用户名: 密码: 验证码:
非并网风电直供系统方案设计及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海水淡化、石油开采等地质工程中的提水机、高压泵和抽油机等设备需要消耗大量电力,是阻碍其节能减排、提高效率的主要瓶颈。利用风电、太阳能等可再生能源能够得到清洁高效的绿色电力,是解决地质工程供电的新途径。
     由于风电并网带来的稳定问题至今未获得根本性解决,人们提出了微电网理论、非并网风电理论,将风电与电网的联系断开,从源头上避免风电并网的问题。结合电力市场中的电力大用户直供理论,本文提出了非并网风电直供系统理论,核心思想是风电场发出的电力不经过电网,直接供给海水淡化、石油开采等大负荷,解决风电并网问题。本文的主要内容和研究成果如下:
     1.提出了非并网风电直供系统整套设计方案。
     以确保非并网风电供电可靠性及非并网风电利用率最大化为系统设计和运行目标,提出了由风电场、混合直流输电系统、储能装置和由固态开关切换的分组负荷组成非并网风电直供系统;采用混合直流输电系统,兼顾了电流源换流器的低成本和电压源换流器的电压控制和可向无源负荷供电的能力;采用超级电容器和蓄电池并联的储能装置设计方案;研究了储能装置与风电利用率之间的关系,指出了储能装置容量和功率参数优化的必要性;提出了基于导向进化的遗传算法以优化储能装置参数。仿真分析验证了其正确性。
     2.提出了非并网风电直供系统的控制策略。
     通过与微网、电网控制相比较,提出非并网风电直供系统控制的主要对象是储能装置和负荷的观点。基于此观点提出了有功控制与无功控制物理解耦的控制策略。无功控制由电压源换流器控制实现;有功控制则由储能装置和负荷控制实现。有功控制采用三级调频控制策略,即根据风电短期预测预先设计负荷曲线的预测调频控制,采用储能装置平抑风电快速波动的储能调频控制,以及根据风电超短期预测和储能装置充电状态的优化调频控制。仿真分析验证了该控制策略的可行性。
     3.提出了小波变换和模糊逻辑推理相结合的方法,对非并网风电的暂态电能质量扰动进行分类,仿真分析结果表明该方法简单直观、分类准确率高,为解决非并网风电直供系统的电能质量问题打下了基础。
     4.介绍了非并网风电直供海水淡化实验室系统的实例。实验室系统运行结果表明了本文所提出理论的正确性和可行性。
In geological engineering such as sea water desalinization and oil production, water raiser, high pressure pump and oil sucking machine, etc. consume large amount electric power, which is the main bottleneck of energy conservation and emission reduction for these engineering. Renewable energy such as wind power and solar energy is a new solution for geological engineering power supply, which is clean, highly efficient and green.
     Because the stability problem brought by grid-connected wind power has not been solved fundamentally yet, micro-grid theory and non-grid-connected wind power theory have been put forward, which cut off the connection of wind power and grid. Combined with large consumer direct supply theory for power market, this paper proposed the non-grid-connected wind power direct supply (NWPDS) theory. The core is wind power is directly send to the heavy loads such as sea water desalinization and oil production, without grid transformation. The main content and research achievement are as follows:
     I. Proposed the whole design solution of NWPDS system.
     The NWPDS system is composed of wind farm, hybrid DC transformation, energy saving device and grouped load controlled by solid switch, whose design and operation target is to ensure supply reliability and maximum utilization of wind power. The hybrid DC transformation system combined the low cost of current source converter (CSV), the voltage control ability and supply ability to passive load of voltage source converter (VSC). Energy saving device is attained by parrelled super capacitor and battery. The relationship between energy saving device and wind power utilization is studied and the optimization necessity of energy saving device capacity and power rating is pointed out. The genetic algorithm based on oriented evolution is proposed to optimize the energy saving device parameters. The simulation results verified its correctness.
     II. Proposed the control strategy of NWPDS system.
     Compared with micro-grid and grid control, the opinion that the main control objects in NWPDS system are energy saving device and load is proposed. Based on this opinion, the control strategy of the active power and reactive power decoupled in physical is proposed. The reactive power control is realized by VSC, and the active power control is realized by energy saving device and load control. In active power control, three-level frequency control is proposed, including prediction control based on wind power prediction and pre-set load curve, energy saving control for rapid wind power fluctuation and load control. Simulation verified the validity of the control strategy.
