用户名: 密码: 验证码:
五种耐淹植物在不同水淹条件下分解率的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
消落带生态系统是水生生态系统和陆地生态系统交替控制的不稳定的特殊湿地生态系统。在人工调度下,由于三峡水库的水位涨落速度、幅度和频率与天然河道明显的不同,增加了消落带的不稳定性。该消落带出露时间较短,耐淹的草本植物是消落区最重要的植物类型。草本植物的淹没分解是水库生态系统物质循环和能量流动的重要环节,对水库底栖生物群落的营养结构产生显著影响。另一方面,植物体分解可能会造成水体的富营养化问题。植物释放营养盐的速率和对上覆水体水质的影响受到研究区域的水体条件和植物种类的影响较大。本研究通过测定不同五种耐淹植物(碚芦芒、地芒1号、马筋草5号、马筋草3号、铁跘草1号)在不同水淹条件下分解率的变化,旨在对这5个耐淹物种的分解是否会造成水体的二次污染提供先期的数据与理论依据。
     本实验研究内容包含三个方面:第一,三峡库区中段忠县境内的汝溪河流域内,5种耐淹植物物种在不同水淹高程中其离体部分植物体和非离体部分植物体分解率差异,以及不同水淹高程中植物体分解率的差异。第二,模拟三峡库区水淹的情况,研究水淹6个月内,不同水淹深度对实验物种分解率的影响,以及植物体茎段完整与否对实验物种分解率的影响。第三,模拟三峡库区水体流动造成的水体更换,研究水体更换与否对实验物种分解率的影响。
     针对以上三个方面的研究,结果分别表明:第一,在汝溪河岸,不同水淹深度对五个物种的分解率没有显著影响;同一高程离体样品的分解率显著高于非离体样品,因此植物体在水淹条件下死亡与存活的情况是影响消落区内植物体分解速率的重要因素。第二,五个物种的各个样品在第一个月中的每月分解率均大于其它5个月。因此在水淹植物的第一个月中应对库区水质进行严密监控,以避免二次污染的发生。水淹深度对植物的分解率的影响不大。植物体破碎对植物分解速率的影响因物种而异。其中,马筋草3号与马筋草5号断茎的分解率要显著高于其完整茎,但地芒1号和碚芦芒的断茎与完整茎、断叶与完整叶的分解率均没有明显差异。第三,定期换水与不换水对五种耐淹植物分解率的影响没有显著差异。
Water level fluctuation zone is an unstable special wetland ecosystem formed by alternative change of aquatic ecosystem and terrestrial ecosystem. Difference between Three Gorges reservoir region and natural river in terms of water level fluctuating speed, amplitude and frequency due to the artificial scheduling of the Three Gorges reservoir, the instability of fluctuating zone there has been intensified. Since the fluctuating zone only exposes for a short term, submergence tolerant herbs are the most important plants in the drawdown area. Submerged decomposition of herbaceous plants is one key component element in material cycling and energy flow in the reservoir ecosystem, which makes a significant contribution to the trophic structure of reservoir benthic community. On the other hand, the decomposition of plants might cause water eutrophication. There will be great effects of water conditions and plant species in the study area on plant nutrient releasing rate and the quality of overlying water. Therefore, through examining the decomposition rate dynamics of five different submergence tolerant plants(Phragmites 3#, Miscanthus 1#, Graminoid 5#, Graminoid 3#, and Graminoid 1#) under water, our research aims to offer early data and theoretical foundation for determining their decomposition could cause secondary pollution to water body or not.
     Three aspects were included in our research. First, differences of decomposition rate of isolated part and non-isolated part of these five species under different flooding elevation were studied in field, as well as the differences among flooding elevations at Ru-xi catchment in Zhong County in the middle area of the Three Gorges reservoir region. Second, to simulate flooding situation in the Three Gorges reservoir region, impacts of different flooding depths on the decomposition rate of the experimental species, and the impacts of plant stem's integrity on experimental species decomposition rate were researched in a six-month's submergence. Last, the effects of flowing water and stagnant water on the decomposition rate of five experimental species were also explored in simulating the water flow rate change in the Three Gorges reservoir region.
