用户名: 密码: 验证码:
深水钻井隔水管强度评价方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以国家863计划海洋技术领域“南海深水油气勘探开发关键技术及装备”重大项目课题“深水钻完井关键技术”(2006AA09A106)子课题“深水隔水管与井口技术”为依托,面向南海特殊环境,系统开展深水钻井隔水管强度评价方法及应用研究,在隔水管耦合动力分析与波致疲劳特性评估、隔水管涡激振动数值模拟与疲劳评估及抑制技术研究、隔水管悬挂动力分析与避台管理、隔水管-井口系统整体分析及应用研究方面取得较大研究进展,在理论方法上有所创新,部分研究成果填补了国内空白,可为我国海洋深水油气勘探开发钻完井技术发展提供有效的技术支持。主要研究进展归纳如下:
     1隔水管耦合动力分析与波致疲劳特性评估
     建立包含浮体、系缆与隔水管在内的超深水系泊钻井系统的有限元分析模型,对耦合系统模型进行时域随机振动分析,基于作用在浮体上的环境力与每个时刻的细长结构响应之间的动态平衡确定浮体运动与隔水管响应。分别基于耦合方法与传统方法进行隔水管动态响应分析,通过对比分析指出,隔水管的极端响应主要由平均浮体偏移与低频浮体运动控制,传统方法将低频浮体运动作为准静态效应进行处理是不准确的。基于耦合系统分析方法对隔水管的波致疲劳特性进行分析与评估。分析并比较波浪载荷与浮体运动、低频载荷与波频载荷对隔水管造成的载荷效应,识别隔水管的关键疲劳部位,指出浮体运动是隔水管的首要疲劳载荷,低频疲劳对波致疲劳具有重要贡献且受浮体与细长结构之间耦合效应影响显著。
     2隔水管涡激振动数值模拟、疲劳评估与抑制技术研究
     基于RNG k -ε湍流模型和动网格技术,针对隔水管在海洋环境中的实际雷诺数范围,对二维管柱的涡激振动进行数值模拟,研究管柱响应的不同分支、漩涡泄放模式及频率响应特性。数值模拟结果与经典实验吻合良好,研究发现一个新的响应分支—“超低幅分支”,提出升力系数中高阶频率的出现是导致圆柱响应由高幅分支向低幅分支转变的主要原因。
     以基于风险增强的疲劳准则进行隔水管VIV疲劳评估,考虑分析方法的不确定性与内在偏差,克服了常规疲劳准则的局限性。针对长期海流分布对隔水管进行标准VIV疲劳分析,计算确定隔水管的基本疲劳损伤。识别控制疲劳损伤不确定度的随机变量,进行标准疲劳灵敏度研究,确定疲劳损伤不确定度,评价VIV疲劳安全因子大小,并进行疲劳强度评估。
     对深水钻井隔水管VIV抑制技术进行研究。对装有减振器的管柱进行VIV数值模拟,研究减振器的减振效果与机理,并对减振器尾角进行优化分析。研究浮力块分布形式对隔水管VIV疲劳特性的影响规律,从抑制VIV疲劳损伤角度出发,针对不同的浮力块覆盖范围推荐相应的浮力块分布形式,并总结优化准则。
     3隔水管悬挂动力分析与避台管理
     对超深水钻井隔水管进行起下作业分析,目的在于合理确定隔水管的浮力配置,确保隔水管起下作业的安全运行。研究不同浮力配置下隔水管的轴向张力波动特性,确定浮力配置的需求范围,并对浮力配置部位进行优化分析。对硬悬挂与软悬挂模式下隔水管的轴向动力特性进行研究,比较隔水管在两种悬挂模式下的服役性能。对比分析隔水管在两种悬挂模式下的轴向响应与张力波动特性,并讨论隔水管在两种悬挂模式下的作业风险。对超深水钻井隔水管进行台风自存分析,研究台风条件下悬挂管柱的服役性能,探讨隔水管悬挂自存的可能性。计算确定隔水管悬挂自存的作业窗口,并确定不同环境条件下隔水管的适用悬挂长度。对超深水钻井隔水管进行避台撤离分析,从保证隔水管结构安全角度出发对钻井船的航速和航向进行优化分析。研究隔水管顶部应力或上球铰转角在不同钻井船航速或航向下的响应规律,确定钻井船在不同环境条件下悬挂不同长度管柱实施撤离时的适用航速范围。
     4隔水管-井口系统整体分析及应用研究
     建立超深水钻井隔水管与水下井口系统的整体有限元分析模型,以p -y曲线模拟导管与土壤之间的交互作用,并考虑固井质量问题。分别基于整体模型和解耦模型对隔水管响应与井口系统强度进行分析,比较并讨论两种模型预测结果的差异。研究固井质量、隔水管顶张力、BOP以及导管对井口系统强度的影响规律,提出改善井口系统强度的措施。对隔水管-井口系统进行弱点分析,目的在于确定极端载荷作用下系统的合理断开位置,并用于指导系统设计或部件选型。识别系统的关键弱点部位,并推荐适当的断开位置。对隔水管-井口系统的VIV疲劳问题进行研究,重点关注井口系统的疲劳问题。提出保证固井质量、采用小重量短长度的BOP、增大导管抗弯刚度以及降低井口头高度等改善井口系统VIV疲劳特性的措施,指出提高顶张力在抑制隔水管疲劳损伤的同时加剧井口系统的疲劳破坏,当井口疲劳成为影响设计的主要问题时,应谨慎控制隔水管顶张力。
This dissertation is part of the project“Deepwater Drilling and Completion Key Technologies”supported by national 863 hi-tech projects of China under Grant No.2006AA09A106. According to the harsh environment of South China Sea, systematic study on approach and application of strength assessment for deepwater drilling riser has been carried out. The research covers some hot study issues of deepwater drilling riser including floater/mooring/riser coupled system analysis and wave-loading fatigue characteristic assessment, numerical simulation and fatigue assessment as well as suppression technique of VIV, hangoff dynamic analysis and typhoon-avoidance management, and riser/wellhead coupled analysis and its applications. The research findings provide effective technical supports for the development of deepwater drilling and completion.
