用户名: 密码: 验证码:
VSC-HVDC控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电压源换流器型直流输电(VSC-HVDC)是一种以电压源换流器和脉宽调制等技术为基础的相对较新的直流输电技术。由于具备向无源系统或者弱交流系统供电、有功功率和无功功率能快速独立控制、易于构成多端网络和环境友好等优异性能,VSC-HVDC在输电和配电领域都有着非常广泛的应用前景,吸引了国内外工业界和学术界的广泛关注。随着大功率电力电子器件的发展,VSC-HVDC的造价和运行、维护费用逐步降低,在世界范围内,VSC-HVDC工程建设方兴未艾,其传输容量和电压等级逐步提高,我国相关科研院所和公司也投入了很多力量进行相关技术的研究。在这样的背景下本文主要就VSC-HVDC的控制策略等进行了研究,期望能对我国VSC-HVDC技术的发展有一定借鉴意义。论文主要内容如下:
     1.概括性地讨论了VSC-HVDC控制系统的分层结构(系统级控制、换流器级控制和触发级控制等),其中换流器级控制是本学位论文研究的重点。通过在交流侧和直流侧引入合理的基值,建立了VSC-HVDC在交流系统对称和不对称运行条件下的标幺值数学模型,此模型为后续的主电路参数选择及控制器设计提供了便利。
     2.讨论了VSC-HVDC主回路中连接电抗器和直流电容器这两个主要电气设备参数的初步选择方法。
     3.为了改善系统故障等条件下VSC-HVDC的运行特性和生存能力,提出了两种换流器级控制策略:(i)设计了一种新型广义直流电压控制策略,外环有功功率控制器(APC)被设计成一个广义直流电压控制器(GDCVC),当采用直流电压控制器的换流站由于某种原因不能有效控制直流电压时,控制直流电压的任务由采用GDCVC的换流站自动、平滑地接替;(ii)设计了一种包含“依赖于直流电压的电流指令限流单元”(VDCOL)的控制策略。当直流电压异常时,VDCOL根据直流电压信息按照预先设计的规律快速修正传递给内环电流控制器的有功电流指令。这两种控制策略,都能降低暂态过程中交流系统和直流系统间的有功功率不平衡,从而达到抑制系统的直流过电压和欠电压水平、改善系统运行性能、降低系统被迫退出运行概率等目标,且两端换流器间不需要进行通信联系。
     4.实际运行的VSC-HVDC系统中存在不确定性因素,如连接电抗器、直流电容器等参数会偏离其设计值,交流系统的运行状态也会改变。这些不确定性会恶化控制系统性能,有时甚至使系统失去稳定。为了降低不确定性对控制系统品质的影响,提出了一种基于定量反馈理论(QFT)的VSC-HVDC换流器级鲁棒控制系统设计方法。QFT是一种工程化的鲁棒控制器设计方法,基于此设计方法设计了VSC-HVDC的内环电流控制器和外环功率控制器。
     5.为了减缓VSC-HVDC系统启动及重新启动时对自身和电网的冲击,针对目前应用较广泛的两电平和二极管箝位型三电平换流器拓扑结构,提出了一种简单、适用于VSC-HVDC系统的两段式自励启动方法。在启动的第一阶段,串接限流电阻器对直流侧电路充电。若设定的时间内,电容器电压不能达到设定值,启动转入第二阶段,此时换流站在直流电压控制器的作用下对电容器继续充电,直至达到预设值,从而为换流器从启动控制模式切换到正常运行模式做好准备。文中提出的启动方式既能够把直流电压快速提升到设定值,同时又能有效避免启动过程中可能出现的过电压和过电流。
     通过数字仿真的方法来验证上述控制策略和算法的有效性。
Voltage Source Converter based HVDC (VSC-HVDC) is a relatively innovative technology and has many advantages over the classic HVDC in many aspects. With the advances in semiconductors and the cost reduction for installing and operating, VSC-HVDC is expected to find increased use both at transmission and distribution level for its high controllability, environmental benefits and easy expandability in near future. It enables fast control of active and reactive power independently and can delivery power to the weak or passive network on the islands and oil platforms. The rating and voltage level of VSC-HVDC are increasing gradually. The design and installations of VSC-HVDC are in the ascendant.
     The dissertation is organized as follows.