     III. Power quality of non-grid-connected wind power is analyzed also. Aiming transient power quality disturbance classification problem, the method combined wavelet transformation and fuzzy logic was proposed. Simulation result identified that this intuitive method is of high accuracy, which is basic for solving NWPDS power quality problem.
     IV. A lab system of NWPDS sea water desalinization was introduced. The running results verified the correctness and validity of the theory proposed in this paper.
引文
[1]田中伸南,世界能源展望,国际能源署, 2009.11, www.iea.org.
    [2]胡兆光,电力需求预测及负荷特性研究报告,国网北京经济技术研究院,2010, www.chinasperi.sgcc.com.cn.
    [3] BP.Energy Outlook 2030Energy Outlook 2030,BP,London,2011,www.bp.com.
    [4]世界风能协会,2009世界风能报告,2010.3, www.wwea.org.
    [5]国家发展与改革委员会,中国2030年风电发展展望—风电满足10%电力需求的可行性研究,能源基金会研究课题,2010.4,www.efChina.com.
    [6]许洪华,郭金东,鄂春良,世界风电技术发展趋势和我国未来风电发展探讨[J],电力设备, 2005.6(10):106-108.
    [7]国家电力监管委员会,我国风电发展情况调研报告[R],2009.
    [8]世界银行,中国海上风电及大型陆上风电基地面临的挑战及欧洲五国海上风电政策评述[R],2010.
    [9] Global Wind Energy Council, Global wind 2007 report, Belgium:Global Wind Energy Council, 2008.
    [10] Eize de Vries, Wind innovation slows-growth remains robust [J]. Renewable Energy World, 2007, 10(4):96-107.
    [11] Eize de Vries. Global wind technology: Overview of developments 2003-2004[J], Renewable Energy World, 2004, 7(4):102-115.
    [12]施跃文,高辉,陈钟.特大型风力发电机组技术现状与发展趋势[J],神华科技, 2009.4, 7(2): 34-38.
    [13]国际能源署,风能技术路线图,2009.
    [14]中国可再生能源协会,2009中国风电装机容量统计, www.cnwpem.com/news.
    [15]罗涛,德国新能源和可再生能源立法模式及其对我国的启示[J],中外能源, 2010.15(1):34-45.
    [16]邹建平,张媛敏,曾鸣.丹麦风电发展经验及借鉴[J],改革与战略,2010,26(4): 182-184.
    [17]罗如意,林晔,钱野.世界风电产业发展综述[J],可再生能源,2010.04,28(2):18-21.
    [18]邬雁忠.丹麦可再生能源应用综述[J],华东电力,2008.08,36(8):96-97.
    [19]蒋莉萍.2008年国内外风电发展情况综述[J],电力技术经济,2009.02,21(2): 16-19.
    [20]美国风能协会,美国2008年风能产业报告, American Wind Energy Association. www.awea.org.
    [21]刘丛,王立晶,孔鹏.风力发电政策及电价机制的研究[J],电力科学与工程, 2009.01, 25(1):5-10.
    [22]国家发展与改革委员会,可再生能源中长期发展规划,2007.8,www.sdpc.gov.cn.
    [23]国家发展与改革委员会,能源发展十一五规划,2007.4,www.sdpc.gov.cn.
    [24]李付强,沈卫东,王斌,大规模风电并网对京津塘电网的影响和对策分析[J],电力技术,2009.10:47-51.
    [25]周原冰,王乾坤,方彤,欧洲风电并网研究项目概述[J],能源技术经济,2010. 22(8):24-28.
    [26]李杰,直驱式风力发电变流系统拓扑及控制策略研究[D],博士论文,上海大学, 2009.
    [27] Seidel M, Gosch D. Technical challenges and their solution for the Beatrice Windfarm demonstrator project in 45M water depth[C]. Proceedings of German Wind Energy Conference, Wilhelmshaven, Germany, 2006:1-4.
    [28] Wen-Tsan Liu, Yuan-Kang Wu, Ching-Yin Lee, et al. Effect of Low-Voltage- Ride-Through Technologies on the First Taiwan Offshore Wind Farm Planning [J], Sustainable Energy, IEEE Transactions on, 2011, 2(1):78-86.
    [29] Feng-ting Li, Qin Chao, Xun-jiang Dai, The research of wind power optimized capacity configuration in hydraulic power system[C], Electric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008. Third International Conference on, 2008:2569-2574.