     1 Floater/mooring/riser coupled system analysis and riser wave-loading fatigue characteristic assessment
     Finite element model of a moored deep water drilling system including floater, riser and mooring lines is built. Time-domain non-linear analysis of the coupled system is carried out. The floater motions and riser responses are obtained based on dynamic equilibrium between the forces acting on the floater and slender structure response at each time instant. Riser dynamic analyses based on both coupled and traditional approaches are performed, and their results are compared. As the results indicate, the extreme response of the riser is dominated by the average floater offset and the low-frequency floater motions. The traditional approach, which considering the low-frequency floater motions as a quasi-static offset, produces inaccurate results. The wave-loading fatigue characteristics of the riser are studied based on coupled system analysis. The effects of wave loads and floater motions on fatigue of the riser are analyzed and compared. The contributions of low-frequency loads and wave-frequency loads to the wave-loading fatigue are compared and discussed. Critical fatigue damage positions are identified. The research shows that the floater motions are the primary contributor to the wave-loading fatigue of riser. The low-frequency fatigue has significant contribution to wave-loading fatigue and is influenced largely by the coupling effects between the floater and slender structures.
     2 Study on numerical simulation and fatigue assessment as well as suppression technique of VIV of riser
     According to prototypal Reynolds numbers of riser in deep water, two-dimension numerical simulation of VIV of riser is carried out based on RNG k -εturbulence model and dynamic mesh technique. The response branches of the cylinder, the vortex shedding formations and the frequency response characteristics are studied. The results of the simulation match the classic experiments well. A new response branch is found which is named‘Super-lower Branch’by the author. Higher harmonics is found in lift forces of Lower Branch, which is the main cause of the conversion of cylinder response from Upper Branch to Lower Branch.