     (1) A general discussion about the hierarchy of VSC-HVDC control system, namely the system control, the converter control and the fire control, is presented. The dissertation focuses on the converter control. Based on the properly selected base values, a per unit model in the dq synchronous rotating frames under balanced and unbalanced operating conditions for VSC-HVDC is addressed.
     (2) The design of dc capacitors and interfacing reactors is an important part for the design of a VSC-HVDC. The sizing of the dc capacitors and interfacing reactors is generally investigated.
     (3) To enhance the operating performance and the ability to survive the faults, two refined converter control strategies for VSC-HVDC have been introduced and investigated:(i) a novel Active Power Controller (APC) is designed as a Generalized DC Voltage Controller (GDCVC), which takes over the function of DC Voltage Controller (DCVC) automatically and smoothly when the DC link voltage can not be maintained by DCVC for some reasons.(ii) a DC Voltage Dependent Current Order Limiter (VDCOL) is included between the outer active power control loop and the inner current control loop. VDCOL changes the inner active current orders according to the DC link voltage. When the DC voltage is abnormal, VDCOL rapidly modifies the current orders, which are derived from the outer control loops, before been send to the inner current control loops according to pre-set characteristics. With the two proposed converter control strategies, the active power unbalance between the ac and dc system can be both reduced during transients. Therefore the DC undervoltage and overvoltage can be effectively suppressed and the risk of tripping the whole system is reduced.
     (4)There are uncertainties in the practical VSC-HVDC system, such as the interfacing reactors and dc capacitors may deviate from their rated values for many reasons. These uncertainties may deteriorate the performance without dedicatedly designed controllers. To deal with these uncertainties and meet the performance specifications, a design methodology for robust control of VSC-HVDC using quantitative feedback theory (QFT) is proposed. In order to obtain a high performance, an inner-outer cascaded control scheme of quantitative feedback theory is utilized to derive the inner current loop controllers and outer power loop controllers.
     (5) In order to reduce the undesired impacts and damages on the VSC-HVDC system and the connected AC system during the startup and re-startup procedures, a two-stage self startup procedure is proposed for two-level and diode-clamped three-level VSC-HVDC system. During the first stage, the resistors are inserted to limit the inrush current during the charging. If the DC voltage can not reach the preset value after predetermined time, the startup procedure switches to the second stage and the capacitors will be further charged with a DC voltage controller. The startup procedure completes till the DC link voltage reaches the preset value and then the converters are ready to change from the startup mode to the normal operating mode.
     Digital simulation has been used to demonstrate the feasibility of the proposed control strategies and algorithms.
引文
[1]CIGRE WG 37. VSC Transmission [R].2004.
    [2]ABB. It's time to connect-technical description of HVDC Light technology [R].2008.
    [31 http://www.abb.com/hvdc [2009-02-28].
    [4]徐政,陈海荣.电压源换流器型直流输电技术综述[J].高电压技术,2007,33(1):1-10.
    [5]Jacobson B., Jiang-hafner Y., Rey P., Asplund G. HVDC with voltage source converters and extruded cables for up to ±300kV and 1000MW. CIGRE Session, Paris, France,2006:B4-105.
    [6]Johansson S.G., Asplund G., Jansson E., Rudervall R. Power system stability benefits with VSC DC-transmission systems. CIGRE Session, Paris, France,2004:B4-204.
    [7]Zhang L., Harnefors L., Rey P. Power System Reliability and Transfer Capability Improvement by VSC-HVDCHVDC Light. CIGRE Regional Meeting,Security and reliability of electric power systems, Tallinn, Estonia,2007.
    [8]Submarine HVDC Link to Brine Electric Power to Center of San Francisco.http://tdworld.com/proiects in progress/business in tech/hydc-link-pwer-sanfrancisco/[2009-02-28].
    [9]Clark H., Edris A. A., El-Gasseir M., et al. Softening the Blow of Disturbances[J]. Power and Energy Magazine, IEEE,2008,6(1):30-41.
    [10]Axelsson U., Holm A., Liljegren C., Eriksson K., et al. The Gotland HVDC Light project-experiences from trial andcommercial operation. CIRED, Nice, France,1999.
    [11]Sobrink K.H., Sorensen P. L., Christensen P., et al. DC feeder for connection of a wind farm. CIGRE Symposium, Kuala Lumpur, Malaysia,1999.
    [12]Railing B.D., Miller J.J, Moreau G., et al. The DirectLink VSC-based HVDC project and its commissioning. CIGRE Session, Pairs, France,2002:14-108.
