用户名: 密码: 验证码:
管土耦合边界下海底悬跨管道涡激振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在管道工程中,海床的凹凸不平和冲刷容易产生悬跨,并引发泄涡频率与结构频率的锁定,产生涡激振动疲劳。悬跨设计一直是管道设计的一个挑战,除了涡激振动系统海流与悬跨运动的相互作用,管土耦合的影响也不容忽视。正确地认识和描述悬跨跨肩管土耦合作用下悬跨VIV,合理的评估悬跨涡激振动疲劳,对保证海底管道经济效应和在服役期间安全运行有着重要意义。
     本文针对管土耦合边界下海底悬跨管道的涡激振动,分别采用基于弱耦合算法的CFD模型、半经验模型以及尾流振子模型,建立了管土耦合非线性作用下悬跨涡激振动预报方法,并探讨多跨多模态涡激振动疲劳损伤的评估方法。论文的主要内容和成果可以归纳为以下五个方面:
     (1)基于时域弱耦合算法,采用动网格技术模拟圆柱运动带来的流域边界的变化,开发出涡激振动的CFD数值程序。程序有效地实现了二维以及三维圆柱的涡激振动的数值模拟。流场求解选取有限体积法结合RANS方程与SST湍流模式离散,圆柱运动采用四阶Runge-Kutta求解,首次展开了对二维自激数值模拟的可靠性、有效性和不确定因数研究,指出了时间步长对计算结果的不确定性,以及流向自由度和高雷诺数对响应幅值的放大效应。
     (2)首次应用尾流振子模型以及弱耦合算法的二维CFD数值方法,模拟了理想塑性非线性弹簧支撑刚性圆柱的涡激振动响应。两者方法的预报结果一致显示:在锁定初始阶段,当弹簧变形进入塑性阶段后,圆柱振动响应产生突变,产生较大振幅的振动;且整个锁定区域的响应幅值的峰值较线性弹簧下要低;CFD数值方法还模拟出非线性弹簧变形进入塑性区后,相位角由0突变到180附件,频率锁定在空气中的固有频率附近。
     (3)利用2D刚性柱实验数据建立水动力经验模型,发展适合管土耦合边界下悬跨管道自身特点的简易预报频域程序。VIV响应频率的预报简化为在一定附加质量影响下的特征值求解问题;利用能量平衡原理,建立频域幅值迭代预报简易程序。最后在频域预报结果基础上,对管土耦合非线性作用下涡激振动应力响应进行时域分析。非线性的引入对跨肩最大应力幅值的影响十分显著,能够更现实的反应实际环境。(4)运用有限元法对输液张紧悬跨管道进行空间离散,并应用Facchinetti等发展的尾流振子模型和切片假定模拟每个有限单元上的涡激振动水动力,开发了一种基于尾流振子模型的悬跨管道-海床-海流多场耦合的非线性时域预报程序。在合理改进尾流振子模型附加水动力阻尼参数的基础上,应用程序时域上预报了线性、理想塑性和张力截断弹簧模型下悬跨管道的涡激振动响应。研究发现在锁定范围内非线性弹簧支撑情况下的最大幅值峰值较线性时要低,但出现的峰值时的流速要小。此时,若按照线性弹簧支撑柱的响应规律进行工业设计,很可能会低估了非线性情况下低流速下的响应幅值,而高估了幅值的峰值。
     (5)针对长期作业的海底多跨管道的多模态涡激振动,联合考虑遭遇海流流速变化以及涡激振动响应本身的随机性,发展了一种基于离散流速的多跨多模态VIV疲劳损伤预报方法。采用Weibull分布描述流速长期变化,并将涡激振动引起的交变应力进程看作是零均值的窄带的平稳正态随机进程。从工程应用实践出发,在深入的研究DNV规范响应模型的基础上,结合离散流速VIV疲劳损伤预报流程,实现海底多跨管道的多模态VIV疲劳损伤预报,可以直接方便的应用于实际的管道设计。分析结果显示:疲劳损伤对土壤刚度选取敏感;DNV RP-105规范中多模态响应缩减系数较振幅权重形式要保守;用Rayleigh分布描述涡激振动响应进程较用横幅稳态振动描述得到的结果,在工程应用上更安全。
     总之,本文的工作涉及到圆柱体以及海洋管道涡激振动研究的诸多方面,对许多重要的概念与现象给出了独到的解释与分析。从简单线性、非线性弹簧支撑刚性柱的二维涡激振动机理,到三维悬跨管道在复杂边界条件下的涡激振动响应预报,以及悬跨管道复杂振动响应下的涡激振动疲劳损伤,这些理论模型与经验为进一步的研究以及管道悬跨设计提供了有益的参考。
Free spans often become a challenge in the pipeline design and operation due to pipeline installation on uneven seabed or seabed scouring effects. Amplified responses due to resonance between the vortex shedding frequency and natural frequency of the free spans may cause fatigue damage. And a whole free span VIV system should include three parts:pipe, seabed and current. Hence, improving the knowledge about the effect of pipe-seabed interaction on VIV is quite important for free spanning pipelines, which are often highly nonlinear due to interaction with the seabed. A reasonable VIV analysis model based pipe-seabed interaction is helpful for VIV fatigue estimation, then provide the support for safe operation and cost reduction of submarine pipeline design
     In the presented VIV response analysis of free span under pipe-soil interaction boundary, three prediction models were adopted respectively, including CFD model based on loose coupling algorithms, semi-empirical model and wake oscillator model. And a fatigue analysis method is established for multi-spans pipeline VIV.
     The main contents and contributions of this thesis may be summarized as follows:
     (1) Dynamic mesh technology wase adopted to achieve the simulation of moving wall boundary. And computational fluid dynamics (CFD) techniques, which analytically solve the viscous Navier-Stokes equations in order to obtain the hydrodynamic forces directly, were developed based on loose coupling algorithms in time domain. The codes can simulate successfully the VIV response of rigid and flexible rigid in 2-dimension and 3-dimension flow fluid domain. In the study, a research was implemented to analysis the reliability, validity and uncertainty of 2D VIV coupling code. the turbulence was presented by SST model, and fourth order Runge-Kutta algorithm used for cylinder movement resolution. The results show that time step is one of uncertain factors during CFD simulation, and amplified responses will come forth due to free in-line degree of freedom or high Reynolds number.