     VIV fatigue assessment of a deepwater drilling riser is carried out using enhanced risk based fatigue criterion. By considering the implicit uncertainty and bias associated with the VIV analysis model, limitations of the traditional fatigue criterion is avoided. Standard VIV fatigue analysis of the riser is performed with respect to the long term current statistics in order to obtain the basic fatigue damage. Stochastic variables governing the fatigue damage are identified. Standard fatigue sensitivity studies for these stochastic variables are performed, therefore uncertainty of fatigue damage are evaluated. VIV fatigue safety factors are calculated using enhanced risk based criterion.
     VIV suppression technologies of deepwater drilling riser are studied. Numerical simulation of VIV of fairings is carried out. Study on VIV suppression effects of fairings and their principles, as well as fairing tail angle optimization have been performed. Optimization analysis of buoyancy distributions is performed for the purpose of VIV suppression. According to different coverage ranges, recommendation of buoyancy distribution patterns and summary of the corresponding guidelines are provided.
     3 Riser hangoff dynamic analysis and typhoon-avoidance management
     Deployment and retrieval analysis of an ultradeepwater drilling riser is carried out with the purpose of determining reasonable buoyancy deployment and ensuring the operation safety. The tension fluctuation characteristics of the riser in different buoyancy configurations are studied. The range of buoyancy demand is determined, and optimization analysis of the buoyancy deployment position is performed. Axial dynamic characteristics of risers in hard hang-off and soft hang-off configurations are investigated respectively; and the corresponding service performances of risers are compared and discussed. The axial response and tension fluctuation characteristics of risers as well as the operation risks in the two hang-off configurations are compared and analyzed. Hangoff analysis of an ultradeepwater drilling riser under typhoon conditions is performed. The performance characteristics of the suspended riser are studied, and the possibility of hanging the riser off the vessel under typhoon conditions is discussed. The operation windows of hang-off operation are established, and the applicable lengths of suspended riser in different environments are determined. Typhoon evacuation analysis of an ultradeepwater drilling riser is carried out; optimization analysis of the vessel speed and heading is performed so as to ensure the safety of the suspended riser. The stresses of the riser top end and the rotations of the upper ball joint under different vessel speeds and headings are studied. According to different environments and varied risers of different lengths, the practicable speed ranges for the vessel are determined.
     4 Study on riser/wellhead coupled analysis and application
     Finite element model of a complete drilling riser and the subsea wellhead system is built. The p -y curve is used to model the interactions between the conductor and soils in consideration of cementing quality. The riser response and wellhead system strength analyses based on both coupled model and de-coupled model are performed; the results have been compared and discussed. The influences of cementing quality, riser top tension, BOP and conductor on wellhead system strength are studied. Specific measures for improving the strength of the wellhead system are recommended. Weak point analysis of the riser and wellhead system is carried out to determine the appropriate breakpoint of the system. The analysis can contribute to the structural design or component selection. The critical weak points are identified, and reasonable breakdown positions are recommended. VIV of the riser and wellhead system is studied; and the fatigue problem of wellhead system is given a special attention. Measures for improving fatigue performance, such as ensuring the cementing quality, using light and short BOPs, increasing the bending strength of conductor and reducing the height of wellhead, have been suggested. As the research indicates, the increased riser top tension will aggravate the fatigue damage of wellhead system while reduce the fatigue damage of riser. When the fatigue of wellhead becomes an influencing factor in system design, the riser top tension should be controlled cautiously.
引文
[1]李清平.我国海洋深水油气开发面临的挑战[J].中国海上油气, 2006, 18(2): 130-133.
    [2]潘继平,张大伟,岳来群等.全球海洋油气勘探开发状况与发展趋势[J].中国矿业, 2006, 15(11): 1-4.
    [3]杨进,曹式敬.深水石油钻井技术现状及发展趋势[J].石油钻采工艺, 2008, 30(2): 10-13.
    [4]陶维祥,丁放,何仕斌等.国外深水油气勘探述评及中国深水油气勘探前景[J].地质科技情报, 2006, 25(6): 59-66.