     Through the above studies, results indicated that:i) Different flooding depth had no significant effects on decomposition rate of the five species in the river bank of Re-xi catchment. In the same elevation, decomposition rate of isolated samples was significantly higher than that of non-isolated parts. Thus, it was death and survival of plants in flooded conditions that have affected the decomposition rate of plants in hydro-fluctuation zone, ii) The monthly decomposition rate of the five species samples in the first month was higher than the other five months. Therefore, water quality should be closely monitored for the first month when plants are submerged, in order to prevent secondary pollution. In addition, flooding depth had little effect on the decomposition rate of plant. The effects of plant fragmentation on decomposition rate were differed with species. Specifically, the decomposition rate of broken stem of Graminoid 3# and Graminoid 5# were significantly higher than their complete stems respectively, whereas there was no significant difference between the decomposition rate of broken and complete stem, broken and complete leaf in terms of Miscanthus 1# and Phragmites 3# respectively, iii) No significant difference was found in the decomposition rate of these five submergence tolerant plants between regularly water change and no change of water, including the leaves and stems of Graminoid 5#, Graminoid 3#, Miscanthus 1# and Phragmites 3#, and the whole plant body of Graminoid 1#.
引文
[1]Norgrove L, Hauser S. Leaf properties, litterfall, and nutrient inputs of Terminalia ivorensis at different tree stand densities in a tropical timber-food crop multistrata system[J].Canadian Journal of Forest Research,2000,30(9):1400-1409.
    [2]Cast RO P, Freitas H. Fungal biomass and decomposition in Spartina maritimea leaves in the Mondego salt marsh (Portugal) [J].Hydrobiologia,2000,428:171-177.
    [3]Vitousek PM. Nutrient Cycling and Limitation:Hawaii as A Model System. Princeton: Princeton University Press,2004.
    [4]张志永,彭建华,万成炎.三峡库区澎溪河消落区草本植物的分布与分解.草业学报.2010,19(2):146-152.
    [5]郭继勋.松嫩平原羊草草场中羊草枯枝落叶形成过程的初步研究[J].生态学杂志,1990,9(1):11-14.
    [6]郭继勋,祝廷成.羊草草原枯枝落叶积累的研究[J].生态学报,1994,14(3):255-261.
    [7]郭继勋,祝廷成.羊草草原枯枝落叶分解的研究主要优势植物的分解速率和损失率[J].生态学报,1992,12(4):295-299.
    [8]张建利,张文,毕玉芬.山地草地凋落物分解与持水力的研究[J].草业科学,2008,25(3):108-110.
    [9]王娓,郭继勋,张保田.东北松嫩草地羊草群落环境因素与凋落物分解季节动态[J].草业学报,2003,12(1):47-52.
    [10]李玉霖,孟庆涛,赵学勇,等.科尔沁沙地植物成熟叶片性状与叶凋落物分解的关系[J].生态学报,2008,28(6):2486-2494.
    [11]Xu XN, Hirata E, Enki T, et al. Leaf litter of decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. Plant Soil,2005,173:161-170.
    [12]王瑾,黄建辉.暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较.植物生态学报,2001,25(3):375-380.
    [13]Rustad LE, Cronan CS. Element loss and retention during litter decay in a red spruce stand in Maine. Can J For Res,1988,18:947-953.
    [14]Lazkowski R, Berg B, Johnsson M, et al.1995. Release Patten for potassium from decomposition forest needle and leaf litter:long-term decomposition in a Scots Pine forest. IX.Can J Bot,73:2019-2027.
    [15]Royer T V, Monaghan M T, Minshall G W. Processing of native and exotic leaf litter in two Idaho (USA) streams[J].Hydrobiologia,1999,400:123-128.
