用户名: 密码: 验证码:
华北平原典型地区大规模开采条件下不同层位含水组地下水互动关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择华北平原东部为试验区,以国土资源部衡水地下水科学试验基地的五眼不同层位含水组的机井为研究对象,以抽水试验为主要工作手段,通过地层结构特征、不同含水组地下水位年动态、抽水试验期间的水位动态、抽水过程中的水化学—同位素—微量元素、地下水年龄以及抽水试验数值模拟等五个方面的研究,揭示了华北平原东部不同层位含水组地下水的互动关系,为地下水资源的合理开发利用和科学管理提供了科学依据。
     本文以系统论为指导,以水化学、微量元素和同位素信息为线索,综合运用水文地质学、水文地球化学、同位素水文学以及相关的数学理论,地下水动力学理论,采用综合分析、定性判断和定量分析相结合的方法开展工作。首先,在总结前人成果的基础上,全面了解试验区的区域地质背景、水文地质背景。详细分析了试验区不同含水组的空间物理结构特征,制定了详细的抽水试验方案,采用了先进的观测设备观测水位动态。同时,利用同位素和水化学信息的示踪功能和放射性测年技术,识别了不同层位含水组地下水的补、排特征,并利用数值模拟方法,查明了不同层位含水组地下水的互动关系。
     通过上述研究,得出如下认识:
     1.在大规模开采条件下,浅层地下水系统与深层下水系统仍然具有各自的动态特征。浅层地下水系统直接接受大气降水、农灌回归水的入渗补给,排泄方式为蒸发和向深层地下水的越流;氢氧同位素含量比深层地下水高:同位素年龄表明,浅层地下水参与现代水文循环积极。深层地下水补给来源与含水组的埋藏深度有关,第Ⅱ含水组主要来自于越流补给,其它含水组主要来自于侧向。
     2试验区深层不同层位地下水可划分为两个子系统。第Ⅱ、Ⅲ含水组为上部地下水子系统,第Ⅳ、Ⅴ含水组为下部地下水子系统。子系统内部具有相似的水文特征、水化学—同位素—微量元素信息,子系统之间区别明显。氚同位素表明,上部地下水子系统的地下水为现代水与古水的混合水,下部子系统的地下水为古水。
     3.浅层地下水通过越流的方式补给深层地下水。第Ⅱ含水组的开采量中有21.4%来自于浅层地下水的越流补给。深层地下水开采时主要消耗的储存量,但不同层位含水组地下水资源组成不同。第Ⅱ含水组开采量主要由存储量和浅层地下水的越流量组成;第Ⅲ、Ⅳ、Ⅴ含水组开采量主要由储存量和侧向量组成,越流量只占了开采量很小的一部分。
     4.地下水系统具抽水效应。抽水效应是指在抽水初期,非抽水含水层水位随抽水含水层水位下降而下降的现象。这是由于地层压力变化引起,没有发生水量交换。大量试验数据表明,在大规模开采条件下,试验区5个含水组之间既有因水量交换而引起的水位变动(越流效应),也有因压力变化而引起的水位变动(抽水效应),且两个效应同时并存。
     5.针对上述分析结果,分析了地下水的更新性,提出了地下水合理开发利用对策:优先开采第Ⅲ含水组,适量开采第Ⅱ含水组、限制开采Ⅳ含水组。禁止开采第Ⅴ含水组。
The purpose of present work is to revealed hydraulic connection among five different depth aquifers in test field of The ministry of Land and Resources P.R.C. in Hengshui in east North China Plain. The main work mean was pumping test. The present work studied stratum constructuction feafure, groundwater level dynamic during one year and pumping test pierod, geohydrochemistry, isotopes, trace elements, groundwater age and numerical simulation and gave the study result and provied scientific data for rational exploitation and utilization groundwater resources and scientific management.