     (2) The vortex induced vibration response of a rigid cylinder supported by perfectly plastic nonlinear spring in a fluid flow was simulated for the first time. Wake-oscillator prediction model and 2D CFD method based on loose coupling algorithms were adopted. The results of above two methods all showed that, vibration amplitude jumps to a maximum value when cylinder movement exceeds the nonlinear spring limited displacement, then decreases with velocity increasing. The response peak value for nonlinear spring case is higher than linear spring, but at the lower flow velocity. As the same time, the simulation of CFD presented that vibration frequency for synchronization is close to vortex shedding frequency at the beginning, and then switch to above the natural frequency in air when the amplitude reaches a peak value, while the phase angle of displacement and lift force transfer from 0 to 180 degree.
     (3) An empirical hydrodynamic coefficient models based on the data from 2D rigid cylinder vibration experiments were used to predict the vortex-induced vibrations response of free spans under pipe-soil interaction boundary. The response frequencies were resolved from a eigenvalue problems of free spans with some certain added mass. And response amplitude could be received from a iteration process, which based on energy balance. After response frequency and hydrodynamic coefficients, were determined by use of above linear response model. This result is then used in a time domain model that can handle non-linear boundary conditions at the span shoulders. The results demonstrate that non-linear effects can be significant, in particular for pipe stress in the span shoulder. The significance of the new method is that displacements, and hence also stresses, in the pipe at the shoulders will be far better described by the non-linear method than what is possible from linear theory.
     (4) And a time domain analysis method for non-linear pipe-seabed-interaction analysis of free spanning pipelines under VIV conditions has been developed. The flow is modeled by a van-der-Pol wake oscillator developed by Facchinetti et al. And the stall parameter is taken into account in the general form of the VIV amplitude and the response frequency, which can successful model the VIV response amplitude comparing with a constant. After the free spanning pipeline discrtized into the finite elements, the average acceleration method is chosen to integrate the equations of motion. Three types of pipe-seabed-interaction (linear spring, perfectly plastic nonlinear spring, and tension cut-off nonlinear spring) are considered. The results show that the presented time domain method can capture the non-linear interaction between the pipeline and the seabed at the free span shoulders. And the maximum response amplitude of nonlinear case is lower than the one with linear spring. Hence, the response will be underestimated at low current velocity, or overestimated at high current velocity.