    [13]Mattsson I., Railing B.D., Williams B., al et. Murraylink, The Longest Underground HVDC Cable in the World. CIGRE Session, Paris, France,2004:B4-103.
    [14]Railing B. D., Moreau G., Ronstrom L., et al. Cross Sound Cable Project Second Generation VSC Technology for HVDC. CIGRE Session, Paris, France,2004:B4-102.
    [15]Hyttinen M., Lamell J.O., Nestli T.F. New application of voltage source converter (VSC) HVDC to be installed on the gas platform Troll A. CIGRE Session, Pairs, France,2004:B4-210.
    [16]Weixing Lu, Boon-Teck Ooi. Premium quality power park based on multi-terminal HVDC[J]. Power Delivery, IEEE Transactions on,2005,20(2):978-983.
    [17]Toledo P. F.de. Feasibility of HVDC for City Infeed [Licentiate Thesis]. Stockholm,Sweden:KTH,2003.
    [18]Marquardt R., Lesnicar A. New Concept for High Voltage-Modular Multilevel Converter. PESC, Aachen, Germany,2004.
    [19]Dorn J., Huang H., Retzmann D. Novel Voltage-Sourced Converters for HVDC and FACTS Applications. CIGRE Symposium, Osaka, Japan,2007.
    [20]Hayashi T. Seki N., Sampei M., Sekine Y. Development and Field Test of a Multi-Terminal DC Link Using Voltage Sourced Converters and New Control and Protection Schemes. CIGRE Session, Paris, France,2004: 14-204.
    [21]Xu L., Agelidis V.G. VSC Transmission System Using Flying Capacitor Multilevel Converters and Hybrid PWM Control [J]. Power Delivery, IEEE Transactions on,2007,22(1):693-702.
    [22]Liu Y. H., Arrillaga J., Watson N. R. A new high-pulse voltage-sourced converter for HVDC transmission [J]. Power Delivery, IEEE Transactions on,2003,18(4):1388-1393.
    [23]Liu Y. H., Arrillaga J., Watson N. R. Addition of four-quadrant power controllability to multi-level VSC HVDC transmission[J]. Generation, Transmission & Distribution, IET,2007,1(6):872-878.
    [24]Liu Y. H., Arrillaga J., Watson N. R. Cascaded H-Bridge Voltage Reinjection-Part Ⅰ:A New Concept in Multilevel Voltage-Source Conversion [J]. Power Delivery, IEEE Transactions on,2008,23(2):1175-1182.
    [25]Pan W.L., Xu Z, Zhang J. Novel configuration of 60-pulse voltage source converter for STATCOM application [J]. International Journal of Emerging Electric Power Systems,2007,8(5):Article 7.
    [26]潘武略.新型直流输电系统损耗特性及降损措施研究[博士学位论文].杭州:浙江大学,2008.
    [27]张崇魏,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [28]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2005.
    [29]Hiti Silva. Modeling and Control of Three-Phase PWM Converters [Dissertation]:Virginia Polytechnic Institute and State University,1995.
    [30]Rusong Wu. Analysis and Control of Pluse-Width Modulated AC to DC Voltage Source Converters [Dissertation]. Toronto,Canada:University of Toronto,1989.
    [31]Zhiyuan Zhao. HVDC applications of GTO voltage source converters [Dissertation]. Toronto, Canada: University of Toronto,1992.
    [32]Wang Xiao. Advances in Pulse Width Modulation Techniques [Dissertation]. Montreal,Canada:McGill University,1993.
    [33]张桂斌,徐政,王广柱.基于VSC的直流输电系统的稳态建模及其非线性控制[J].中国电机工程学报,2002,22(1):17-22.
    [34]张桂斌.新型直流输电及其相关技术[博士学位论文].杭州:浙江大学,2001.
    [35]赵成勇,李金丰,李广凯.基于有功和无功独立调节的VSC-HVDC控制策略[J].电力系统自动化,2005,29(9):20-24,30.
    [36]郑超,周孝信,李若梅.新型高压直流输电的开关函数建模与分析[J].电力系统自动化,2005,29(8):32-35.
    [37]王冠,蔡晔,张桂斌,徐政.高压直流输电电压源换流器的等效模型及混合仿真技术[J].电网技术2003,27(2):4-8.