     Taken the system theory as guide and the chemical, trace elements and isotopic component as information of hydraulic connection, the present work carried out the research by using hydrogeology, geohydrochemistry, isotope hydrology and relevant mathematics methods, groundwater dynamics theory. Firstly, based on understanding of the research achievements in research area, physical frame of groundwater system and constituted detailed pumping test project which observed water level dynamic by using advanced observation devices were analyzed. Secondly, groundwarer recharge and discharge character of different aquifers using chemistry, trace elements and isotopes in groundwater was identified. Finally, the hydraulic connection among different aquifers using numerical simulation was investigated and ascertained in the present work.
     The following results were obtained from present research.
     1. Undering large sclae exploitation conditions, they take on each hydrological dynamic character in shallow groundwater system and deep confined groundwater system. Pricipitation directly recharged shallow groundwater and oxy hydrogen isotope contents are higher than deep confind groundwater. The isotope age indicated that shallow groundwater actively participated in hydrological cycle present period. The recharge sorces are areaal groundwater flow and leaky flow from other aquifers in deep confined groundwater.
     2. Two subsystems were separated from deep confined groundwater system in research area. Up groundwater subsystem was named by the 2nd and 3rd aquifers, and down groundwater subsystem by the 4th and 5th aquifers. There are idiographic hydrogeochemical type and isotopical character in two subsystems. Groundwater was admixing water by present water and fossil water in up groundwater subsystem and fossil water in down groundwater subsystem based on Tritium isotope.
     3. Deep groundwater was recharged by shollow groundwater as leakage. 21.4% of exploitation quantity come from shollow groundwater by leakage in 2nd aquifer. Exploitation quantity was mainly storage in deep groundwater but the groundwater composition was diversitible in different aquifers. The exploitation quantity was made up storage and leakage in 2nd aquifer and storage and level influs in 3rd, 4th and 5th aquifers.
     4. There is pumped effect in groundwater system. Pumped effect was defined a kind of phenomenon when water level was fall in unpumped aquifer with fall in pumped aquifer. The fall in unpumped aquifer was brought by formation pressure change when pumping in pumped aquifer. Pumped effect was not water exchange. A lot of test data indicated that have leaky effcet as well as pumped effect among five aquifers in research area undering large sclae exploitation conditions. The two effects were simultaneously existence.
