用户名: 密码: 验证码:
浮法玻璃熔窑内玻璃液澄清的计算机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在前人关于数学模拟研究的基础上,建立了耦合玻璃液传热与流动模型、火焰空间模型和配合料熔化模型的浮法玻璃熔窑综合数学模型,并在此基础上建立了化学浓度扩散模型和玻璃液澄清模型。论文采用SIMPLEC算法计算了玻璃液的流场和温度场分布,计算和模拟了不同工作制度时玻璃液中气体浓度分布和气泡澄清过程。
     通过对玻璃液中气体浓度场分布计算和气泡澄清过程的模拟研究可知:各种气体在玻璃熔窑前区熔化部位置浓度分布较大,在熔窑后区澄清区和冷却部浓度分布较低;澄清一段时间之后,在熔化部热点附近,玻璃液中残余气泡的尺寸较小,而澄清区和冷却部,玻璃液中残余气泡尺寸相对较大。气泡的澄清过程受玻璃液流场的回流影响较大。
     不同温度制度时的玻璃液澄清过程研究表明:桥形和“双热点”温度制度相较于山形温度制度,玻璃液整体温度升高,而热流稳定性不变。“双热点”温度制度时玻璃液中的气泡澄清情况最好。窑内气体总压的变化研究表明:随着窑压降低到15KPa玻璃液中气体浓度分布仅略有降低,只有当窑压为25KPa时玻璃液的澄清情况较好。玻璃液表面张力变化研究表明:当玻璃液表面张力降低时,玻璃液粘度减小,有利于气泡澄清。在澄清前区内,表面张力大(0.38N/m~2)时,气泡的澄清情况好于表面张力小时的情况,而到冷却部之后,表面张力小的玻璃液气泡澄清状况开始变好。出料量变化研究表明:出料量的变化影响澄清指数的大小,即影响澄清条件的好坏。出料量少时,熔窑内玻璃液温度升高,粘度降低,气泡逸出时间减少;出料量少,玻璃液流速降低,玻璃液在熔窑内停留时间增加,玻璃液澄清时间增长,因此玻璃液的澄清指数变大,玻璃液的澄清条件改善。当出料量由多变少,玻璃液中气体浓度显著降低,最终气泡澄清数量提高很多。
With a whole consideration of three mathematical models, namely glass flow movement and heat transfer model, which have been established particularly for float glass tank by predecessors, the chemical concentration diffusion model and air bubble fining model are built in thesis. The method of SIMPLEC was applied to calculate the distribution of temperature and velocity field, and subsequently the gas concentration distribution in glass liquor is calculated and the process of bubble fining is calculated under different working conditions.
    Studying on the distribution of the gas concentration field and the simulation of the bubble fining process, it can be concluded that: gas concentration is a little high in the former of the glass tank, while it is somewhat low in the fining and cooling area of the glass tank; after fining for a time, the air bubbles on the hotspot is smaller, while it is a little big in the fining and cooling area. The fining process of air bubble is influence greatly by the circulations of the glass velocity field.
    From the research on the different processing systems, the following conclusions can be drawn. Compared with the "Mount" temperature system, the "double hotspot" and the "bridge" temperature system have high temperature and its bubble fining is best. The study on the variation of the gas pressure in the tank shows that: when the pressure reduces from normal degree to ISKpa, the gas concentration has only a little low. When the pressure is at 25KPa, the glass fining is perfect. It is shown by the study on the variation of surface tension that the viscosity of glass decrease when the surface tension went down, which is of help to fine the air bubble. In the front fining area of the tank, the surface tension was relatively high (about 0.38N/m2 ), the glass liquor fines much better than it could do when the surface tension is low, but in the back part of the cooling area, the glass liquor with low surface tension could also fines well. The study on the change of the output capacity shows that it has great influe
    nce on the fining exponential, namely good or bad fining conditions. When the output is less, the
    
    
    temperature in the tank, goes up, the viscosity reduces, accordingly, the time in which bubble comes out of the liquor is shortened. Furthermore when the output is less, the velocity of glass liquor was low and the fining time was relatively long, thus the glass fining exponential is high, correspondingly, the glass fining condition is improved. When the output verified from more to less, the gas concentration in glass is obviously low, and the amount of the fining bubble is increased.