    [5]金庆焕.深水油气是当今海洋油气勘探的主要热点[J].科学中国人, 2006, 11:18-20.
    [6]娄承.世界深水石油投资将保持快速增长[J].中国石油石化, 2006, 1: 10.
    [7]江怀友,潘继平,鲁庆江等.世界海洋石油工业勘探现状与方法[J].石油知识, 2008, 5: 7-9.
    [8]荆波.海洋石油勘探开发安全概论[M].北京:石油工业出版社, 2006.
    [9]谭蓉蓉.南海深水油气勘探开发成为热点[J].天然气工业, 2009, 29(1): 20.
    [10]许亮斌.深水钻井隔水管设计与应用技术研究[D].北京:中国海洋石油有限公司(北京)研究中心, 2006.
    [11] API RP 16Q, Recommended Practice for Design Selection Operation And Maintenance of Marine Drilling Riser System[S]. Washington DC, USA: American Petroleum Institute, 1993.
    [12] Farrant T, Javed K. Minimising the effect of deepwater currents on drilling riser operations[C]//Deepwater drilling technologies, Aberdeen, 2001.
    [13] Shaughnessy J, Daugherty W, Graff R, et al. More ultradeepwater drilling problems[C]//Proceedings of the SPE/IADC Drilling Conference, Amsterdam, Holland, 2007.
    [14] Ambrose B D, Childs M S, Leppard S A, et al. Application of a deepwater riser risk analysis to drilling operations and riser design[C]//Proceedings of the 2001 Offshore Technology Conference, Houston, USA, 2001.
    [15] Westlake A S, Uppu K. Enabling solutions for deepwter drilling riser management– a critical evalution[C]//Proceedings of the 2007 Offshore Technology Conference, Houston, USA, 2007.
    [16] Brekke J N, Soles J, Wishahy M A, et al. Drilling riser management for a DP drillship in large, rapidly– developing seastates in deepwaterp[C]//Proceedings of the 2004 SPE/IADC Drilling Conference, Dallas, USA, 2004.
    [17] Ambrose B D, Grealish F, Whooley K. Soft hangoff method for drilling risers in ultra deepwater[C]// Proceedings of the 2001 Offshore Technology Conference, Houston, USA, 2001.
    [18] Allen D W. Vortex-induced Vibration of Deepwater Risers[C]//Proceedings of the 1998 Offshore Technology Conference, Houston, USA, 1998.
    [19] BAI Yong, BAI Qiang. Subsea Pipelines and Risers [M]. Amsterdam, The Netherlands: Elsevier Science Ltd, 2005.
    [20]孙友义.海洋钻井隔水管系统涡激振动安全评估研究[D].东营:中国石油大学(华东), 2006.
    [21] Thorogood J L, Train A S, Adams A J. Deep water riser system design and management[C]//Proceedings of the SPE/IADC Drilling Conference, Dallas, USA, 1998.
    [22] Howells H. Deep water drilling riser technology, VIV & fatigue management[C]//Proceedings of the 4th Quarter Meeting of Drilling Enigineering Association (Europe), Paris, France, 1998.
    [23] Lim F, Howells H. Deepwater riser VIV, fatigue and monitoring[C]//Proceedings of DeepwaterPipeline & riser technology conference, Houston, USA, 2000.
    [24] Peter J D, Robinson R, Gray V, et al. Fatigue evaluation of drilling risers for harsh environments and ultra deepwater developments to allow optimized riser life and inspection plans[C]//Proceedings of the SPE/IADC Drilling Conference, Amsterdam, Holland, 2005.
    [25] Howells H, Walters D. Deepwater drilling riser integrity– fatigue, wear, inspection and monitoring[C]//Proceedings of OMAE 2000, New Orleans, USA, 2000.
    [26] Shaughnessy J M, Armagost W K, Herrmann R P, et al. Problems of ultra-deepwater drilling[C]//Proceedings of the SPE/IADC Drilling Conference, Amsterdam, Holland, 1999.