     5. Based on the analysis result, rational exploitation and utilization groundwater resources project were put forward in the present work. The 3rd aquifer was prefered to exploit, the 2nd aquifer was rationally exploit, the 4th aquifer was restrictically exploited and the 5th aquifer was forbad exploitation.
引文
[1]张宗祜,沈照理,薛禹群等.华北平原地下水环境演化.北京:地质出版社.2000
    [2]施雅风.华北地区水资源合理开发利用.北京:水利电力出版社.1990
    [3]潘家铮,张泽祯.中国北方地区水资源的合理配置和南水北调问题[A].中国工程院重大咨询项目.中国可持续发展水资源战略研究报告集[C]第8卷.北京:中国水利水电出版社,2001
    [4]陈梦雄.中国地下水研究论文选集—陈梦雄院士90华诞暨从事地质工作65周年纪念.北京:中国大地出版社.2007
    [5]河北省地勘局第三水文工程地质大队.河北省衡水市地质环境监测报告.2001
    [6]郭永海,沈照理,钟佐燊等.从地面沉降论河北平原深层地下水资源属性及合理评价.地球科学—中国地质大学学报,1995,Vol.20(4):415-420
    [7]陈宗宇,张光辉,聂振龙等.中国北方第四系地下水同位素分层及其指示意义.地球科学.2002,27(1):97-103
    [8]Chen Zongyu,Nie Zhenlong,Zhang Zhaoji et al.,Isotopes and Sustainability of Groundwater Resources,North China Plain.Groundwater.2005,Vol.43(4):485-493
    [9]中国地质科学院水文地质环境地质研究所等.地质调查项目成果报告—华北地下水可持续发展开发利用前景成果报告.2006
    [10]高太忠,罗人明,黄群贤等.河北平原地下水开发中的问题及可持续利用.地质灾害与环境保护.2002,Vol.13,(3):6-9
    [11]张宗岭.双频梯度测量探查井巷漏水水力联系.物探与化探.1996,Vol.20(5):374-378
    [12]李军,徐毅等.铁北矿一、二含水层水力联系及导水裂隙带高度的研究.东北煤炭技术.1997,(1):46-52
    [13]谢玉波,翟立娟.用灰色关联度法判断滕南矿区地下水系统水力联系.中国煤田地质.2001,Vol.13(2):47-49
    [14]魏永强,任印国,同宝珍.聚类法在判别矿井各含水层水力联系中的应用.江苏煤碳.2003,(3):38-40
    [15]王景平,王璐等.协庄煤矿11105W工作面奥灰与徐灰之间水力联系评价.山东煤炭科技.2006,(2):46-47
    [16]李苍松,何发亮,陈成宗.昆仑山隧道渗(漏)水水力联系及水动力参数试验研究.地球与环境.2005,Vol.33,suppl.544-550
    [17]杨永恒,仵颜青,丁卫华等.李家河水库与李家河隧道的水力联系研究分析.西北水力发电.2006,Vol.22(1):49-52
    [18]王心义,韩鹏飞,廖资生等.研究孔隙热储层水力联系的地球化学方法.水利学报. 2000,(8):75-78
    [19]陈雨孙.在多隔层含水层中抽水的水力联系问题.刊物不祥
    [20]伍兆聪.复杂类型的多层含水层越流系统的数学模型及其解法的探讨.长春地质学院学报.1985,(1):59-70
    [21]聂振龙,郭占荣,李惠娣等.西北内陆盆地不同开采条件下不同层位地下水的互动关系.水文地质工程地质.2002,(1):38-41
    [22]廖木火.利用水文地质测井方法确定钻孔间含水层的水力联系.刊物不祥。
    [23]朝伦巴根,刘廷玺等.水力联系密切区域水资源优化配置模型研究.水资源与水利工程学报.2004,Vol.15(1):1-7
    [24]沈照理,许绍悼.关于地下水地质作用.地球科学—武汉地质学院院报.1985,Vol.10(1):99-106
    [25]任福弘,沈照理.水文地球化学.北京:中国大百科全书出版社,1993,507-508
    [26]沈照理,仲佐燊.水文地球化学基础.北京:地质出版社.1993
    [27]Davisson.M.L.Isotope hydrology of southern Nevada groundwater:stable isotopes and radiocarbon.Water resources research.1999,26(1):279-294
    [28]Williams A.E.,Daniel P.Rodoni.Areaal isotope effects and application to hydrologic investigations in southwest California.Water resources research.1997,33(7):1721-1729
    [29]Piper,A.M.,A graphic procedure in geochemical interpretation of water analyses.Trans Am Gephys Union.1944,25:914-923.
    [30]林学钰,侯印伟等.地下水水量水质模拟及管理程序集.吉林科学技术出版社.1988
    [31]张绪美,董元华,石浚哲等.聚类因子分析在太湖水质参数评价中的应用.安全与环境学报.2006,Vol.6(6):58-62
    [32]向速林,杨柳春,冉全等.回归分析法在地下水水质动态预测中的应用.长江大学学报(自科版).2006,Vol.3(1):40-43
    [33]过仲阳,陈中原,李绿芊等.人工神经网络技术在水质动态预测中的应用.华东师范大学学报(自然科学版).2001,(1):85-90