    [38]Lindberg A. PWM and Control of Two and Three Level High Power Voltage Source Converters [Licentiate thesis]. Stockholm, Sweden:KTH,1995.
    [39]Lindberg A., Larsson T. PWM and Control of Three Level Voltage Source Converters in an HVDC Back-to-Back Station. AC and DC Power Transmission, Sixth International Conference on,1996.
    [40]Lindberg A., Lindberg L. Inner current loop for large voltage source converters operating at low switching frequency. Proceedings of 5th International Conference on Power Electronics and Variable-Speed Drives, London, UK,1994:217-222.
    [41]Lindberg A., Lindberg L. High power voltage source converter control response at large AC voltage phase shifts. Power Electronics and Drive Systems, Proceedings of 1995 International Conference on,1995: 719-725.
    [42]陈谦,唐国庆,胡铭.采用dq0坐标的VSC-HVDC稳态模型与控制器设计[J].电力系统自动化,2004,28(16):61-66.
    [43]李国栋,毛承雄,陆继明,胡兆庆.基于逆系统理论的VSC-HVDC新型控制[J].高电压技术,2005,31(8):45-50.
    [44]梁海峰,李庚银,李广凯,张凯等.向无源网络供电的VSC-HVDC系统仿真研究[J].电网技术,2005,29(8):45-50.
    [45]陈海荣,徐政.向无源网络供电的VSC-HVDC系统的控制器设计[J].中国电机工程学报,2006,26(23):42-48.
    [46]Venkataramanan G., Johnson B. K. A superconducting DC transmission system based on VSC transmission technologies [J]. Applied Superconductivity, IEEE Transactions on,2003,13(2):1922-1925.
    [47]尹明,李庚银,牛同义,李广凯等.VSC-HVDC连续时间状态空间模型及其控制策略研究[J].中国电机工程学报,2005.
    [48]陈海荣,徐政.基于同步坐标变换的VSC-HVDC暂态模型及控制器[J].电工技术学报,2007,22(2):121-126.
    [49]魏晓光,汤广福.基于电压源换流器的高压直流输电系统离散化建模与仿真研究[J].电网技术,2007,22(4):150·156.
    [50]魏晓光,汤广福,魏晓云等.VSC-HVDC控制器抑制风电场电压波动的研究[J].电工技术学报,2007,22(4):150-156.
    [51]杨思祥,李国杰,阮思烨,董健.应用于DFIG风电场的VSC-HVDC控制策略[J].电力系统自动化,2007,3 1(19):64-67.
    [52]阮思烨,孙元章,李国杰.用电压源型高压直流输电解决高压电网中工业系统引起的电能质量问题[J].电网技术2007,31(19):13-17.
    [53]Jiang-Hafner Y., Duchen H., Linden K., Hyttinen M., et al. Improvement of subsynchronous torsional damping using VSC HVDC. Power System Technology,2002. Proceedings. PowerCon 2002. International Conference on,2002:998-1003 vol.2.
    [54]Tang Guosheng. Damping Subsynchronous Resonance Oscillations Using a VSC HVDC Back-to-Back System [Thesis]. Saskatoon,Canada:University of Saskatchewan,2006.
    [55]郑超,汤涌,马世英等.基于等效仿真模型的VSC-HVDC次同步振荡阻尼特性分析[J].中国电机工程学报,2007,27(31):33-39.
    [56]Chen H.R., Xu Z., Zhang F. Nonlinear control for VSC based HVDC system. IEEE Power Engineering Society General Meeting,2006.
    [57]Li G.K., Ma G.P., Zhao C.Y., Li G.Y. Research of nonlinear control strategy for VSC-HVDC system based on Lyapunov stability theory. Electric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008. Third International Conference on,2008:2187-2191.
    [58]Bin Lu, Boon Teck Ooi. Nonlinear control of FACTS and HVDC belonging to the voltage-source converter family. Control Applications, Proceedings of 2005 IEEE Conference on,2005:617-623.
    [59]Ruan S.Y., Li G.J., Peng L., et al. A nonlinear control for enhancing HVDC light transmission system stability[J]. International Journal of Electrical Power & Energy Systems,2007,29(7):565-570.
    [60]Yazdani A., Iravani R. Dynamic model and control of the NPC-based back-to-back HVDC system[J]. Power Delivery, IEEE Transactions on,2006,21(1):414-424.