引文
[1]西北轻工业学院.玻璃工艺学.北京:轻工业出版社,1987.249~255
    [2]祁建伟等.玻璃熔窑液流和传热模拟技术的发展,第一部分,物理模拟.玻璃与搪瓷,1994.22(5):42~45,49
    [3]H.Jebsen and A.Marwedel. Uber stromungen des glass in der wannenschmeltz. Glastechn.Ber., 1927. 5(5): 202~207
    [4]W.Woening. Glasstromungen in der ziebwangenanlage. Glastechn. Ber., 1927. 5(9): 417~424
    [5]W.Schnekloth and W.Spielvogel. Methods of investigation glass currents in tank furnace. J.Soc.Glass Techn., 1936. 20: 651~675
    [6]A.Marden. Flow tests in small glass tanks. J.Soc.Glass Techn., 1931. 15(59): 119~123
    [7]F.C.Flint and A.Lyle. The flow of glass in tanks. J.Am.Ceram.Soc., 1932. 15(12): 410~419
    [8]A.Schild. Studies in the heat current in tanks by means of models. Glastechn.Ber., 1933. 16(9): 305~314
    [9]E.Bukingham. The use of models for studying the circulation in glas tanks. J.Am.Ceram. Soc, 1937. 20(1): 1~10
    [10]I.Peyches. Convection currents in a glass tank. Glass Industry, 1948. 29(1), January
    [11]祁建伟等.玻璃熔窑液流和传热模拟技术的发展,第三部分,国内外研究及发展概况.玻璃与搪瓷,1995.23(1):34~37
    [12]J.Peschke. Calculation of convection flows in glass melting tank furnace. Glastechn. Ber., 1965. 38(7): 276~281
    [13]H.Mase et al. Mathematical model of glass tank furnace with batch melting process. Journal of Non-Crystalline Solids, 1980. 38&39: 807~812
    [14]A.Moult. Two and three dimensional mathematical models of glass tank furnaces. Glass Technology, 1982. 23(2): 106~112
    [15]S.V.Patankar and D.B.Spalding. A Calculation procedure for heat, Mass and momentum transfer in three dimensional parabolic flows. Int. J.Heat Mass transfer, 1972. 15: 1787~1806
    
    
    [16] A.Ungan and R.Viskanta . Three-dimensional numerical modeling of circulation and transfer in a glass melting tank, Part 1. Mathematical formulation. Glastech.Ber., 1987. 60(3) : 71-78
    [17] A.Ungan. and R.Viskanta . Three-dimensional numerical modeling of circulation and transfer in a glass melting tank, Part.2. Sample simulations. Glastech.Ber., 1987. 60(4) : 115-124
    [18] A.Ungan and R.Viskanta. Melting behavior of continuously charged loose batch blankets in glass melting furnace. Glastech.Ber., 1986. 59(10) : 279-291
    [19] 钱壬章等,传热分析与计算。北京:高等教育出版社,1987.
    [20] 陶文铨等,数值传热学,西安:西安交通大学出版社,1988.
    [21] M.Choudary. A three dimensional mathematical model for flow and heat transfer in electric glass furnaces. IEEE Trans. On Ind. Appl., 1986. 23(5) : 912-921
    [22] H.Mase . Three dimensional mathematical of glass tank furnace. Yogyo-Kyokai-Shi, 1986. 94(2) : 285-294
    [23] R.A.Murnance et al . Analysis of glass process problems using three dimensional computer modeling. Prevention at the 48th glass problems conference, 1987.