    [27] Naismith S, Cowan M, Linzi P. Quantitative Risk assessment for DP operations aboard the Belford Dolphin[C]//Proceedings of the SPE/IADC Drilling Conference, Dallas, USA, 2004.
    [28] Brekke J N. Key elements in ultra-deep water drilling riser management[C]//Proceedings of the 2001 SPE/IADC Drilling Conference, Amsterdam, The Netherlands, 2001.
    [29] Reyna E, Kuchner K. Methodology for engineering analysis for deepwater drilling in the north Atlantic with a dynamically positioned drillship[C]//Proceedings of the SPE/IADC Drilling Conference, Amsterdam, Holland, 2003.
    [30] Thorogood J L, Bardwell K S. Risk assessment of a dynamically pssitioned drilling operation[C]//Proceedings of the SPE/IADC Drilling Conference, Dallas, USA, 1998.
    [31] Hock C J, Young R D. A deepwater riser emergency disconnect antirecoil system[J]. Journal of Petroleum Technology, 1993, 45(8): 744-751.
    [32] Puccio W F, Shaffer V, Nuttall R V, et al. Riser recoil during unscheduled lower marine riser package disconnects[C]//Proceedings of the SPE/IADC Drilling Conference, Dallas, USA, 1998.
    [33] Bruce D, Foster D, James R, et al. Unplanned disconnects in deepwater drilling: prevention measures and emergency response[C]//Proceedings of the SPE/IADC Drilling Conference, Amsterdam, Holland, 2001.
    [34] Stahl M J, Hock C J. Design of riser recoil control system and validation through full-scale testing[C]//Proceedings of the SPE/IADC Drilling Conference, Dallas, USA, 2000.
    [35] Hariharan M, Thethi R. Drilling Riser Management in Deepwater Environments. 2H Offshore Inc, Houston, TX, USA. 2007.
    [36] Howells H, Bowman J. Drilling riser/well system interaction in deep water, harsh environments[C]//Proceedings of Advances in Subsea Technology, Aberdeen, 1997.
    [37]杨国辉. Discoverer 534 venture China– Aug 2006[C].深水平台管理交流会议,北京, 2009.
    [38]贾星兰,方华灿.海洋钻井隔水管的动力响应[J].石油机械, 1995, 23(8): 18-22, 28.
    [39]李军强,刘宏昭,何钦象.波浪力作用下海洋钻井隔水管随机振动研究[J].机械科技与技术, 2004, 23 (1): 7-10.
    [40]李华桂.海洋钻井隔水管的动力分析[J].石油学报, 1996, 17(1): 122-126.
    [41]边若武.海洋钻井隔水管随机振动谱分析[D].东营:石油大学, 1988.
    [42]周俊昌.深水钻井隔水管系统分析[D].南充:西南石油学院, 2001.
    [43]吴天云.海洋钻井用隔水管的三维非线性动力分析[D].东营:石油大学, 1989.
    [44] CHANG Yuan-jiang, CHEN Guo-ming, SUN You-yi, XU Liang-bin, PENG Peng. Nonlinear Dynamic Analysis of Deepwater Drilling Risers Subjected to Random Loads, China Ocean Engineering, 2008, 22(4): 683-691.
    [45] Burke B G. An Analysis of Marine Risers For Deep Water[C]//Proceedings of 5th Offshore Technology Conference, Houston, USA, 1973.
    [46] Simmonds D G. Dynamic Analysis of the Marine Riser[C]//Proceedings of SPE, 1977.
    [47] Atadan A S, Calisal S M, Modi V J, et al. Analysis and Numerical Analysis of the Dynamics of aMarine Riser Connected to a Floating Platform[J]. Ocean Engineering, 24 (2): 111-131.
    [48] Sexton R M, Agbezuge L K. Random wave and vessel motion effects on drilling riser dynamics[C]//Proceedings of the 1976 Offsore Technology Conference, Dallas, USA, 1976.