    [61]Yazdani A. Modeling and Control of the Three-Level Neutral Point Diode Clamped(NPC) Converter for High-Power Application [Dissertation]. Toronto,Canada:University of Toronto,2005.
    [62]Xu L., Andersen B. R., Cartwright P. VSC transmission operating under unbalanced AC conditions-analysis and control design[J]. Power Delivery, IEEE Transactions on,2005,20(1):427-434.
    [63]Jovcic D., Lamont L., Abbott K. Control system design for VSC transmission [J]. Electric Power Systems Research,2007,77(7):721-729.
    [64]Zhang J., Chen H.R., Pan W.L., et al. VSC-HVDC Control under Unbalanced Supply Conditions. IEEE Power Engineering Society General Meeting,2007.
    [65]陈海荣.交流系统故障时VSC-HVDC系统的控制与保护策略研究[博士学位论文].杭州:浙江大学,2007.
    [66]Du C., Bollen M. H. J., Agneholm E., Sannino A. A New Control Strategy of a VSC-HVDC System for High-Quality Supply of Industrial Plants[J]. Power Delivery, IEEE Transactions on,2007,22(4):2386-2394.
    [67]Du C., Agneholm E., Olsson G. Use of VSC-HVDC for Industrial Systems Having Onsite Generation With Frequency Control[J]. Power Delivery, IEEE Transactions on,2008,23(4):2233-2240.
    [68]Du C., Agneholm E. A Novel Control of VSC-HVDC for Improving Power Quality of an Industrial Plant. IEEE 32nd Annual Conference on Industrial Electronics,2006:1962-1967.
    [69]Du C. VSC-HVDC for Industrial Power Systems [Dissertation]. Goteborg, Sweden:Chalmers Uinversity of Technology,2007.
    [70]Hagiwara M., Akagi H. An approach to regulating the DC-link voltage of a voltage-source BTB system during power line faults[J]. Industry Applications, IEEE Transactions on,2005,41(5):1263-1271.
    [71]潘武略,徐政,张静.基于电压源换流器的高压直流输电系统混合调制方式[J].电力系统自动化,2008,32(5):54-58.
    [72]李金丰,李广凯,赵成勇,李庚银.三相电压不对称时带有电压源换流器的HVDC系统的控制策略[J].电网技术,2005,29(16):16-20.
    [73]Du C. The control of VSC-HVDC and its use for large industrial systems [Licentiate thesis]. Goteborg,Sweden:Chalmers University of Technology,2003.
    [74]Durrant M., Werner H., Abbott K. Synthesis of multi-objective controllers for a VSC HVDC terminal using LMIs. Decision and Control,43rd IEEE Conference on,2004:4473-4478.
    [75]Bregeon S., Benchaib A., Poullain S., Thomas J.L. Robust DC bus voltage control based on Backstepping and Lyapunov methods for long distance VSC transmission scheme. EPE 2003, Toulouse, France,2003.
    [76]Ruan S.Y., Li G.J., Jiao X.H., et al. Adaptive control design for VSC-HVDC systems based on backstepping method[J]. Electric Power Systems Research,2007,77(5-6):559-565.
    [77]李广凯.VSC-HVDC系统及其在电网恢复中的应用研究[博士学位论文].保定:华北电力大学,2007.
    [78]Liang H.F., Li G.Y., Li G.K., et al. Analysis and Design of H∞ Controller in VSC HVDC Systems. Transmission and Distribution Conference and Exhibition:Asia and Pacific,2005 IEEE/PES,2005:1-6.
    [79]Cherouat H., Siguerdidjane H., Thomas J-L., Poullain S. Sliding Modes Control of VSC-HVDC Transmission Systems. EPE 2003, Toulouse, France,2003.
    [80]Durrant M., Werner H., Abbott K. Design of LQG Controllers for VSC HVDC Transmission Links Using Genetic Algorithms. Intelligent Control,2006. IEEE International Symposium on,2006:772-777.
    [81]Rahmati A., Abrishamifar A., Abiri E. Direct Power Control of an VHDC system based on VSCs. Industrial Technology, IEEE International Conference on,2006:2984-2989.
    [82]Rahmati A., Abrishamifar A., Abiri E. Direct Power Control of HVDC Light System for Connecting Two Network at Different Freqency. Universities Power Engineering Conference, Proceedings of the 41st International,2006:579-583.