    [30] Muljadi, E., Butterfield C.P., Chacon, J., et al. Power quality aspects in a wind power plant[C], Power Engineering Society General Meeting, IEEE. 2006:1-8.
    [31] Agrawal S.P., Porate K.B., Economic Dispatch of Thermal Units with the Impact of Wind Power Plant[C],Emerging Trends in Engineering and Technology (ICETET), 2010, 3rd International Conference on,2010:48-53.
    [32] Xu Xing-wei, Mu Gang, Shao Guang-hui, et al. The problems and solutions for large-scale concentrated integration of wind power to partially weak regional power grid[C], Sustainable Power Generation and Supply, 2009, SUPERGEN International Conference on, 2009:1-6.
    [33] Hu D., Zhao X., Xu Cai, et al. Impact of wind power on stability of offshore platform power systems[C], Electric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008. Third International Conference on,2008:1688-1692.
    [34] Jae-Hong Kim, Eel-Hwan Kim, Se-Ho Kim, et al. Power quality analysis of Jeju island power system with wind farm and HVDC system[C], Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008. 13th,2008:2498-2503.
    [35] Pingping Han, Ming Ding, Binbin Li, Study on transient stability of grid- connected large scale wind power system[C],Power Electronics for Distributed Generation Systems (PEDG), 2010 2nd IEEE International Symposium on, 2010:621-625.
    [36] Ma M., Liu Y.H., Zhao D.M., Research on the impact of large-scale integrated wind farms on the security and stability of regional power system[C], Power System Technology (POWERCON), 2010 International Conference on,2010:1-6.
    [37] He Shien, Wang Weizhou, Jia Huaisen,et al, Integration of wind farm into Gansu power grid and its operation[C], Sustainable Power Generation and Supply, 2009. SUPERGEN '09. International Conference on, 2009:1-5.
    [38]赵海翔,风电引起的电压波动和闪变研究,博士论文,中国电力科学研究院,2005.
    [39]蒋佳良,风电并网运行的频率稳定问题研究,硕士论文,新疆大学,2010.
    [40]诸骏伟,夏道止,电力系统分析[M],中国电力出版社,1994.
    [41]徐永禧,莫斯科“5.25”大停电事故及应汲取的经验教训,国际电力,2005.9(5):4-7.
    [42]李春艳,孙元章,陈向宜等,西欧“11.4”大停电事故的初步分析及防止我国大面积停电事故的措施,电网技术,2006.30(24):20-25.
    [43] US-Canada Power System Outage Task Force Interim Report: Causes of the August 14th Blackout in the United States and Canada November 2003 Acknowledgments.
    [44] Wiki, wind power, http://en.wikipedia.org/wiki/Wind_power#Grid_ management.
    [45] Guru D., Zhao P., Quzhi Yu, Integration of large wind power plants into power system-challenges and solutions[C], Power System Technology (POWERCON), 2010 International Conference on, 2010:1-6.
    [46] Bindner, H. Lundsager, P., Integration of wind power in the power system[C],IECON 02 Industrial Electronics Society, IEEE 2002 28th Annual Conference, 2002,vol4:3309-3316.
    [47] Watson R., Large scale integration of wind power in an island utility-an assessment of the likely variability of wind power production in Ireland[C],Power Tech Proceedings, 2001 IEEE Porto, 2001,vol4:1-6.
    [48] Jianwei Liu, Schweizer D., Seiler K., Wind power interconnection and integration roadmap: An RTO's perspective[C], Power & Energy Society General Meeting, 2009, PES '09, IEEE, 2009:1-5.
    [49] Ummels B.C., Gibescu M., Pelgrum E., et al. Impacts of Wind Power on Thermal Generation Unit Commitment and Dispatch [J], Energy Conversion, IEEE Transactions on, 2007, 22(1):44-51.
    [50] Gibescu M., Kling W.L., Ummels B.C., et al. Case study for the integration of 12 GW wind power in the Dutch power system by 2020[C], Integration of Wide-Scale Renewable Resources into the Power Delivery System, 2009 CIGRE/IEEE PES Joint Symposium, 2009:1-5.
    [51] Dudurych I.M., Holly M., Power M., Integration of wind power generation in the Irish grid[C],Power Engineering Society General Meeting, 2006. IEEE,2006:1-8.