    [49] Khan R A, Ahmad S. Nonlinear Dynamic Analysis of Deep Water Marine Risers[C]//Proceedings of the 2nd International Congress on Computational Mechanics and Simulation, Guwahati, India, 2006.
    [50] Lju?tina A M, Parunov J, Senjnovi? I. Static and Dynamic Analysis of Marine Risers[C]//Proceedings of the 16th Symposium of Theory and Practice of Shipbuilding. Zagreb, 2004.
    [51] DNV-OS-F201, Dynamic risers[S]. Norway: Det Norske Veritas, 2001.
    [52] Low Y M, Langley R S. A hybrid time/frequency domain approach for efficient coupled analysis of vessel/mooring/riser dynamics[J]. Ocean Engineering, 2008, 35: 433-446.
    [53] Garret D L. Coupled analysis of floating production systems[J]. Ocean Engineering, 2005, 32: 802-816.
    [54] Kim M H, Koo B J, Mercier R M, et al. Vessel/mooring/riser coupled dynamic analysis of a turret-moored FPSO compared with OTRC experiment[J]. Ocean Engineering, 2005, 32: 1780-1802.
    [55] Tahar A, Kim M H. Hull/mooring/riser coupled dynamic analysis and sensitivity study of a tanker-based FPSO[J]. Applied Ocean Research, 2003, 25: 367-382.
    [56] Shu H, Loeb D A. Extending the mooring capability of a mobile offshore drilling unit[C]//Proceedings of the 2006 Offshore Technology Conference, Houston, USA, 2006.
    [57] Dove P, Weisinger D, Abbassian F. The development and testing of polyester moorings for ultradeep drilling operations[C]//Proceedings of the 2000 Offshore Technology Conference, Houston, USA, 2000.
    [58] Bishop R E D, Hassan A Y. The lift and drag forces on a circular cylinder in a flowing fluid[C]//Proceedings of the Royal Society Series, 1963.
    [59] Hartlen R T, Currie I G. Lift-oscillator model of vortex induced vibration[J]. Journal of the Engineering Mechanics, 1970, 96: 577~591.
    [60] Skop R A, Balasubramanian S. A new twist on an old model for vortex-excited vibrations[J]. Journal of Fluids and Structures, 1997, 11: 395~412.
    [61] Krenk S, Nielsen S R K. Energy balanced double oscillator model for vortex-induced vibrations[J]. ASCE Journal of Engineering Mechanics, 1999, 125: 263~271.
    [62] Carberry J, Sheridan J, Rockwell D. Forces and wake modes of an oscillating cylinder[J]. Journal of Fluids and Structures, 2001, 15: 523~532.
    [63] Facchinetti M L, Langre E, Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19: 123~140.
    [64] Mathelin L, Langre E. Vortex-induced vibrations and waves under shear flow with a wake oscillator model[J]. European Journal of Mechanics B/Fluids, 2005, 24: 478~490.
    [65] Benassai G, Campanile A. A prediction technique for the transverse vortex-induced oscillations of tensioned risers[J]. Ocean Engineering, 2002, 29: 1805~1825.
    [66]郭海燕,傅强,娄敏.海洋输液立管涡激振动响应及其疲劳寿命研究[J].工程力学, 2005, 22(4): 220-224.
    [67]林海花,王言英.浪流共同作用下隔水管涡激动力响应分析[J].哈尔滨工程大学学报[J], 2008, 29(2): 121-125.
    [68] DNV RP F204, Riser fatigue[S]. Norway: Det Norske Veritas, 2005.
    [69] M?rk K, S?dahl N, Chezhian M. Enhanced risk based fatigue criterion[C]//Proceedings of the 14th Internatioal Deep Offshore Technology Conference, New Orleans, USA, 2002.
    [70] Chezhian M, M?rk K, Ron?ss M, et al. Application of DNV-RP-F204 for determining riser VIV safety factors[C]//Proceedings of OMAE 2005, Halkidiki, Greece, 2005.