    [83]Mauricio J. M., Exposito A. G. Modeling and Control of an HVDC-VSC Transmission System. Transmission & Distribution Conference and Exposition:Latin America, IEEE/PES,2006:1-6.
    [84]陈海荣,徐政.适用于VSC-MTDC系统的直流电压控制策略[J].电力系统自动化,2006,30(19):28-33.
    [85]陈谦.新型多端直流输电系统的运行与控制[博士学位论文].南京:东南大学,2004.
    [86]Weixing Lu. Control and application of multi-terminal HVDC based on Voltage-Source Converter [Dissertation]. Montreal, Canada:Mcgill University,2003.
    [87]Nakajima T. Development and testing of prototype models of a 300 MW GTO converter for power system interconnection. Industrial Electronics, Control and Instrumentation,23rd International Conference on,1997: 423-429 vol.2.
    [88]Jiang H., Ekstrom A. Multiterminal HVDC systems in urban areas of large cities [J]. Power Delivery, IEEE Transactions on,1998,13(4):1278-1284.
    [89]Sakamoto K., Yajima M., Ishikawa T., Sugimoto S., et, al. Development of a control system for a high-performance self-commutated AC/DC converter [J]. Power Delivery, IEEE Transactions on,1998, 13(1):225-232.
    [90]胡兆庆.基于VSC的HVDC控制及其动态特性研究[博士学位论文].武汉:华中科技大学,2005.
    [91]陈谦,唐国庆,潘诗锋.采用多点直流电压控制方式的VSC多端直流输电系统[J].电力自动化设备,2004,24(5):12-14,15.
    [92]Weixing Lu, Boon-Teck Ooi. DC overvoltage control during loss of converter in multiterminal voltage-source converter-based HVDC (M-VSC-HVDC)[J]. Power Delivery, IEEE Transactions on,2003, 18(3):915-920.
    [93]Xiao-Ping Zhang. Multiterminal voltage-sourced converter-based HVDC models for power flow analysis[J]. Power Systems, IEEE Transactions on,2004,19(4):1877-1884.
    [94]Xiao-Ping Zhang, Christian Rehtanz, Bikash Pal. Flexible AC Transmission Systems:Modelling and Control [M]. Heidelberg, Germany:Springer,2006.
    [95]陈谦,唐国庆,王浔.多端VSC-HVDC系统交直流潮流计算[J].电力自动化设备,2005,25(6):1-6.
    [96]郑超,周孝信,李若梅,盛灿辉VSC-HVDC稳态特性与潮流算法的研究[J].中国电机工程学报,2005,25(6):1-5.
    [97]郑超,周孝信.基于电压源换流器的高压直流输电小信号动态建模及其阻尼控制器设计[J].中国电机工程学报,2006,26(2):7-12.
    [98]胡兆庆,毛承雄,陆继明Application of a Novel Optimal Coordinated Control to HVDC Light[J]中国电机工程学报,2005,25(8):41-49.
    [99]Hector L. Multichoice Control Strategy for VSC-HVdc [Licentiate thesis]. Stockholm,Sweden:KTH,2008.
    [100]Latorre H. F., Ghandhari M., Sodera L. Active and reactive power control of a VSC-HVdc[J]. Electric Power Systems Research,2008,78(10):1756-1763.
    [101]陈蔓,陆继明,毛承雄,胡兆庆.基于遗传算法的优化控制在VSC-HVDC中的应用[J].电力系统及其自动化学报,2006,18(4):19-23.
    [102]李国栋,毛承雄,陆继明,胡兆庆.AC/DC混合输电系统分散协调控制[J],2005,25(19):37-42.
    [103]孙栩,孔力.VSC-HVDC系统的动态相量法建模仿真分析[J].电力系统自动化,2008,32(1):44-47.
    [104]Yao Wei, Wen Jinyu, Cheng Shijie. Modeling and Simulation of VSC-HVDC with Dynamic Phasors[J]. University-Journal of Electrical & Electronics Engineering,2008,8(1):715-724.
    [105]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [106]中国南方电网超高压输电公司.高压直流输电现场实用技术问答[M].北京:中国电力出版社,2008.
    [107]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004.
    [108]Bahrman M. P., Johnson B. K. The ABCs of HVDC transmission technologies[J]. Power and Energy Magazine, IEEE,2007,5(2):32-44.