    [52] Faias S., de Sousa J., Castro R., Strategies for the integration of wind energy into the grid: An application to the Portuguese power system[C], Energy Market (EEM), 2010, 7th International Conference on the European, 2010:1-7.
    [53] Meiqi Yao, Liangzhong Yao, Integration of large scale wind farm into electrical grids[C], Electricity Distribution (CICED), 2010 China International Conference on, 2010:1-5.
    [54] Hossain M.J., Pota H.R., Ramos R.A., Impact of wind turbine penetration on the dynamic performance of interconnected power systems[C], Universities Power Engineering Conference (AUPEC), 2010, 20th Australasian,2010:1-6.
    [55] Muyeen S.M., Takahashi R., Murata T., et al. Low voltage ride through capability enhancement of fixed speed wind generator[C], PowerTech, 2009 IEEE Bucharest, 2009:1-6.
    [56] Beekmann A., Marques J., Quitmann E., et al. Wind energy converters with FACTS Capabilities for optimized integration of wind power into transmission and distribution systems[C],Integration of Wide-Scale Renewable Resources Into the Power Delivery System, 2009 CIGRE/IEEE PES Joint Symposium, 2009:1-6.
    [57] Shinde S.M., Patil K.D., Gandhare W.Z., Dynamic compensation of reactive power for integration of wind power in a weak distribution network[C],Control, Automation, Communication and Energy Conservation, 2009, INCACEC 2009. 2009 International Conference on, 2009:1-6.
    [58] Jing Hu, Chengyong Zhao, Auxiliary frequency control of HVDC systems for wind power integration[C], Critical Infrastructure (CRIS), 2010, 5th International Conference on, 2010:1-5.
    [59] Grunbaum R., FACTS for grid integration of wind power[C], Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010 IEEE PES, 2010:1-8.
    [60] Kehrli A., Ross M., Understanding grid integration issues at wind farms and solutions using voltage source converter FACTS technology[C], Power Engineering Society General Meeting, 2003, IEEE,2003.
    [61] Miller N., Marken P.E., Facts on grid friendly wind plants[C], Power and Energy Society General Meeting, 2010 IEEE, 2010:1-7.
    [62] Chong Han, Huang A., Baran M., et al. STATCOM Impact Study on the Integration of a Large Wind Farm into a Weak Loop Power System [C], Power Engineering Society General Meeting, 2007. IEEE,2007.
    [63] Zengqiang Mi, Yingjin Chen, Liqing Liu, et al. Dynamic performance improvement of wind farm with doubly fed induction generators using STATCOM[C], Power System Technology (POWERCON), 2010 International Conference on, 2010:1-6.
    [64] Lie Xu, Liangzhong Yao, Sasse C., Comparison of Using SVC and STATCOM for Wind Farm Integration[C], Power System Technology, 2006. PowerCon 2006. International Conference on, 2006:1-7.
    [65] Hossain M.J., Pota H.R., Ugrinovskii V., et al. Robust STATCOM control for the enhancement of fault ride-through capability of fixed speed wind generators [C], Control Applications & Intelligent Control, IEEE, 2009:1505-1510.
    [66] Bozhko S., Li R., Blasco-Gimenez R., et al. STATCOM-controlled HVDC Power Transmission for Large Offshore Wind Farms: Engineering Issues [C], IEEE Industrial Electronics, IECON 2006, 32nd Annual Conference on, 2006:4219 -4224.
    [67] Foster S., Xu L., Fox B., Grid Integration of Wind Farms Using SVC and STATCOM [C], Universities Power Engineering Conference, 2006. UPEC '06. Proceedings of the 41st International, 2006:157-161.
    [68] Hossain M.J., Pota H.R., Kumble C., Transfer Limit Enhancement Using Decentralized Robust STATCOM Control for Wind Farm[C], Power and Energy Engineering Conference, 2009. APPEEC 2009. Asia-Pacific, 2009:1-4.
    [69] Jayam A.P., Chowdhury B.H., Improving the dynamic performance of wind farms with STATCOM[C], Power Systems Conference and Exposition, 2009. PSCE '09. IEEE/PES, 2009:1-8.
    [70] Jia Xu, Bing Liu, Torres-Olguin R.E., et al. Grid integration of large offshore wind energy and oil & gas installations using LCC HVDC transmission system [C],Power Electronics Electrical Drives Automation and Motion (SPEEDAM), 2010 International Symposium on, 2010:784-791.