    [16]程煜,陈灿,范海兰.不同坡向对木荷马尾松凋落物分解及养分释放速率的影响.中国农学通报.2011,27(31):6-17.
    [17]Battle JM and Mihuc TB. Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river. Hydrobiologia,2000.418(1):123-136.
    [18]Koukoura Z, Mamolos A P, Kalburtji K L. Decomposition of dominant plant species litter in a semi-arid grassland [J]. Appl. Soil Ecol.,2003,23(1):13-23.
    [19]Kawadias V A, Alifragis D, Tsiontsis A,etal. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece[J]. Forest Ecology and Management,2001,144:113-127.
    [20]Wilson J O, Buchsbau M R, V Aliela I, et al. Decomposition in salt marsh ecosystems: phenolic dynamics during decay of Spartina alternif[J]. M ar. Ecol. Prog. Ser.,1986,29:177-187.
    [21]Kocy M, Wilson SD. Litter decomposition and nitrogen dynamics in Aspen forest and mixed-grass prairie[J].Ecology,1997,78(7):732-739.
    [22]Jansson PE, Berg B. Temporal variation of litter decomposition in relation to simulated soil climate:Long-term decomposition in a Scots pine forest[J].V.Can.J.Bot,1985,63(4):1008-1016.
    [23]Tang Z C, Kozlowski T T. Some physiological and growth responses of Betulapapyrifera seedlings to flooding[J]. Physiologia Plantarum,1982 55:415-420.
    [24]詹嘉红,蓝宗辉.水淹对铺地黍部分生理指标的影响.广西植物,2011:823-826.
    [25]Kominkov O D, Kuehn K A, Busing N, et al.2000. Microbial biomass growth and respiration associated with submerged litter of Phragmltes australis decomposing in a littoral reed stand of a large lake[J]. Aquat. Microb. Eeol,22:271-282.
    [26]Menendez M, Hernandez O, Comin F A. Seasonal comparisons of leaf processing rates in two Mediterranean rivers with different nutrient availability[J]. Hydrobiologia,2003,495:159-165.
    [27]Huang Y, Shen Y, Zhou M, et al. Decomposition of plant residue as influenced by its lignin and nitrogen. Acta Phytoecologica Sinica,2003,27(2):183-188.
    [28]刘增文.森林生态系统中枯落物分解速率研究方法[J].生态学报,2002,22(6):954-956.
    [29]曲浩,赵学勇,赵哈林等.科尔沁沙地3种灌木凋落物分解速率及其与关键气象因子的关系[J].中国沙漠,2010,30(4):844-849.
    [30]张秀娟,吴楚,谷加存等.影响根系分解因素(N、C/N、温度和水分)的研究[J].长江大学学报B(自然科学版),2006,3(2):171-172,175.
    [31]刘守渠,张二俊,段运平等.玉米不同茎节消化性指标与全茎叶干物分解率相关性分析[J].华北农学报,2006,21(3):61-64.
    [32]张建利,张文,高玲苹等.云南马龙县山地封育草地凋落物分解与氮释放的研究[J].草业 科学,2008,25(7):77-82.
    [33]曲浩.三种沙地灌木凋落物的分解特征及其对土壤微生物和C、N的影响[D].中国科学院寒区旱区环境与工程研究所,2009.
    [34]王志香,周光益,林明献等.吊罗山热带林4种主要林木的凋落叶分解研究[J].安徽农业科学,2007,35(22):6777-6779.
    [35]宿庆瑞,曹卫东,迟凤琴等.苜蓿和草木樨腐解及养分释放规律的研究[J].黑龙江农业科学,2010,(8):71-74.
    [36]谢红勇,扈志洪.三峡库区消落带生态重建原则及模式研究[J].开发研究,2004(3):36-39.
    [37]陈婷,曾波,叶小齐.水淹对野古草和秋华柳不定根形成的影响[J].安徽农业科学,2007,35(19):5703-5704.