    [109]Ye Y., Kazerani M., Quintana V. H. Modeling, control and implementation of three-phase PWM converters[J]. Power Electronics, IEEE Transactions on,2003,18(3):857-864.
    [110]Paap G. C. Symmetrical components in the time domain and their application to power network calculations [J]. Power Systems, IEEE Transactions on,2000,15(2):522-528.
    [111]Suh Y. Analysis and control of three phase AC/DC PWM converter under unblanced operating conditions [Dissertation]. University of Wisconsin-Madison,2004.
    [112]Suh Y., Lipo T. A. Modeling and analysis of instantaneous active and reactive power for PWM AC/DC converter under generalized unbalanced network[J]. Power Delivery, IEEE Transactions on,2006, 21(3):1530-1540.
    [113]刘洪涛.新型直流输电的控制和保护策略研究[博士学位论文].杭州:浙江大学,2003.
    [114]殷自力,李庚银,李广凯等.柔性直流输电系统运行机理分析及主回路相关参数设计[J].电网技术,2007,31(21):16-21,26.
    [115]殷自力,罗彦青.VSC-HVDC系统换流电抗器参数设计[J].电力科学与工程,2008,24(2):40-42.
    [116]Paulsson L., Ekehov B., Halen S., et al. High-frequency impacts in a converter-based back-to-back tie; the Eagle Pass installation[J]. Power Delivery, IEEE Transactions on,2003,18(4):1410-1415.
    [117]Temma K., Ishiguro F., Toki N., et al. Clarification and measurements of high frequency harmonic resonance by a voltage sourced converter[J]. Power Delivery, IEEE Transactions on,2005,20(1):450-457.
    [118]Nakajima T., Suzuki H., Temma K., et al. High-Order Harmonic Resonance Phenomena of a Voltage-Sourced Converter in Cable System[J]. Electrical Engineering in Japan,,2005,150(3):69-76.
    [119]Holmes D.G., Lipo T.A. Pulse Width Modulation For Power Converters:Principles and Practice[M]. Wiley-Interscience,2003.
    [120]McGrath B.P., Holmes D.G. An analytical technique for the determination of spectral components of multilevel carrier-based PWM methods[J]. Industrial Electronics, IEEE Transactions on,2002, 49(4):847-857.
    [121]Manolakis D.G., Ingle V.K., Kogon S.M. Statistical and Adaptive Signal Processing:Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing[M]. New York:McGraw-Hill,2000.
    [122]Roy R., Paulraj A., Kailath T. ESPRIT--A subspace rotation approach to estimation of parameters of cisoids in noise[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on,1986,34(5):1340-1342.
    [123]Roy R., Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on,1989,37(7):984-995.
    [124]Kretshmar K., Nee H-P. An AC Converter with A small DC Link Capacitor for a 15kW Permanent Magnet Synchronous Integral Motor. International conference on power electronics and variable speed drives London,UK,1998.
    [125]Saren H. Analysis of the Voltage Source Inverter with Small DC-Link Capacitor [Dissertation]. Lappeenranta, Finland:Lappeenranta University of Technology,2005.
    [126]Carlsson A. The back to back converter control and design [Licentiate theses]. Lund,Sweden:Lund Institute of Technology,1998.
    [127]Bojrup M. Advanced Control of Active Filters in a Battery Charger Application [Licenciete thesis]. Lund,Sweden:Lund Institute of Technology,1999.
    [128]Astrom K.J., Hagglund T. PID Controllers[M]. The Internatinal Society for Measurement and Control, 1995.
    [129]Bajracharya C., Molinas M., Suul J.A., Undeland T. Understanding of Tuning Techniques of Converter Controllers for VSC-HVDC. Nordic Workshop on Power and Industrial Electronics, Espoo, Finland,2008.
    [130]Filizadeh S., Gole A. M., Woodford D. A., Irwin G. D. An Optimization-Enabled Electromagnetic Transient Simulation-Based Methodology for HVDC Controller Design [J]. Power Delivery, IEEE Transactions on,2007,22(4):2559-2566.
    [131]Svensson J., Bongiorno M., Sannino A. Practical Implementation of Delayed Signal Cancellation Method for Phase-Sequence Separation[J]. Power Delivery, IEEE Transactions on,2007,22(1):18-26.
    [132]Rodriguez P., Teodorescu R., Candela I., Timbus A. V., et al. New Positive-sequence Voltage Detector for Grid Synchronization of Power Converters under Faulty Grid Conditions. Power Electronics Specialists Conference,37th IEEE,2006:1-7.