    [71] Honglin Zhou, Geng Yang, Hua Geng, Grid integration of DFIG-based offshore wind farms with hybrid HVDC connection[C], Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on, 2008:2579-2584.
    [72] Yi Wang, Xiaorong Zhu, Lie Xu, et al. Contribution of VSC-HVDC connected wind farms to grid frequency regulation and power damping[C], IECON 2010, 36th Annual Conference on IEEE Industrial Electronics Society, 2010:397-402.
    [73] van der Meer A.A., Hendriks R.L., et al. Combined stability and electro-magnetic transients simulation of offshore wind power connected through multi-terminal VSC-HVDC[C], Power and Energy Society General Meeting, 2010 IEEE, 2010: 1-7.
    [74] Giddani O.A., Adam G.P., Anaya-Lara O., et al. Control strategies of VSC-HVDC transmission system for wind power integration to meet GB grid code requirements[C], Power Electronics Electrical Drives Automation and Motion (SPEEDAM), 2010 International Symposium on, 2010:385-390.
    [75] Gonzalez-Hernandez S., Moreno-Goytia E., Fraga-Aguilar M., et al. Integration of wind power using a multiterminal VSC-HVDC link: Steady-state analysis[C], Transmission and Distribution Conference and Exposition: Latin America, 2008 IEEE/PES, 2008:1-6.
    [76] Lie Xu, Liangzhong Yao, Sasse, C., Power Electronics Options for Large Wind Farm Integration: VSC-Based HVDC Transmission[C], Power Systems Conference and Exposition, 2006. PSCE, IEEE PES, 2006:760-767.
    [77] Wei Xiaoguang, Tang Guangfu, Research of AC/DC Parallel Wind Farm Integration Based On VSC-HVDC [C], Power System Technology, 2006, Power-Con 2006. International Conference on, 2006:1-5.
    [78] Chaudhary S.K., Teodorescu R., Rodriguez P., Wind Farm Grid Integration Using VSC Based HVDC Transmission An Overview[C], Energy 2030 Conference, 2008. ENERGY 2008. IEEE, 2008:1-7.
    [79] Jin Yang, O'Reilly J., Fletcher J.E., An overview of DC cable modelling for fault analysis of VSC-HVDC transmission systems[C], Universities Power Engineering Conference (AUPEC), 2010, 20th Australasian, 2010:1-5.
    [80] Vermaak R., Potgieter J.H.J., Kamper M.J., Grid-connected VSC-HVDC wind farm system and control using permanent magnet induction generators[C], Power Electronics and Drive Systems, 2009. PEDS 2009. International Conference on, 2009:897-902.
    [81] Keliang Zhou, Xiaofan Fu, Ming Cheng, et al. Topologies and control of VSC-HVDC systems for grid connection of large-scale off-shore wind farms[C], Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on, 2008:2357-2361.
    [82] Jovcic D., Interconnecting offshore wind farms using multiterminal VSC-based HVDC [C], Power Engineering Society General Meeting, 2006. IEEE, 2006:1-7.
    [83] Yin Haiping, Fan Lingling, Modeling and control of DFIG-based large offshore wind farm with HVDC-link integration[C], North American Power Symposium (NAPS), 2009:1-5.
    [84] Bozhko S., Asher G., Risheng Li, et al. Large Offshore DFIG-Based Wind Farm With Line-Commutated HVDC Connection to the Main Grid: Engineering Studies[J], Energy Conversion, IEEE Transactions on, 2008.23(1):119-127.
    [85] Xia Chen, Haishun Sun, Jinyu Wen, Integrating Wind Farm to the Grid Using Hybrid Multiterminal HVDC Technology [J], Industry Applications, IEEE Transactions on, 2011,l 47(2):965-972.
    [86] Giddani, O. A., Adam Grian. P., Anaya-Lara, et al. Grid integration of offshore wind farms using multi-terminal DC transmission systems (MTDC) [C], Power Electronics, Machines and Drives (PEMD 2010), 5th IET International Conference on, 2010:1-6.
    [87]顾为东,大规模非并网风电产业体系研究[J],中国能源,2008.30(11):14-18.
    [88]顾为东,非并网风电产业发展新战略与风电非并网理论[M],北京化学工业出版社,2006.