    [38]戴方喜,许文年,陈芳清.对三峡水库消落区生态系统与其生态修复的思考[J].中国水土保持,2006,12:6-8.
    [39]白宝伟,王海洋,李先源,等.三峡库区淹没区与自然消落区现存植被的比较[J].西南农业大学大学学报(自然科学版),2005,27(5):684-691.
    [40]王海锋,曾波,李娅.长期完全水淹对4种三峡库区岸生植物存活及恢复生长的影响。植物生态学报.2008,32(5):977-984.
    [41]陆珺,张银龙,徐明喜.不同水淹条件下芦苇立枯体的分解及营养动态[J].林业科技开发,2011,25(4):42-45.
    [42]叶春博,沉水植物黑藻早期分解过程及影响因素研究[J].中国农业学通报,2009,25(17):260-264.
    [43]尹承军,黄德华,陈佐忠.内蒙古典型草原4种植物凋落物分解速率与气候因子之间的定量关系[J].生态学报,1994,14(2):149-154.
    [44]顾久君,金朝晖,刘振英.乌梁素海沉水植物腐烂分解试验研究[J].干旱区资源与环境,2008,4(22):181-184.
    [45]涂利华,胡庭兴,张健等.模拟氮沉降对两种竹林不同凋落物组分分解过程养分释放的影响[J].生态学报,2011,31(6):1547-1557.
    [46]Corstanje, R., K. Reddy, and K. Portier, Typha latifolia and Cladium jamaicense litter decay in response to exogenous nutrient enrichment. Aquatic Botany,2006.84(1):p.70-78.
    [47]杨曾奖,曾杰,徐大平,等.森林枯枝落叶分解及其影响因素[J].生态环境,2007,16(2):649-654.
    [48]王相娥,薛立,谢腾芳.凋落物分解研究综述[J].土壤通报,2009,40(6):1473-1478.
    [49]张圣喜,陈法霖,郑华等.土壤微生物群落结构对中亚热带三种典型阔叶树种凋落物分解过程的响应[J].生态学报,2011,31(11):3020-3026.
    [50]林开敏,章志琴,曹光球等.杉木与楠木叶凋落物混合分解及其养分动态[J].生态学报,2006,26(8):2732-2738.
    [51]Wrubleski, D.A., et al., Decomposition of emergent macrophyte roots and rhizomes in a northern prairie marsh. Aquatic Botany,1997.58(2):p.121-134.
    [52]刘增文,高文俊,潘开文等.枯落物分解研究方法和模型讨论[J].生态学报,2006,26(6):1993-2000.
    [53]Corteaux M M, Bottner P, Berg B. Litter decomposition, climate and litter quality[J]. Tree, 1995,10:63-66.
    [54]Mfilinge P L, Atta N, Tsuchiya M. Nutrient dynamics and leaf litter decomposition in a subtropical mangrove forest at Oura Bay, Okinawa[J]. Trees,2002,16:172-180.
    [55]袁兴中.溪流生态系统潜流带生态学研究概述[J].生态学报,2003,23(5)
    [56]陆珺.芦苇死枯体分解过程中营养元素与微生物变化.南京农业大学硕士论文.2011.
    [57]吕国红,周广胜,周莉,等.盘锦湿地芦苇群落土壤碱解氮及溶解性有机碳季节动态[J].气象与环境学报,2006,22(4):59-63.
    [58]Johannes H. C. Cornelissen, Natalia Perez-Harguindeguy, Sandra Diaz, et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytologist.1999(143):191-200.
    [59]Tal Simmons, Rachel E. Adlam, Colin Moffatt. Debugging Decomposition Data-Comparative Taphonomic Studies and the Influence of Insects and Carcass Size on Decomposition Rate. Journal of Forensic Sciences.2010(55):8-13.
    [60]张明忠,朱红业,沙毓沧等.金沙江干热河谷草被凋落物的分解率与持水性能[J].水土保持研究,2010,17(2):156-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700