     (5) When the eigen-frequencies are close, several potential vibration modes of multi-spans can become active at a given low flow velocity, i.e. multi-mode vortex induced vibration. Considered for statistical distributions of current speed and VIV response of free spans in long-term operating condition, in the study, a fatigue assessment method for multi-spans was developed. It can provide a reference on the initial design of free spanning pipeline. At last, the fatigue damage due to multi-mode vortex induced vibration was investigated. It is to assume that the stress ranges are narrow-banded and Rayleigh-distributed, and a 3-parameter Weibull distribution is appropriate for modeling of the long-term statistics for the current velocity. The results based on the Response Model in DNV rules were shown that soil stiffness is sensitive. For reduction coefficient of multi-mode response, it is more conservative to use the DNV RP-105 than the weight of response amplitude. If the structure vibrates in a purely sinusoidal fashion with constant amplitude, then the calculation based on the Rayleigh distribution overestimates the damage rate.
     In conclusion, from both the numerical and the experimental empirical models, the research in this thesis sets out from the VIV of a two dimensional circular cylinder supported by linear or nonlinear spring, ends up with the prediction of VIV of slender pipelines under more complicated pipe-soil interaction boundary. Many experience and findings will be helpful for the future work. It can provide a reference on the initial design of free spanning pipeline.
引文
[1]Nielsen F G, S(?)reide T H, Kvarme S O. VIV response of long free spanning pipelines. Proc. of Offshore Mechanics and Artic Engineering,2002: OMAE2002-28075
    [2]M(?)rk K J, Fyrileiv O, et al.Assessment of VIV Induced Fatigue in Long Free Spanning Pipelines.22nd International conference on Offshore Mechanics and Artic Engineering. Cancun, Mexico,2003:OMAE-37124
    [3]Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures.2004,19:389-447P
    [4]Williamson C H K, Govardhan R. Vortex-induced Vibrations. Annual Review of Fluid Mechanics.2004,36:413-455P
    [5]Pan Zhi-yuan, Cui Wei-cheng. An Overview on VIV of Slender Marine Structures. Journal of Ship Mechanics.2005,9(6):135-154P
    [6]Gabbai R D, Benaroya H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders. Journal of Sound and Vibration.2005,282:575-616P
    [7]Bishop R E D, Hassan A Y. The lift and drag forces on a circular cylinder in a flowing fluid. Proceedings of Royal Society of London.1964, Series A 277:32-50P&51-75P
    [8]Sarpkaya T. Fluid forces on oscillating cylinders. Journal of Waterway Port Coastal and Ocean Division ASCE.1978, WW4 104:275-290P
    [9]Sarpkaya T. Hydrodynamic damping, flow-induced oscillations, and biharmonic response. ASME Journal of Offshore Mechanics and Arctic Engineering.1995,117:232-238P
    [10]Gopalkrishnan, R. Vortex induced forces on oscillating bluff cylinders. Ph.D. Thesis. Department of Ocean Engineering, MIT, Cambridge, MA, USA.1993
    [11]Vikestad K, Larsen C M, et al. Norwegian Deepwater Program:Damping of Vortex-Induced Vibrations. Proc. of the OTC, Houston. USA,2000: OTC-11998
    [12]Carberry J. Wake states of a submerged oscillating cylinder and of a cylinder beneath a free-surface. Ph.D. Thesis, Monash University, Melbourne, Australia,2002
    [13]Allen D W, Henning D L.Vortex-induced vibration tests of a flexible smooth cylinder at supercritical Reynolds numbers. Proc. of the 7th ISOPE, Honolulu, Hawaii, USA,1997, Vol.Ⅲ:680-685P
    [14]Allen D W, Henning D L. Surface Roughness Effects on Vortex-Induced Vibration of Cylindrical Structures at Critical and Supercritical Reynolds Numbers. Proc. of the OTC, Houston, USA,2001:OTC 13302
    [15]Bridge C, Willis N, et al. Development of SHEAR7 lift curves for VIV analysis and application to single pipe and bundle risers. Proc. of the OTC, Houston, TX, USA,2005:OTC 17533
    [16]Feng C C. The measurement of vortex induced effects in flow past stationary and oscillating circular and d-section cylinders. Master's Thesis, Department of Mechanical Engineering, University of British Columbia, Canada.1968.
