52(4):140-152.
    [95]Jaroslav Klouzek, Lubomir Nimec. Modeling of Glass Refining Kinetics Part 2:Bubble Distribution Models and Methods of Measurement of Refining Properties [J]. Ceramics Silikaty,2003,47(4):155-161.
    [96]刘艳利.粒化玻璃配合料中的机械力化学效应[D].哈尔滨:燕山大学,2007.
    [97]M. Landin, P. York, M J. Cliff, R.C. Rowe, etc. The Effect of Batch Size on Scale-up of a Pharmaceutical Granulation in a Fixed Bowl Mixer Granulator [J]. International Journal of Pharmaceutics,1996,134:243-246.
    [98]A.N.E. Rahman, M. Aziz Masood, C.S.N. Prasad, etc. Influence of Size and Shape on the Strength of Briquettes [J]. Fuel Processing Technology,1989,23:185-195.
    [99]Ruud Beerkens. Analysis of Elementary Process Steps in Industrial Glass Melting Tanks-Some Ideas on Innovations in Industrial Glass Melting [J]. Ceramics Silikaty,2008,52(4): 206-217.
    [100]R. E. Carter. Kinetic Model for Solid State Reactions [J]. The Journal of Chemical Physics, 1960,34(6):2010-2015.
    [101]H. Scott Coombe, Sen Nieh. Polymer Membrane Air Separation Performance for Portable Oxygen Enriched Combustion Applications [J]. Energy Conversion and Management,2007: 1499-1505.
    [102]B. Ya. Ten. Calculation of SiO2 Diffusion Coefficients Based on Kinetic Curves of Silica Grain Dissolution [J]. Glass and Ceramics,2004,61:111-113.
    [103]Yu. A. Guloyan. Chemical Reactions Between Components in the Production of Glass-Forming Melt [J]. Glass and Ceramics,2003,60:233-235.
    [104]Clarbnce L. Babcock. Silicate Glass Technology Methods [J]. International Journal of Optics,1978,25:16-17.
    [105]V. T. Chubinidze, S. A. Tertyshnikov, A. V. Yachevskii. Heat treatment of granulated sodium silicate batches [J]. Glass and Ceramics,1983,40(7):332-335.
    [106]孙承绪.玻璃窑炉热工计算及设计[M].北京:中国建筑工业出版社,1983.
    [107]樊德琴.玻璃工业热工设备及热工测量[M].湖北:武汉工业大学出版社,1993.
    [108]陈正树.浮法玻璃熔窑的设计计算[J].玻璃,1998,(3):13-18.
    [109]陈正树.玻璃熔窑熔化率的理论计算[J].玻璃,1992(4):13-15.
    [110]利索夫斯卡娅,傅云清.玻璃熔窑中配合料熔化过程的数学模型[J].中国玻璃,1991,(6):51-54.
    [111]邬永国.提高玻璃熔窑热效率的最近进展[J].玻璃与搪瓷,2007:13-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700