    [34]王秉忱,陈曦,刘德明等.地下水水质模型.沈阳:科学技术出版社.1985
    [35]C.Le Gal La Salle.Renewal rate estimation of groundwater base on radioactive traces (~3H,~(14)C) in an unconfined aquifer in asem arid area,lullemeden Basin,Niger.Journal of Hydrology,2001
    [36]关秉钧等.用环境同位素氚、碳-14、碳-13探讨北京地区地下水运动规律.水文地质技术方法.第12辑,1985,1-6
    [37]关秉钧.我国大气降水中氚的数值推算.水文地质工程地质.1986,(4):1-6
    [38]刘存富,王佩仪,周炼.河北平原第四系地下水~(36)Cl年龄初探.中国同位素水文地质学之进展(1988-1993),天津大学出版社,1993,114-118
    [39]刘存富,王佩仪,周炼.河北地下水氢、氧、碳、氯同位素组成的环境意义.地学前缘,1997, 4(1-2):,267-274
    [40]周炼,刘存富,王佩仪.河北平原第四系咸水同位素组成.水文地质工程地质.1998,(3):4-8
    [41]马致远,侯光才.环境同位素技术在区域地下水资源补给及可更新性中的应用.工程勘察.2005,(5):21-24
    [42]张之滏等.河北平原第四系地下水年龄、水流系统及咸水成因初探—石家庄至渤海湾同位素水文地质剖面研究.水文地质工程地质。1987,(4):1-6
    [43]陈宗宇,张光辉,徐家明.华北地下水古环境意义及古气候变化对地下水形成的影响.地球学报.1998,19(4):338-345
    [44]张光辉,陈宗宇,费宇红等.海河流域平原地下水同位素年龄及其水化学区域分布特征.矿物岩石地球化学通报(环境、海洋、第四纪、水文).2001,Vol.20(4):412-414
    [45]陈建生,杜国平,刘怀成.同位素示踪法测定多含水层混合井试验研究.勘察科学技术.1994,(5):28-32
    [46]陈建生,杜国平,刘怀成等.单孔同位素示踪测试S-Q曲线研究.勘察科学技术.1996,(6):18-22
    [47]陈建生,杨松堂,刘建刚等.环境同位素和水化学在堤坝渗漏研究中的应用.岩石力学与工程学报.2004,23(12):2091-2095
    [48]许惠义,刘应翘,刘洪福等.应用同位素示踪技术测试多含水层分层参数的研究.水文地质工程地质.1996,(3):24-27
    [49]Odum H T.Strontium in natural waters.Inst.Mar.Sci 1957,4:22-37
    [50]Land M,Ingri J,Andersson P S,et al.Ba/Sr,Ca/Sr and ~(87)Sr ~(86)Sr ratios in soil wate rand groundwater:Implications for relative contributions to stream water discharge.Applied Geochemistry,2000,15:311-325.
    [51]Shawan S D,Andrew L H.Strontium and carbon isotope constraints on carbonate-solution interaction sand inter-aquifer mixing in groundwaters of the semi-arid Murray Basin.Australia.Journal of Hydrology,2002,262:50-67.
    [52]王世杰,董丽敏,林文祝等.泥河湾有孔虫化石群的锶同位素研究.科学通报,1995,40(22):2072-2074.
    [53]孙敏,李太枫,邱景星等.西沙珊瑚锶温度计:便捷高精度海洋古海水温度代用指标.地球化学,2001,30(1):102-104.
    [54]刘丛强,张劲,李春来等.黄土中CaCO_3含量及锶同位素组成变化与古气候波动纪录.地质学报,2001,75(2):259-265.
    [55]贾玉鹤,王世杰.生物壳体Sr/Ca、Mg/Ca、~(87)Sr,~(86)St比值在恢复古气候、古环境中的应用—以小渡口剖面为例[J].地质地球化学,2002,30(2):54-58.
    [56]王焰新,孙连发,罗朝辉,等.指示娘子关泉群水动力环境的水化学.同位素信息分析.水文 地质工程地质,1997,24(3):1-5.
    [57]周炼,刘存富,凌文黎,等.锶同位素在水文地质中的示踪意义—以冀中坳陷地下水为例.地球学报,1997,118(增刊):313-315.
    [58]韩贵琳,刘丛强.贵州河流河水的锶同位素与喀斯特地区化学风化作用.第四纪研究,2000,20(6).570.
    [59]赵继昌,耿冬青,彭建华,等.长江河源区的河水主要元素与Sr同位素来源.水文地质工程地质,2003,30(2):89-93.
    [60]陈森鑫,刘海滨,康国军.流量测井求取含水层渗透系数的方法及资料解释技术.长春地质学院学报.1996,Vol.26(2):216-221
    [61]陈建生,杜国平,郑正.多含水层稳定流非干扰多孔混合井流理论及示踪测井方法.水利学报.1997,(5):60-66
    [62]邵力谱,张玉华,牛磊.流量测井法测定砂砾层的渗透系数.煤矿现代化.2006,(1):41-42
    [63]葛亮涛.多含水层混合井流理论及流量测井法.北京:地质出版社.1984
    [64]Illangusekare,T and H J.Morel-Seytous,St ream-aquifer in fluence coefficients as tools for simulation and management,Water Resource,Research,1982,18(1):168-176
    [65]Neuman,S.P.,and P.A.Witherspoon,Applicability of current theories of flow in leaky aquifers.Water Resour.Res.,1969,5,817-829.