    [17]Khalak A, Williamson C H K. Dynamics of a hydroelastic cylinder with very low mass and damping. Journal of Fluids and Structures.1996,10:455-472
    [18]Khalak A, Williamson C H K. Motions, forces and mode transitions in vortex-inducedvibrations at low mass-damping. Journal of Fluids and Structures.1999,13:813-851
    [19]Govardhan R, Williamson C H K. Modes of vortex formation and frequency response for a freely vibrating cylinder. Journal of Fluid Mechanics.2000, 420:85-130P
    [20]Govardhan R, Williamson C H K. Resonance forever:existence of a critical mass and an infinite regime of synchronization in vortex-induced vibration. Journal of Fluid Mechanics.2002,473:147-166P
    [21]Lie H, Larsen C M, Vandiver J K. Vortex Induced Vibrations of Long Marine Risers. Proceedings of 16th International Conference on Offshore Mechanics and Arctic Engineering, Yokohama, Japan.1997
    [22]Chaplin J R, Bearman P W, et al. Laboratory Measurements of Vortex-Induced Vibrations of a Vertical Tension Riser in a Stepped Current. Journal of Fluids and Structures.2005, Vol.21:2-24P
    [23]Trim A D, Braaten H, et al. Experimental Investigation of Vortex-Induced Vibration of Long Marine Risers. Journal of Fluids and Structures.2005, Vol.21:335-361P
    [24]Marcollo H, Hinwood J B. Mode Competition in a Flexible Cylindrical Riser. Applied Mechanics Division.2002, Vol.253 (Part A):179-186P
    [25]Vandiver J K, Marcollo H, et al. High Mode Number Vortex-Induced Vibration Field Experiments. Proceedings of Offshore Technology Conference, Houston, Texas,2005:OTC-17383
    [26]Huse E, Kleiven G, Nielsen F G. Large Scale Model Testing of Deep Seas Risers. Proceedings of Offshore Technology Conference, Houston, Texas, 1998:OTC-8701
    [27]Vandiver J K, Swithenbank S, et al. Fatigue Damage from High Mode Number Vortex-Induced Vibration. Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany,2006:OMAE2006-92409
    [28]Olav Fyrileiv, Kim M(?)rk, et al. Updated design procedure for free spanning pipelines DNV-RP-F105 multi-mode response.25nd International conference on Offshore Mechanics and Artic Engineering, Hamburg, Germany,2006:OMAE2006-92098
    [29]DNV-RP-F105. Free Spanning Pipelines.H(?)vik, Oslo.2006
    [30]孟昭瑛,杨树耕,王仲捷.水下管道涡激振动的实验研究.水利学报,1994:743-50页
    [31]方华灿,隋信众.海底管道管跨的流激涡旋振动的试验研究与安全可靠性分析.中国海上油气(工程),1998,10(2):20-23页
    [32]余建星,罗延生,方华灿.海底管线管跨涡激振动响应的实验研究.地震工程与工程振动,2001,21(4):93-97页
    [33]Baarholm G. S, Larsen C M, et al. On Fatigue Accumulation Form Inline and Cross-Flow Vortex-Induced Vibrations on Risers. Journal of Fluid and Structures.2006, Vol.22:109-127P
    [34]Tognarelli M A, Slocum S T, et al. VIV Response of a Long Flexible Cylinder in Uniform and Linearly Sheared Currents. Proceedings of Offshore Technology Conference, Houston, Texas,2004:OTC-16338
    [35]Moe G., Wu Z J. The lift force on a cylinder vibrating in a current. Journal of Offshore Mechanics and Arctic Engineering.1990,112:297-303P
    [36]Jeon D, Gharib M. On circular cylinders undergoing two degree of freedom forced motions. Journal of Fluids and Structures.2001,15:533-541P
    [37]Huse E, Nielsen F G, S(?)reide T. Coupling between In-line and Transverse VIV Response. Proceedings of 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway,2002:OMAE-28618
    [38]Jauvtis N, Williamson C H K. Vortex-induced vibration of a cylinder with two degrees of freedom. Journal of Fluids and Structures.2003,17:1035-1042P
    [39]Jauvtis N, Williamson C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. Journal of Fluid Mechanics.2004,509:23-62P