    [24] F.T.Lentes and N.Siedow. Three-dimensional radiative heat transfer in glass cooling processes. Glastech . Ber. Glass Sci. Technol., 1999. 72(6) : 188-196
    [25] G.C.Beerkens et al. Impact of furnace atmosphere and organic contamination of recycled cullet on redox state and fining of glass melts. Glastech. Ber. Glass Sci. Technol, 1999. 72(5) : 127-143
    [26] J.Klouzek et al. Modelling of the refining space working under reduced pressure. Glastech. Ber. Glass Sci. Technol., 2000. 73(11) : 329-336
    [27] S.Kawachi and Y.Lwatsubo. Diagnosis and treatment of bubbles in glass production using a numerical simulator. Glastech. Ber. Glass Sci. Technol., 1999. 72(7) : 207-213
    [28] M.G.Caralhe et al. Glass quality evaluation via 3D mathematical modeling of glass melting furnaces. 1st Europ. Confer. On the Fundamentals of the glass manufacturing process, 1991 (Sheffield): 169-177
    [29] H.P.Hmuysenberg and F.Simonis. Studying time transient behavior of glass melting tanks by mathematical simulation models. Proceedings of XVII International Congress on Glass, 1995. 6: 139-144
    
    
    [30]J.Bauer. Validation of a mathematical glass tank model. Glastech. Ber. Glass Sci. Technol., 1999. 72(6): 71~181
    [31]J.Wang et al. Validation of an improved batch model in a coupled combustion space/melt tank/batch melting glass furnace simulation. Glastech. Ber. Glass Sci. Technol., 2000. 73(10): 299~307
    [32]赵国昌.熔窑玻璃液流数值模拟的新发展.玻璃与搪瓷,1996.24(6):27~32
    [33]孙承绪等.玻璃池窑供料道内流动和传热过程的数学模拟.硅酸盐学报,1987.15(1):9~18
    [34]王剑,周志豪.窑池内玻璃液流动和传热的二维数学模型.玻璃与搪瓷,1987.15(1):1~7
    [35]齐朝辉,陈越南.鼓泡后玻璃熔窑内流动和传热的二维数值模拟.玻璃与搪瓷,1993.21(2):9~14
    [36]赵国昌等.玻璃池窑的数值模拟.玻璃与搪瓷,1993.21(3):15~20
    [37]胡桅林等.评价熔窑内玻璃液澄清过程的定量指标.玻璃与搪瓷,1993.22(2):5~11
    [38]吴锡琪.玻璃配合料熔化过程的计算机模拟.玻璃,1994.21(3):6
    [39]周海波,张飞鹏.玻璃窑池中流动和传热的二维数学模型.玻璃,1992.19(4):1~9
    [40]沈锦林等.玻璃池窑内配合料及玻璃液流的三维数值模拟,浙江大学学报(工学版),1999.33(4):398~403
    [41]J.I.Shen et al. Study on mechanisms of glass flow and heat-transfer process in float glass furnaces using computer three-dimensional simulation and graphics generation. Proceedings of ⅩⅤⅡ International Congress on Glass, 1995. 6: 133~138
    [42]宋力昕.浮法玻璃熔窑三维数学模拟:[硕士学位论文].上海:华东理工大学,1993
    [43]岳爱文.玻璃熔窑内传热与流动及砂粒熔化的计算机模拟:[硕士学位论文].武汉:武汉工业大学,2000
    [44]姜宏.玻璃熔窑运行状态的计算机模拟及其中浮法玻璃熔窑中的应用:[博士学位论文].武汉:武汉理工大学,2000
    [45]孙晋涛.硅酸盐工业热工基础.武汉:武汉工业大学出版社,1994.
    [46]丁卫红译,玻璃熔化数学模型.中国玻璃,1992.(3):52~59
    
    
    [47]清华大学工程力学系编.流体力学基础,上、下册.机械工业出版社,1980.
    [48]S.V.Patankar.传热与流体流动的数值计算(,张政译).北京:科学出版社,1984.
    [49]H.舒尔兹.玻璃的本质、结构和性质(,黄照柏译).北京:中国建筑工业出版社.1984.
    [50]国家建材局平板玻璃热工测试中心.洛阳玻璃厂浮法二线500T/D熔窑热平衡测定报告,1994.
    [51]W.D.Henderson et al. The experimental determination of the effective thermal conductivity of various glasses over the temperture range 1000-1300 ℃. Glass Techonology, 1983. 127~132
    [52]徐文山.熔窑保温后的节能途径探讨.中国玻璃,1994.(6):31~34
    [53]张武.改进浮法玻璃熔窑结构和温度制度提高熔化能力.玻璃,1993.(1):24~26.
    [54]傅云清译,(苏)B.H.别斯巴洛夫等.平板玻璃熔窑中玻璃液的澄清与均化.中国玻璃,1992.(1):41~44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700