    [71] Fumes G K, Hassanein T, Halse K H, et al. A field study of flow induced vibrations on a deepwater drilling riser[C]//Proceedings of the 1998 Offshore Technology Conference, Houston, USA, 1998.
    [72] Sworn A, Howells H. Fatigue life evaluation through the calibration of a VIV prediction tool with full scale field measurements at the Schiehallion Field[C]//Proceedings of the 15th Internatioal Deep Offshore Technology Conference, Marseille, France, 2003.
    [73] Shilling R, Campbell M, Howells H. Drilling Riser Vortex Induced Vibration Analysis Calibration Using Full Scale Field Data[C]//Proceedings of the 2005 Deepwater Offshore Technology Conference, Vitoria, Espirito Santo, Brazil, 2005.
    [74] Tognarelli M A, Taggart S, Campbell M. Actual VIV fatigue response of full scale drilling risers: with and without suppression devices[C]//Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 2008.
    [75] Dalheim J. Numerical prediction of VIV on deepwater risers subjected to shear currents and waves[C]//Proceedings of the 1999 Offshore Technology Conference, Houston, USA, 1999.
    [76] Herjford K, Drange S O, Kvansdal T. Assessment of vortex-induced vibration on deepwater risers by considering fluid-structure interaction[J]. ASME Journal of Offshore Mechanics and Arctic Engineering, 1999, 121: 207-212.
    [77] Dixon M, Charlesworth D. Application of CFD for Vortex-induced vibration analysis of marine risers in projects[C]//Proceedings of the 2005 Offshore Technology Conference, Houston, USA, 2005.
    [78] Yamamoto C T, Meneghini J R, Saltara F, et al. Numerical simulations of vortex-induced vibration on flexible cylinders[J]. Journal of Fluids and structures, 2004, 19: 467-489.
    [79] Evangelinos C, Lucor D, Karniadakis G E. DNS-derived force distribution on flexible cylinders subject to vortex-induced vibration[J]. Journal of Fluids and Structures, 2000, 14: 429-440.
    [80] Guilmineau E, Queutey P. Numerical simulation of vortex-induced vibration of circular cylinder with low mass-damping in a turbulent flow[J]. Journal of Fluids and Structures, 2004, 19: 449-466.
    [81] Al-Jamal H, Dalton C. Vortex induced vibrations using Large Eddy Simulation at a moderate Reynolds number[J]. Journal of Fluids and Structures, 2004, 19: 73-79.
    [82] Zhou C Y, So R M C, Lam K. Vortex induced vibrations of an elastic circular cylinder[J]. Journal of Fluids and Structures, 1999, 13: 449-466.
    [83] Lucor D, Foo J, Karniadakis G E. Vortex mode selection of a rigid cylinder subject to VIV at low mass-damping[J]. Journal of Fluids and Structures, 2005, 20: 483-503.
    [84] Wanderley J B V, Souza G H B, Sphaier S H, et al. Vortex-induced vibration of an elastically mounted circular cylinder using an upwind TVD two-dimensinal numerical scheme[J]. Ocean Engineering, 2008, 35: 1533-1544.
    [85]潘志远.海洋立管涡激振动机理与预报方法研究[D].上海:上海交通大学, 2006.
    [86]何长江,段忠东.二维圆柱涡激振动的数值模拟[J].海洋工程, 2008, 26(1): 57-63.
    [87]黄智勇,潘志远,崔维成.两向自由度低质量比圆柱体涡激振动的数值计算[J].船舶力学, 2007, 11(1): 1-9.
    [88] Kavanagh K, Dib M, Balch E, et al. New revision of drilling riser recommended practice (API RP 16Q)[C]//Proceedings of the 2002 Offshore Technology Conference, Houston, USA, 2002.
    [89] Ormberg H, Larsen K. Coupled analysis of floater motion and mooring dynamics for a turret-moored ship[J]. Applied Ocean Research, 1998, 20: 55-67.