    [40]Aronsen K H, Larsen C M, M(?)rk K. Hydrodynamic Coefficients from In-line Experiments. Proceedings of 24th International Conference on Offshore Mechanics and Arctic Engineering, Halkidiki, Greece,2005
    [41]Facchinetti M, de Langre E, et al. Coupling of structure and wake oscillators in vortex-induced vibrations. Journal of Fluids and Structures.2004, Vol.19: 123-140P
    [42]Mathelin L, de Langre E. Vortex-induced vibrations and waves under shear flow with a wake oscillator model. European Journal of Mechanics B/Fluids. 2005, Vol.24:478-490P
    [43]Violette R, de Langre E, et al. Computation of vortex-induced vibrations of long structures using a wake oscillator model:Comparison with DNS and experiments. Computers and Structures.2007, Vol.85:1134-1141P
    [44]Guo H Y, Wang S Q. Dynamic characteristics of marine risers conveying fluid. China Ocean Engineering.2000,14(2):153-160P
    [45]Guo H Y, Wang Y B, Fu Q. The effect of internal fluid on the response of vortex-induced vibration of marine risers. China Ocean Engineering,2004, 18(1):11-20P
    [46]郭海燕,傅强,娄敏.海洋输液立管涡激振动响应及其疲劳寿命研究.工程力学.2005,22(4):220-224页
    [47]Skop R A, Balasubramanian S. A new twist on an old model for vortex-excited vibrations. Journal of Fluids and Structures.1997,11:395-412P
    [48]Lyons G. J, Patel M H. A prediction technique for vortex induced transverse response of marine risers and tethers. Journal of Sound and Vibration.1986,111 (3):467-487P
    [49]Vandiver J K, Li L. SHEAR7 program theory manual. MIT, Department of Ocean Engineering,1999
    [50]Triantafyllou M S, Tein D, Ambrose B D. Pragmatic riser VIV analysis. Proc.Of the OTC, Houston, USA,1999
    [51]Blackburn H, Govardhan R, Williamson C H K. A complementary numerical and physical investigation of vortex-induced vibration. Journal of Fluids and Structures.2001,15:481-488P
    [52]Guilmineau E, Queutey P. Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow. Journal of Fluids and Structures.2004,19:449-466P
    [53]Pan Z Y, Cui W C, Miao Q M. Numerical Simulation of Vortex-induced Vibration of a Circular Cylinder at Low Mass-damping Using RANS Code. Journal of Fluids and Structures.2007,23:23-37P
    [54]Tutar M, Holdo A E. Large Eddy Simulation of a smooth circular cylinder oscillating normal to a uniform flow. ASME Journal of Fluids Engineering. 2000,122:694-702P
    [55]De Sampaio P A B, and Coutinho A L G. A. Simulating Vortex Shedding at High Reynolds Numbers. Proc. of the 10th ISOPE, Seattle, USA,2001, Vol. Ⅲ:461-466P
    [56]Al-Jamal H, Dalton C. Vibration induced vibrations using large eddy simulation at a moderate Reynolds number. Journal of Fluids and Structures. 2004,19:73-92P
    [57]Newman D J, Karniadakis G E. A direct numerical simulation of flow past a freely vibrating cable. J. Fluid Mech.1997,344:95-136P
    [58]Lucor D, Foo J, et al. Vortex mode selection of a rigid cylinder subject to VIV at low mass-damping. Journal of Fluids and Structures.2005,20: 483-503P
    [59]Evangelinos C, Lucor D, et al. DNS-derived force distribution on flexible cylinders subject to vortex-induced vibration. Journal of Fluid and Structures.2000,144:29-440P
    [60]Silvio B C, Martins Sergio H, et al. Integrated Fluid-Structure Model (RVM-FEM) for Riser Analysis. Proceedings of the fourteenth international Offshore and Polar Engineering conference, Toulon, France,2004
    [61]Willden R H J, Graham J M R. Multi-modal Vortex-Induced Vibrations of a vertical riser pipe subject to a uniform current profile. European Journal of Mechanics-B/Fluids.2004,23:209-218P