    [89]顾为东,非并网风电对超大规模风电利用的战略意义和路径[J],上海节能, 2010, 5:8-11.
    [90]方敏,金春鹏,顾卫东,大规模非并网风电产业体系图谱研究[J],资源科学,2009,31: 58-67.
    [91]蔺雪芹,方创琳,中国大规模非并网风电与无碳型高耗能氯碱化工产业基地布局研究[J],资源科学,2008, 30(11):14-23.
    [92]顾卫东,大规模海上风电的非并网多元化应用研究[J],中国工程科学, 2010, 12(11):78-82.
    [93]刘海燕,方创琳,蔺雪芹,西北地区风能资源开发与大规模并网及非并网风电产业基地建设[J],资源科学,2008.30(11):69-78.
    [94]鲍超,方创琳,珠江三角洲地区大规模并网与非并网风电产业基地建设[J],资源科学,2008. 30(11):60-68.
    [95]张蔷,新疆大规模并网与非并网风电产业发展思路与对策[J],资源科学,2008. 30(11):75-85.
    [96]李铭,刘贵利,孙心亮,中国大规模非并网风电与海水淡化制氢基地的链合布局[J], 2008.30(11):34-41.
    [97]岑海堂,邹文武,非并网风电在内蒙古高载能产业的应用,可再生能源,2010.28(5):147-149.
    [98]刘晓丽,黄金川,中国大规模非并网风电基地与高耗能有色冶金产业基地链合布局研究[J],资源科学,2008.30(11):24-33.
    [99]倪维斗;高健;陈贞;李政,用风电和现代煤化工的集成系统生产“绿色”甲醇/二甲醚,中国煤炭,2008.12
    [100]陈杰,张先进,龚春英,基于直流电网的非并网风电系统及其控制策略[J],电力系统自动化,2009.33(10):86-90.
    [101]金吉,陈乾宏,马运动,非并网风电系统及其中的高压直流变换器,2008年中国电工技术学会电力电子学会第十一届年会.
    [102]林小进,杨善水,王莉等,非并网风电SCADA系统设计[J],电力系统自动化,2008.32(21):87-90.
    [103]鲁宗相,王彩霞,闵勇等,微电网研究综述[J],电力系统自动化,2007,31(19): 100-107.
    [104]薛迎成,邰能灵,刘立群等,微网标准和技术发展,华东电力, 2009, 37(9): 1579-1 583.
    [105]丁明,张颖媛,茆美琴,微网研究中的关键技术[J],电网技术, 2009,33(11):6-11.
    [106] Alexis Kwasinski, A micro grid architecture with multiple-input DC/DC converters: Applications, reliability, system operation, and control [D], Doctor Dissertation, University of Illinois at Urbanan-Champaign, 2007.
    [107] Daniel Scott Prull, Design an Integration of an Isolated Micro grid with a High penetration of renewable generation [D], Doctor Dissertation, University of California, Berkeley.2007.
    [108] Paolo Piagi, Micro Grid Control [D], Doctor Dissertation, University of Wisconsin- Madison, 2005.
    [109] European Research Project More MicroGrids, www.Microgrid.power. ece.ntua.gr.
    [110] A.Arulampalam, M.Barnes, A Engler, et al. Control of power electronic interfaces in distributed generation MicroGrids [J]. International Journal of Electronics, 2004,91
    [111] R.Lasseter, A.Akhil, C.Marnay, et al. White paper on integration of distributed energy resources-the CERTS Micro Grid concept, www.certs.lbl.gov/pdf/ LBNL _50829.pdf.
    [112] S.Morozumi, Micro-grid demonstration projects in Japan, Fourth Power conversion conference-NAGOYA, Japan, 2007:635-642.
    [113] B.Kroposki, C.Pink, T.Basso, et al, MicroGrid standards and technology development [C], IEEE Power engineering society General Meeting, 2007:1-4.
    [114] T.Funabashi, R.Yokoyama, MicroGrid field test experience in Japan [C]. IEEE Power Engineering Society General Meeting, Cananda, 2006:1-2.
    [115] T.Funabashi, G. Fujita, K.Koyanagi, Field tests of a MicroGrid control system [C], Proceedings of the 41st International Universities Power Engineering Conference. UK 2006:232-236.
    [116] L.Dignard-Bailey, F.Katiraci, Overview of MicroGrid research and development activities in Canda, www.ctec-varennes.nrcan.gc.ca.