    [66]Maddock,T.Ⅲ,L.J.Lacher,Drawdown,Velocity,Storage,and capture response functions for multiaquifer systems,Water Resource Research,1991,27(11):2885-2898.
    [67]叶淑君,戴水汉.地下水流二维、准三维及三维模型模拟结果比较.水文地质工程地质,2003,(5):23-27
    [68]胡宏韬,林学钰等.哈密盆地多层含水系统地下水流数值模拟.煤田地质与勘探.2001,Vol.21(3):29-32
    [69]刘少玉.冲洪积扇含水层地下水可开采量数值模拟—以文峪河冲洪积扇为例.水文地质工程地质.1998,(1):38-41
    [70]祝晓彬,吴吉春,叶淑君等.长江三角洲(长江以南)地区深层地下水三维数值模拟.地理科学.2005,Vol.25(1):68-72
    [71]Cupta S.K.,Cole C.R.,Pinder G.F.,A finite-dement three-dimensional groundwater model for amultiaquifer system,Water Resources Reaarch.1984,20(5):553-563
    [72]Chorley,DW,Frind,EO.An Iterative Quasi-Three-Dimensional Finite Element Model for Heterogeneous Multiaquifer Systems.Water Resources Research.1978,Vol.14(5):943-952
    [73]陈崇希,唐仲华.地下水流动问题数值方法.武汉:中国地质大学出版社,1990
    [74]张蔚榛.地下水非稳定流计算和地下水资源评价.北京:科学出版社,1983
    [75]孙纳正.地下水流的数值模型和数值方法.北京:地质出版社,1981
    [76]陈雨孙.地下水运动与资源评价.北京:建筑工业出版社,1986
    [77]全国地层委员会.中国地层指南及中国地层指南说明书.北京:地质出版社,2001.
    [78]刘金峰,梁少春,越文强.河北平原辛—安—深地裂缝成因探讨.中国地质灾害与防治学报.1996,Vol.7(3):65-72
    [79]河北地质环境监测院.河北省衡水市地质环境监测报告.200,7
    [80]陈雨孙,颜明志等.抽水试验原理与参数测定.水利电力出版社,1985
    [81]Epstein,S.,Mayeda,T.,Variation of 18 O content of waters from natural sources,Geochim.Cosmochim.Acta,1953,4:213-224
    [82]Max L.Coleman,et al.,Reduction of Water with Zinc for Hydrogen Isotope Analysis.Anal.Chem.1982,54,993-995
    [83]L Eichinger,M Forster,H Rast,et al.,Experience gathered in low-level measurement of tritium in water.TECDOC-246.IAEA,Vienna,1980
    [84]Walton,W.C.,Ground water resource evaluation,Mc Graw-Hill,New York,1970
    [85]Bear,J.Hydraulics of groundwater.McGraw-Hill,New York,1979
    [86]Boulton,N.S.,Analsis of data from non-equilibrium pumped test allowing for delayed yield from storage.Proc.Civil Eng.1963.26,469-482
    [87]Prickett,T.A.Type-curve solution to aquifer test under water table conditions,Groundwater,1965,Vol.3(3):5-14
    [88]Boulton,N.S.And Strelsonva,T.D.,New equations for determining the formation constants of an aquifer from pumped test data,Water Resour.Res.,1975,11(1),14153.
    [89]Neuman,S.P.,Theory of flow in un aquifers considering delayed response of the watertable.Water Resour.Res.,1972,8,1031-1045.
    [90]贾德彬,朝伦巴根,高瑞忠等.基于抽水试验的遗传算法确定含水层参数的研究.工程勘察.2005,(1):30-33
    [91]Kruseman,G.P.and N.A.de Ridder,1991,Analysis and Evaluation of Pumped Test Data,ILRI public.47,2nd Edition,Wageningen.The Netherlands.