    [62]Li Y C, Chen B, Lai G. Z. The numerical simulation of wave forces on seabed pipeline by three-step finite element method and large eddy simulation. Proceedings of these seventh International Offshore and Polar Engineering Conference, Honolulu, USA,1997.2:273-277P
    [63]Chen B, Cheng L.Numerical investigation of three-dimensional flow around a free-spanned Pipeline. Proceedings of the twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan,2002:61-67P
    [64]Schulz K W, Meling T S. Multi-strip numerical analysis for flexible riser response. Proc. Of OMEA. Vancouver, Canada,2004,1A:379-603P
    [65]Larsen C M, Koushan K, Passano E. Frequency and time domain analysis of vortex induced vibrations for free span pipelines.21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo,2002. OMAE02-28064
    [66]Anfinsen K.A. Review of free spanning pipelines. Proceeding of ISOPE'95,1995.
    [67]Choi.H.S. Free spanning analysis for offshore pipeline.Ocean Engineering, 2001,28:1325-1338P
    [68]娄敏,郭海燕等.海底输液管道内流、轴向力和压强对允许悬空长度的影响.中国海洋大学学报.2006,36(2):341-344页
    [69]李昕,刘亚坤等.海底悬跨管道动力响应的试验研究和数值模拟.工程力学.2003,20(2):21-25页
    [70]Larsen C M, Koushan K, Passano E. Frequency and time domain analysis of vortex induced vibrations for free span pipelines.21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo,2002: OMAE02-28064
    [71]Larsen C M, et al. Non-linear time domain analysis of vortex induced vibrations for free spanning pipelines. Proceedings of OMAE04,2004: OMAE2004-51404
    [72]Funres G K, Benrtsen J. On the response of a free span pipeline subjected to ocean currents. Ocean Engineering.2003,30:1553-1577P
    [73]Gunnar K, Furnes, Kristian S(?)rensen. Flow Induced Vibrations Modeled by Coupled Non-linear Oscillators. Proceedings of the Sixteenth International Offshore and Polar Engineering Conference Lisbon, Portugal,2007
    [74]Baarholm G. S, Larsen C M, Lie H. On Fatigue Accumulation Form Inline and Cross-Flow Vortex-Induced Vibrations on Risers. Journal of Fluid and Structures.2006, Vol.22:109-127P
    [75]Wilson J F, Caldwell H M. Force and stability measurements on models of submerged pipelines. ASME Journal of Engineering for industry.1971, 1:290-298P
    [76]Tsahalis D T, Warren T J. Vortex induced vibrations of a flexible cylinder near a plane boundary in steady flow. Proceedings of the 13th Annual Off shore Technology Conference. Houston, Tex,1981:OTC-3991
    [77]Jacobsen V, Bryndum M B, et al. Cross-flow vibrations of a pipe close to a rigid boundary. Journal of Energy Resources Technology.1984, Vol.106:451-457P
    [78]Fredsoe J, Sumer B M, et al. Transverse vibrations of a cylinder very close to a plane wall:proceedings of the 4th International Symposium On Off shore Mechanics and Arctic Engineering. ASME,1985, Vol.1:601-609P
    [79]杨兵,高福平,吴应湘.单向水流作用下近壁管道横向涡激振动实验研究.中国海上油气.2006,Vol.18(1):52-56页
    [80]Kapurial et al. Fatigue due to vortex-induced cross flow oscillations in free spanning pipelines supported on elastic soil bed. Proc. of ISOPE, Brest, France,1999,Vol.2:197-203P
    [81]Yttervik R, Larsen C M, Fumes G K, et al. Fatigue from vortex-induced vibrations of free span pipelines using statistics of current speed and direction, Proceedings of OMAE. Cancun, Mexico,2003:56-67P
    [82]Redelli F, et al. On remaining fatigue life fracture mechanics analysis of free-spanning pipelines using shell and line-spring element. Pro. Of OMEA, Oslo, Norway,2002, Vol.4:207-215P
    [83]罗延生,余建星等.海底管线管跨段涡激振动下模糊可靠性评估.中国海洋平台.2001,16(4):26-31页
    [84]余建星,俞永清,李红涛等.海底管跨涡激振动疲劳可靠性研究.船舶力学.2005,Vol.9(2):109-114页
    [85]余建星,傅明炀,杨怿等.海底管道涡激振动疲劳可靠性分析.天津大学学报,2008,Vol.41(11):1321-1325页