    [117] N.Jayawarna, M.Barns, C.Jones, et al. Operating MicroGrid Energy Storage Control During network Fault [C]. IEEE international conference on systems Engineering. USA.2007:1-7.
    [118]童明光,张毅,曾晓燕等,大用户直购电模式及其在我国的应用[J],电力技术经济, 2006.18(2):27-30.
    [119]胡江溢,陈西颖,对大用户直购电交易的探讨[J],电网技术,2007.31(24):40-45.
    [120]黄兴,翟绘景,路晓明,大用户直购电所面临的三个核心问题探讨[J],电力需求侧管理,2007.03:78-81.
    [121]张森林,大用户直购电国内外交易实践及成功经验,华东电力,2009.37(6): 0993-0998.
    [122]杜祥琬,黄其励,李俊峰等,我国可再生能源战略地位和发展路线图研究[J],中国工程科学, 2009.11(8):4-10.
    [123]王松岑,于坤山,汤广福,10 kV固态电源切换开关的研制[J],电力电子技术, Vol.,2008. 42(3):37-38.
    [124]朱永强,张旭,风电场电气系统[M],机械工业出版社,2010.
    [125]肖朝霞,微网控制及运行特性分析[D],博士论文,天津大学,2008.7.
    [126]李广凯,李庚银,梁海峰等,新型混合直流输电方式研究[J],电网技术,2006,30(4):82-86.
    [127]潘武略,新型直流输电系统损耗特性及降损措施研究[D],博士论文,浙江大学,2008.4.
    [128]周志飞,马瑞,基于PID控制器的超导储能装置抑制风速和故障扰动下风电场功率波动[J],长沙理工大学学报(自然科学版),2009.6(4):47-51.
    [129]李国杰,唐志伟,聂宏展,谭靖,钒液流储能电池建模及其平抑风电波动研究[J],电力系统保护与控制, 2010,38(22):115-120.
    [130]曾杰,可再生能源发电与微网中储能系统的构建与控制研究[D],博士论文,华中科技大学,2009.
    [131] Etxeberria A., Vechiu I., Camblong H., et al, Hybrid Energy Storage Systems for renewable Energy Sources Integration in microgrids: A review [C], IPEC, 2010 Conference Proceedings,2010:532-537.
    [132]张华民,周汉涛,赵平,储能技术的研究开发现状及展望[J],能源工程,2005, 3:1-7.
    [133]张慧妍,超级电容器直流储能系统分析与控制技术的研究[D],博士论文,中国科学院电工研究所,2006.
    [134] Gao Lijun, Dougal R.A., Liu Shengyi. Power enhancement of an actively controlled battery/ultracapacitor hybrid [J], Power Electronics, IEEE Trans on, 2005, 20 (1):236-243.
    [135]唐西胜,超级电容器储能应用于分布式发电系统的能量管理及稳定性研究[D],博士论文,中国科学院研究生院(电工研究所),2006.
    [136]王振浩,张延奇,李国庆等,基于超级电容器的直流系统混合储能研究[J],电网技术, 2010, 34(4):158-162.
    [137]张梅,何国庆,赵海翔等,直驱式永磁同步风力发电机组的建模与仿真[J],中国电力,2008.41(6):79-84.
    [138]宇航,利用储能系统平抑风电功率波动的仿真研究[D],硕士论文,东北电力大学,2010.
    [139]孙功伟,蓄电池储能的风电场并网功率波动抑制系统研究[D],硕士论文,东北电力大学,2010.
    [140] Lijie Wang, Lei Dong, Ying Hao, et al, Wind power prediction using wavelet transform and chaotic characteristics, World Non-Grid-Connected Wind Power and Energy Conference, 2009, WNWEC 2009:1-5.
    [141] Rohrig, K., Lange, B., Improvement of the Power System Reliability byPrediction of Wind Power Generation, Power Engineering Society General Meeting, 2007. IEEE, 2007:1-8.
    [142] Yutong Zhang Ka Wing Chan,The impact of wind forecasting in power system reliability[C], Electric Utility Deregulation and Restructuring and Power Technologies, 2008, DRPT 2008, Third International Conference on, 2008:2781-2785.
    [143] Gavrilas, M. Gavrilas, G., An enhanced ANN wind power forecast model based on a fuzzy representation of wind direction [C], Neural Network Applications in Electrical Engineering (NEUREL), 2010 10th Symposium on,2010:31-36.