    [90] Ye W, Shanks J, Fang J. Effects of fully coupled and quasi-static semi-submersible vessel motions on steel catenary riser’s wave loading fatigue[C]//Proceedings of the 2003 Offshore TechnologyConference, Houston, USA, 2003.
    [91] Hansen V L, Wang L H, Sodahl N. Gudelines on coupled analyses of deepwater floating systems[C]//Proceedings of the 2004 Offshore Technology Conference, Houston, USA, 2004.
    [92]潘子辉.深海半潜式钻井平台运动响应预报与分析[J].船舶, 2008, 1: 32-36.
    [93] Low Y M, Langley R S. Time and frequency domain coupled analysis of deepwater floating production systems[J]. Applied Ocean Research, 2006, 28: 371-385.
    [94] Chaudhury G, Ho C Y. Coupled dynamic analysis of platforms, risers, and moorings[C]//Proceedings of the 2000 Offshore Technology Conference, Houston, USA, 2000.
    [95] DNV RP F205, Global performance analysis of deepwater floating structures[S]. Norway: Det Norske Veritas, 2004.
    [96] Marintek. DeepC user manual [M]. Norway: Det Norske Veritas, 2005.
    [97] Marintek. SIMO– Theory Manual Version 3.4[M]. Norway: Det Norske Veritas, 2004.
    [98] Khalak A, Williamson C H K. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10: 455-472.
    [99] Khalak A, Williamson C H K. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J]. Journal of Fluids and Structures, 1997, 11: 973-982.
    [100] Khalak A, Williamson C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999, 13: 813-851.
    [101] Govardhan R, Williamson C H K. Modes of vortex formation and frenquency response for a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000, 420: 85-130.
    [102] Govardhan R, Williamson C H K. Critical mass in vortex-induced vibration of a cylinder[J]. European Journal of Mechanics B/Fluids, 2004, 23: 17-27.
    [103] Williamson C H K, Govardhan R. A brief review of recent results in vortex-induced vibrations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 713-735.
    [104]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社, 2004.
    [105] Vandiver J K, Li L. SHEAR7 V4.3 Program Theoretical Manual[M]. Cambridge, USA: Massachusetts Institute of Technology, 2003.
    [106] Chezhian M, M?rk K, S?dahl N, et al. Risk based fatigue safety factors for deepwater risers[C]//Proceedings of the 15th Internatioal Deep Offshore Technology Conference, Marseille, France, 2003.
    [107] Leira B J, Meling T S, Larsen C M, et al. Assessment of fatigue safety factors for deep-water risers in relation to VIV[J]. Journal of Offshore Mechanics and Arctic Engineering, 2005, 127: 353-358.
    [108] Taggart S, Tognarelli M A. Offshore drilling riser VIV suppression devices– what’s available to operators?[C]//Proceedings of the 27th International Conference on Offshore Mechanics and Artic Engineering, Estoril, Portugal, 2008.
    [109] Howells H. Drilling riser optimization for deep water[C]//Proceedings of Advances in Riser Technologies, Aberdeen, 1997.
    [110] Howells H, Bowman J. Use of new technologies for optimum drilling riser configuration in deep water[C]//Proceedings of Improved Drilling Efficiency Through Better Management and Application of Technology, Aberdeen, 1997.
    [111] Allen D W, Henning D L. Comparisons of various fairing geometries for vortex suppression at high reynolds numbers[C]//Proceedings of the 2008 Offshore Technology Conference, Houston, USA, 2008.
    [112] Allen D W, Henning D L, Lee L. Drilling riser fairing tests at prototype reynolds numbers[C]//Proceedings of the 26th International Conference on Offshore Mechanics and Artic Engineering, San Diego, USA, 2007.
    [113] King G W, Durton K, Hodgson T, et al. A coupled analysis approach to the assessment of marine drilling systems[J]. SPE Drilling & Completion, 1993, 8(2): 131-137.
    [114] API RP 2A-WSD, Recommended practice for planning, designing and constructing fixed offshore platforms– working stress design[S]. Washington, USA: American Petroleum Institute, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700