    [86]Kim M(?)rk, Olav Fyrileiv, Muthu Chezhian. Assessment of VIV induced fatigue in long free spanning pipelines. Proceedings of 22th International Conference on Offshore Mechanics and Arctic Engineering. Cancun Mexico, 2003
    [87]Trygve Ilstad, Tore S(?)reide, Finn Gunnar Nielsen. Fatigue calculations of multi-mode VIV. Proceedings of 24th International Conference on Offshore Mechanics and Arctic Engineering. Halkidiki, Greece,2005
    [88]Xu M, Chen S L. CFD/CSD coupling calculation research. Chinese Journal of Applied Mechanics.2004,21(2):33-36P
    [89]Menter F R, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulence model. K. Hanjalic, Y. Nagano and M. Tummers (Eds.) Turbulence, Heat and Mass Transfer 4, New York:Begell House,2003: 625-632P
    [90]Menter F R.Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal.1994,32(8):1598-1605P
    [91]Fluent Inc., FUENT User's Guide, Fluent Inc.,2003
    [92]Launder B E, Spalding D B. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering,1974, 3:269-289P
    [93]Kader B. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers. Int. J. Heat Mass Transfer.1981,24(9):1541-1544P
    [94]White F, Christoph G. A Simple New Analysis of Compressible Turbulent Skin Friction under Arbitrary Conditions. Technical Report AFFDL-TR-70-133,1971
    [95]蔡树棠,刘宇陆.湍流理论.上海交通大学出版社,1993
    [96]陈义良.湍流计算模型.中国科学技术大学出版社,1991
    [97]夏国泽.不可压缩边界层理论.华中理工大学出版社,1992
    [98]陈景仁.湍流模型及有限分析法.上海交通大学出版社,1989
    [99]王福军.计算流体动力学分析—CFD软件原理与应用.清华大学出版社,2004
    [100]苏铭德,黄素逸.计算流体力学基础.清华大学出版社,1997
    [101]Wang X Q, So R M C, et al. Flow-induced vibration of an Euler-Bernoulli beam. Journal of Sound and Vibration.2001,243(2):241-268P
    [102]Govardhan, R N, Williamson C H K. Defining the'modified Griffin Plot'in vortex-induced vibration:Revealing the effect of Reynolds number using controlled damping. Journal of Fluid Mechanics.2006,561:147-180P
    [103]Williamson C H K, Roshko A. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures.1998,2:355-381P
    [104]陈康,影响船舶CFD模拟的因素分析与三体船阻力计算改进探讨,哈尔滨工程大学博士论文,2007
    [105]Carberry J, Govardhan R, et al. Wake states and response branches of forced and freely oscillating cylinders. European Journal of Mechanics-B/Fluids. 2004,23:89-97P
    [106]Hover F S, Davis J T, Triantafyllou M S. Three-dimensionality of mode transition in vortex-induced vibrations of a circular cylinder. European Journal of Mechanics B/Fluid.2004, Vol 23:29-40P
    [107]Brad Stappenbelt, Lee O'Neill. Vortex-Induced Vibration of Cylindrical Structures with Low Mass Ratio. Proceedings of the Sixteenth International Offshore and Polar Engineering Conference Lisbon, Portugal,2007
    [108]Ding J, Balasubramanian S, et al. Lift and damping characteristics of bare and staked cylinders at riser scale Reynolds numbers. Proceedings of offshore Technology conference.2004:OTC-16341
    [109]Bernitsas, M M, et al.2006a. The VIVACE converter:Model tests at high damping and Reynolds number around 105. Proceedings of OMEA,2006
    [110]Bernitsas, M M, et al.2006b. VIVACE(vortex induced vibrations aquatic clean energy):A new concept in generation of clean and renewable energy from fluid flow. Proceedings of OMEA,2006
    [111]Tura F, Dumitrescu A, et al. Guidelines for Free Spanning Pipelines:The GUDESPProject. OMAE'94. Houston,1994, Vol.Ⅴ:247-256P
    [112]DNV Recommended Practice RP-E305.On-bottom Stability Design of Submarine Pipelines.2006
    [113]Antaki G.A, Hart J D. Guidelines for the Design of Buried steel pipe. ALA(AmerieanLifelinesAllianee).www.amerieanlifelinesallianee.org,2001.