    [144]李炎,高山,风电功率短期预测技术综述[C],中国高等学校电力系统及其自动化专业第二十四届学术年会论文集,2008.
    [145]王彩霞,鲁宗相,乔颖,基于非参数回归模型的短期风电功率预测[J],电力系统自动化,2010.34(16):78-83.
    [146]谷兴凯,范高锋,王晓蓉等,风电功率预测技术综述[J],电网技术,2007.2.
    [147]范高锋,王伟胜,刘纯等,基于人工神经网络的风电功率预测[J],中国电机工程学报, 2008.28(34):118-123.
    [148]袁旭峰,新型混合多端直流输电系统理论及其若干关键问题研究[D],博士论文,华中科技大学,2007.
    [149]武娟,任震,黄雯莹等,轻型直流输电的运行机理和特性分析[J],华南理工大学学报(自然科学版),2001,29(8):41-44.
    [150]尹明,基于VSC_HVDC的风电场联网技术研究[D],博士论文,华北电力大学, 2007.
    [151]张崇巍,张兴,PWM整流器及其控制[M],机械工业出版社,2003.
    [152] Marian P,Kazmierkowski,Luigi Malesani. Current control Techniques for three-Phase voltage source PWM converters:A Surrey[J]. IEEE Trans on. Electronies, 1998,45(5):691-703.
    [153] Z.Wang, X.Huang, J.Jian, Design and Implementation of a control system for a microgrid involving a fuel cell power module[C], Electrical Power Conference, 2007. EPC 2007, IEEE Canada, 2007:207-212.
    [154] B.Kroposki, C.Pink, J.Lynch, et al. Development of a high speed static switch for distributed energy energy and Microgrid application[C], Fourth Power Conversion Conference-Nagoya, Japan, 2007:1418-1423.
    [155] C.K.Sao, P.W.Lehn, Inentional islanded operation of converter fed Microgrid [C], IEEE Power Engineering society General Meeting, Canada, 2006:1-6.
    [156]耿光飞,地区电网无功优化控制的研究[D],中国农业大学,2003.
    [157]白雪松,于海洋,吕飞孔等,风电场电能质量的评估[J],黑龙江电力,2011,33(1): 46-49.
    [158]郭健,大规模风电并入电网对电力系统的影响[J],电气自动化,2010,32(1): 47-50.
    [159]孙涛,王伟胜,戴慧珠等,风力发电引起的电压波动和闪变[J],电网技术,2003, 27(12):62-66.
    [160]王海云,王维庆,周丹华,定速和变速风电机组闪变成因的对比分析[J],电力设备, 2008,9(8):45-47.
    [161]王晶,束洪春,陈学允,人工智能和数学变换用于电能质量的研究综述[J],继电器, 2004, 32(2): 34-39.
    [162]胡铭,陈珩,电能质量及其分析方法综述[J],电网技术,2000, 24(2): 36-38.
    [163]张宇辉,陈晓东,王鸿懿,基于连续小波的电能质量测量与分类[J],电力自动化设备,2004, 24(3): 17-21.
    [164]王晶,束洪春,陈学允,动态电能质量的分形指数小波分析方法[J],中国电机工程学报, 2004, 24(5): 40-45.
    [165]刘晓芳,刘会金,柯定芳,基于小波变换和神经网络的暂态电能质量自动识别[J],供用电,2005,22(5):15-17.
    [166] G. T. Heydt, P. S. Fjeld, C. C. Liu, et al, Applications of the Windowed FFT to Electric Power Quality Assessment [J], IEEE Trans,Power Delivery, 1999,14(4): 1411-1416.
    [167] Surya Santoso, W. Mack Grady, Edward J. Powers, et al, Characterization of Distribution Power Quality Events with Fourier and Wavelet Transforms [J], IEEE Trans. Power Delivery, 2000,15(1):247-254.
    [168] Yuhua Gu, Math H.J. Bollen, Time-Frequency and Time-scale Domain Analysis of Voltage Disturbances [J], IEEE Trans. Power Delivery, 2000,15(4): 1279-1284.
    [169] Surya Santoso, Edward J. Powers, W. Mack Grady, et al, Power Quality Assessment Via Wavelet Transform Analysis [J], IEEE Trans. Power Delivery, 1996,11(2):544-549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700