    [92]Papadopulos,I.S.,and H.H.Cooper,Drawdown in a well of large diameter well.Water Resour.Res.,1967,3,241-244.
    [93]Streltsova,T.D.,Well Testing in Heterogeneous Formations.Wiley,New York,1988,413pp.
    [94]Theis,C.V.,The relation between the lowering of the piezometdc surface and the rate and duration of discharge of a well using Ground-Water Storage.Trans.Amer.Geophys.Union,1935,16(2),516-524.
    [95]Chen,C.S.and C.C.Chang,Theoretical evaluation of non-uniform skin effect on aquifer response under constant rate pumped,J.Hydrol.,2006,317,190-201.
    [96]Chu,W.C.,Garcia-Rivera,J.,Raghavan,R.,Analysis of interference test data influenced by wellbore storage and skin at the flowing well,J.Pet.Tech.,1980,171-178.
    [97]陈崇希.地下水不稳定井流计算方法.北京:地质出版社,1983
    [98]陈崇希,林敏.地下水动力学.武汉:中国地质大学出版社,1999
    [99]Delleur,J.W.,The Handbook of Groundwater Engineering.CRC press LLC,Boca Raton,Fl. 1999,33431.
    [100]Cooper,H.H.,Jr.,and C.E.Jacob,Generalized graphical method for evaluating formation constants and summarizing well-field histoy.Trans.Amer.Geophys.Union,1946,27(4),526-534.
    [101]王秉忱.地下水动态与均衡的观测研究.陕西省地下水工作队印,1980
    [102]林学钰,廖资生等.现代水文地质学.北京:地质出版社.2005,36-38
    [103]Phillips,F.M.,Peeters,U A.Tansey M.K.et al.,Paleoclimatic inferences from an isotopic investigation of groundwater in the Central San Juan Basin,New Mexico,Quaternary Research,1986,26:179-193
    [104]Phillips F.M.and J.L.Wilson.an approach to estimating hydraulic conductivity spatial correlation scales using geological characteristics.Water Resources Research,1989,25:141-143
    [105]Phillips F.M.The use of isotopes and environmental traces in subsurface hydrology.Rev,Geophys.Supp.,1995,1029-1033
    [106]Sanford,W.E.and Buappeng,S.,Assessment of groundwater flow model of the Bankgkok basin,Thailand,using cabon-14-based ages and paleohydrology.Hydrology Journal,1996,4:26-40
    [107]Zuber,A.,Mathematical models for the interpretation of environmental radioisotopes in groundwater systems.Handbook of Environmental Isotope Geochmeistry,1986,Vol.2,Part B(Eds.P.Fritz and J.Ch.Fontes),Elsevier,Amsterdam,1-59
    [108]Maloszewski,P.and Zuber,A.Determining the turnover time of groundwater system with the aid of environmental traces,I.models and their applicability,J.Hydrol.,1982,57:207-331
    [109]Munnich,K.O.Messungen des 14C-gehaltes von hartem Groundwater.Naturwisenschaften,1957,44:32-33
    [110]Plummer,L.N.Prestemon Eric C.and David U Parkhurst,An interactive code(NETPATH)modeling Net geochemical reactions along a flow Path,U.S.Geological Survey,1994
    [111]Vogel,J.C.carnon-14 dating of groundwater.In:Isotope Hydrology 1970,IAEA,Vienna,1970,225-239
    [112]Tarmers,M.A.Radiocarbon ages of groundwater in an arid zone unconfined aquifer,In:Isotope Techniques in the Hydrologic Cycle,Geophysics.Monogr.Ser.Vol.11,G.E.Stout,AGU,Washington,D.C.,1967,143-152
    [113]Pearson,F.J.,Use of C-13/C-14 ratios to correct radiocarbon ages of material initially diluted by limestone.In:Proceedings of the 6~(th) International Conference on Radiocarbon and Tritium Dating.Pulman,Washington,1965,375