    [114]Lyons C G.. Soil Resistance to Lateral Sliding of Marine Pipelines. Proceedings of Fifth Annual Offshore Technology conference.1973: OTC-1876
    [115]Karel K. Lateral Stability of Submarine Pipelines. Proceedings of 9th Annual Offshore Technology Conference.1977:OTC-2967
    [116]Cathie D N, Jaeck C, et al. Pipeline geotechnics-state-of-the-art. International Symposium on Frontiers in Offshore Geotechnics (ISFOG 2005), London, Taylor &Francis,2005.
    [117]Katherine Laver, Ed Clukey, Trevor Evans, BP. Steel Catenary Riser Touchdown Point Vertical Interaction Models. Offshore Technology Conference,2004:OTC-16628
    [118]张锋,计算土力学,人民交通出版社,2007
    [119]高大钊.土力学与基础工程.中国建筑工业出版社.1998
    [120]Hobbs R E. Influence of Structural Boundary Conditions on pipeline Free Span Dynamics.OMAE'86,1986
    [121]陈玲莉.工程结构动力分析数值方法.西安交通大学出版社.2006
    [122]Pamila A, Laukkanen. Dynamics and stability of short fluid conveying Timoshenko element pipes. Journal of Sound and Vibration,1991,144 (3): 421-425P
    [123]Blevins R D. Flow-induced vibration. Van Nostrand Reinhold Co, New York. 1990:289-295P
    [124]Skop R A, Balasubramanlan S. A new twist on an old model for vortex-excited vibrations. Journal of Fluids and Structures.1997, Vol.11:395-412P
    [125]Skop R A, Griffin O M. On a theory for the vortex-excited oscillations of flexible cylindrical structures. Journal of Sound and vibration.1975, Vol.41: 263-274P
    [126]Venugopal M. Damping and Response of a Flexible Cylinder in a Current. Ph.D. thesis, Dept. of Ocean Eng., MIT, USA,1996
    [127]Stansby, P.K. The locking-on of vortexshedding due to the cross-stream vibration of circular cylinders in uniform and shear flows. Journal of Fluid Mechanics.1976, Vol.74:641-665P
    [128]Pantazopoulos M S. Vortex-induced vibration parameters:critical review. In: Proceedings of the 17th International Conference on Offshore Mechanics and Arctic Engineering, Osaka, Japan,1994:199-255P
    [129]Timoshenko S, Young D H. Vibration Problems in Engineering.3rd Edition, D. Van Nostrand Co., Inc., New York, NY,1955:141P
    [130]Baarholm G.S, Larsen C M, et al. Simplified model for evaluation of fatigue from vortex induced vibrations of marine risers. Proceedings of 23th International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, British Columbia, Canada,2004
    [131]DNV Recommended Practice RP-C203, Fatigue Strength Analysis of Offshore Steel Structures,2007
    [132]Vandiver J K. SHEAR7 program theory manual. MIT, Department of Ocean Engineering,2005
    [133]潘志远.海洋立管涡激振动机理与预报方法研究.上海交通大学博士论文,2005
    [134]罗延生.海底管线管跨段涡激振动下模糊疲劳可靠性评估的研究.石油大学博士论文,1999
    [135](?)istein Hagen, Kim M(?)rk, et al. Evaluation of free spanning pipeline design a risk based. Proceedings of OMAE,2003:OMAE2003-37419

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700