    [133]Farag A., Durrant M., Werner H., Abbott K. Robust control of a VSC HVDC terminal attached to a weak AC system. Control Applications, Proceedings of 2003 IEEE Conference on,2003:173-177
    [134]Houpis C.H., Rasmussen S.J., Garcia-Sanz M. Quantitative Feedback Theory:Fundamentals and Applications,2 edition[M]. CRC Press,2006.
    [135]Yaniv O. Quantitative Feedback Design of Linear and Nonlinear Control Systems [M]. Kluwer Academic Publishers,1999.
    [136]王增会,陈增强,孙青林,袁著社.定量反馈理论发展综述[J].控制理论与应用,2006,23(3):403-410.
    [137]张庆振.QFT/TECS在飞机自动着陆控制中的应用研究[博士学位论文].西安:西北工业大学,2004.
    [138]王蕾.QFT在飞行控制系统中的应用[硕士学位论文].西安:西北工业大学,2007.
    [139]Garcia-Sanz M., Elso J. Beyond the linear limitations by combining switching and QFT:Application to wind turbines pitch control systems[J]. International Journal of Robust and Nonlinear Control,2009, 19(1):40-58.
    [140]Torres E., Garcia-Sanz M. Experimental results of the variable speed, direct drive multipole synchronous wind turbine TWT1650[J]. Wind Energy,2004,7(2):109-118.
    [141]Cutululis N.A., Ceanga E., Hansen A.D., Sorensen P. Robust multi-model control of an autonomous wind power system[J]. Wind Energy,2006,9(5):399-419.
    [142]Angquist L. Synchronous Voltage Reversal Control of Thyristor Controlled Series Capacitor [Dissertation]. Stockholm,Sweden:KTH,2002.
    [143]Rao P.S., Sen I. A QFT-based robust SVC controller for improving the dynamic stability of power systems [J]. Electric Power Systems Research,1998,46(3):213-219.
    [144]Towati A.A. Dynamic Analysis and QFT-Based Robust Control Design of Switched-Mode Power Converters [Dissertation]. Espoo, Finland:Helsinki University of Technology,2008.
    [145]Jayakrishna B., Agarwal V. FPGA implementation of QFT based controller for a buck type DC-DC power converter and comparison with fractional and integral order PID controllers. Control and Modeling for Power Electronics,l lth Workshop on,2008:1-6.
    [146]Wu Z. Y., Schofield N., Bingham C. M., et al. Design of robust current tracking control for active power filters. Electric Machines and Drives Conference, IEMDC 2001, IEEE International,2001:948-953.
    [147]Chang Y.H., Chang J.C., Lee C.J., Wang Y.Y. Modeling and QFT-Based Design of Vector Control Induction Motors[J]. Journal of the Chinese Institute of Engineers,2001,24(4):473-485.
    [148]Borghesani C., Chait Y., Yaniv O. QFT Frequency Domain Control Design Toolbox for Use with Matlab, User's Guide[M]. Terasoft Inc.,2003.
    [149]Sating R., Houpis C.H., Pachter M. MIMO/QFT CAD Program, User's manual,3rd Edition[M]. Wright-Patterson AFB:Air Force Institute of Technology,2000.
    [150]Houpis C. H., Pachter M., Rasmussen C. S., Trosen C.D., et al. Quantitative Feedback Theory (QFT) for the Engineer:A Paradigm For The Design Of Control Systems For Uncertain Nonlinear Plants[R].1995.
    [151]Per-Olof Gutman. Qsyn-the Toolbox for Robust Control Systems Design for use with Matlab, User's Guide[M].1996.
    [152]吕恩海.QFT控制器设计及其应用[硕士学位论文].哈尔滨:哈尔滨工业大学,2001.
    [1 53]郑子文.超精密机床伺服控制技术研究[博士学位论文].长沙:国防科学技术大学,2001.
    [154]吴志琨.涡扇发动机控制系统设计研究[硕士学位论文].西安:西北工业大学,2007.
    [155]梁海峰,王鹏,李光凯,李庚银.VSC-HVDC系统启动过程控制及仿真[J].华北电力大学学报,2006,33(2):79-82,86.
    [156]PSCAD User's Guide. Winnipeg, Canada:Manitoba,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700