    [114]Gonfiantini R.,Carbon isotope exchange in Karst groundwater.In:Karst hydrogeology and karst environment protection.,Procedding,IAHS-AISH Publication,1988,Vol.176,832-837
    [115]Mook,K.G.,The dissolution-exchange model for dating groundwater with C-14,In:Interpretation of Environmental and Hydrochemical data in groundwater Hydrology,IAEA,Vienna,1976,212-215
    [116]Fonts,J-Ch,and Garnier,J.M.,Determination of initial 14 Cactivity of total desolved C:a review of the existing models and a new approach,Water Resources Research,1970,NO.12,399-413
    [117]Craig,H.,Isotopic variations in meteoric water.Science,1961,133:1702-1706
    [118]Dansgaard,W.Stable isotopes in precipitation.Tellus,1964,16:436-468
    [119]Liu Cnnfu and Wang P.Y.,The environment significance of isotope composition in groundwater of Hebei Plain.In:Procesdings of international workshop on groundwater and environment Beijing,August 16-18,Seismological Press,1992,382-386
    [120]郭永海等,河北平原京津以南深层地下水资源的形成规律的研究,地质论评,1996,(5):410-415
    [121]陈宗宇.从含水层中的古环境信息研究华北地下水的形成演化.吉林大学博士论文,2001
    [122]McDonald M G,Harbaugh A W,A modular three-dimensional finite-difference groundwater flow model.On2tado:Waterloo Hydrogeologic Inc,1998.
    [123]Franke,O.L,T.E.Reilly,and G.D.Bennett,Definition of boundary and initial conditions in the analysis of saturated groundwater flow systems;an instruction,USGS,Techniques of Water-Resources Investigations.1987,03-B5,15p.
    [124]Philip B.Bedient,Hanadi S.Rifai,Charles J.Newell.Groundwater Contamination -2~(nd)edition.Prentice Hall PTR Prentice-Hall Inc.Upper Saddle River,NJ07458,1999
    [125]Fetter,C.W.,1994,Applied Hydrogeology,3(62) edition,Prentice Hall,New Jersey.
    [126]汪成民.地下水微动态研究.北京:地震出版社,1988,46-47
    [127]刘澜波,郑香媛译.地下水微动态译文集.北京:北京科学技术出版社,1987
    [128]王旭升,陈崇希,焦赳赳.承压含水层井流—盖层弯曲效应的解析理论.地球科学—中国地质大学学报,2003,Vol.28(5):545-550
    [129]王家兵.天津深层地下水资源持续利用研究.博士论文,2006
    [130]王秀艳,王金哲,臧逸中等,衡水地区地裂缝空间发育特征与地下水位降深关系.地球科学进展.2006,Vol.21(4):417-423
    [131]Rice J.R.et al.,Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constitutions,Rev,Geophys,Space phys.1976,14,227-241
    [132]张昭栋,郑金涵,冯初刚.水井水位的降水荷载效应.地震学报.1986,Vol.8,增刊,101-110
    [133]张昭栋等著.地下水潮汐分析.山东大学出版社,1988
    [134]庄乐和.土力学.北京:地质出版社.1982
    [135]王大纯,张人权,史毅虹等.水文地质学基础.北京:地质出版社,1995
    [136]于纪玉.知识经济条件下的水资源观.水利经济,2002,(5):30-32
    [137]Zuber,A.On calibration and validation of mathematical models for interpretation of environmental tracer data.In:Mathematical Models and Their Applications to Isotope Studies in Groundwater Hydrology.IAEA-TECDOD-77,IAEA,Vienna,1994,11-41
    [138]Leduc,C.Taupin,J.-D.,Le Gal La Sall,C.,Estimation de la techarge de la nappe phreatique du Continental Terminal(Niamey,Niger) a partir des teneurs en tritium.C.R.Sci.Paris 1996,323:599-605
    [139]Stephen Foster,Daniel P.Loucks.Non-renewable groundwater resources,the United Nations Educational,Scientific and Cultural Organization.2006
    [140]文冬光.用环境同位素论区域地下水资源属性.地球科学:中国地质大学学报,2002,27(2):141-147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700