用户名: 密码: 验证码:
新型船舶柴油机废气脱硝方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型船舶柴油机废气脱硝方法主要研究了大气压强电场电离放电规模高效制取羟基自由基和以羟基自由基为主的氧活性粒子氧化脱硝两大关键问题,本文研究所采用的方法能够直接在船舶柴油机废气排放管道中实现氮氧化物的脱除。
     利用大气压强电场电离放电的极端物理手段,将水蒸气和氧气离解、电离,产物是O3、H2O+、O2+、H2O2等高浓度氧活性粒子,同时将这些粒子注入到船舶柴油机废气排放管道,与废气中的水反应,最终能够转化为羟基自由基,从而快速高效地将废气中氮氧化物氧化脱除,生成硝酸并加以回收利用,实现资源化脱硝的目的。该方法无需催化剂、无吸收剂,也不需要其它技术的协同作用下,实现了在柴油机废气排放的管道中完成氮氧化物的消除,副产物是硝酸,整个反应过程不出现新的污染,是一种环境友好、高效、资源化的脱硝方法。而且与选择性催化还原技术相比,本研究所采用的等离子体发生器体积小,一次性的投资和运行成本都大幅度降低,不仅有很高的氮氧化物脱除率,还能有效降低柴油机废气中少量未燃烧的烃、一氧化碳、二氧化硫等污染物。
     根据气体放电理论阐述了强电场放电形成的原理,应用等离子体化学和宏观动力学的理论方法研究了制取高浓度氧活性粒子及其注入管道转化为羟基自由基的过程,并探讨了以羟基自由基为主的氧活性粒子氧化脱除氮氧化物的机制。研究表明:大气压强电场电离放电制取的氧活性粒子中臭氧的浓度可达240mg/L,而正负离子浓度每立方米都能达到1016数量级,这些粒子注入管道中能高效转化为羟基自由基,实验结果取得氮氧化物的脱除率超过95%的效果,同时副产物硝酸的回收率也达到82.5%。新的研究方法有效地解决目前国内外船舶柴油机废气治理所存在的问题,有望在船舶上取得推广应用。
The study on the new method for flue gas denitration of marine diesel engine, which primarily has discussed two key things, one is how to get hydroxyl (·OH) radicals using high concentration and high efficiency, and the other one is how to remove NOx via radicals oxidation. In this paper, NOx removal directly by using radicals injection has been realized in the exhaust pipe of the marine diesel engines.
     Using strong electric-field ionization discharge method, water vapor and O2are ionized, decomposed, and excited extremely into radicals, such as03、O2+、H2O+、H2O2and so on. The radicals will transform into·OH, when they are injected into the pipe. The·OH radicals are generated accompanying a complicated process, which includes lots of plasma chemistry reactions. Being one of the most active radicals,·OH can oxidize NOx into HNO3on high speed. The method for NOx removal from flue gas by radical injection without catalyst and absorbent additive, don't need to depend on traditional desulphurization either. In the whole process, there is no new pollution appears. This method will be an environment-friendly and efficient method. And compared to the selective catalytic reduction technology, the volume of plasma generator is smaller, one-time investment and running costs are significantly reduced, this new method not only has high nitrogen oxide removal rate, but is also effective in reducing other pollutants of diesel engine exhaust, such as hydrocarbon, carbon monoxide, sulfur dioxide and so on.
     According to the theory of gas discharge physics, plasma chemistry, macro dynamics, the processes of radicals formation and·OH conversation are represented, and reaction mechanics of NOx oxidizing by radicals are discussed with mathematics model helping. The research results show that, in oxygen radicals, the concentrations of ozone can reach240mg/L, the positive and negative ion achieve to the level number1016per cubic meter. The particles will be converted into hydroxyl free radical efficiently while be put into the pipeline. Meanwhile, this method can obtain the effect of nitrogen oxide removal rate up to more than95%, at the same time the recovery rates of NOx can reach as high as82.5%. The research has solved the problems of the diesel waster gas treatment at home and abroad, if succeed, it would be widely used in ship.
引文
[1]胡怀生,郑旭东,胡浩斌.NOx对环境污染的分析与防治措施[J].甘肃高师学报,2003,8(5):38-39.
    [2]王海强,吴忠标.废气NOx脱除技术的特点分析.能源与环境,2004,3:27-30.
    [3]国际海事组织.修订73/78防污公约的1997年议定书73/78防污公约1997年缔约国大会决议.北京:人民交通出版社,1998.9-14;21-109.
    [4]中国船级社.船用柴油机氮氧化物排放试验及检验指南.北京:人民交通出版社,2000.13-19:38-59.
    [5]钱作勤,王忠俊.船舶柴油机排放测试与控制措施[J].航海技术,2004(6):37-39.
    [6]SMITH J A, JBARTLEY G. Stoichiometric operation of a gas engine utilizing synthesis gas and EGR for NOx control [J]. Journal of Engineering for Gas Turbines and Power,2000,122:617-623.
    [7]姜君,熊翔辉,张庭芳.废气再循环(EGR)在内嫩机中的应用,江西能源,2004(4).
    [8]肖青云,吕庭豪.SCR—一种新型环保装置[J].船海工程,2002,(2):32-34XIAO Qing-yun, LV Ting-hao. SCR, a new type of environmental protecting device [J]. Ship & Ocean Engineering,2002, (2):32-34.
    [9]江彦桥.船舶大功率柴油机NOx排放控制技术的比较研究[J].交通环保,1999(2):8-14. JIANG Yan-qiao. Comparative Study of NOx Emission Control Techniques for Large Power Marine Diesel Engines, [J]. Environmental Protection In Transportation, 1999(2):8-14.
    [10]Mark Me Neely. Urea—Based NO Reduction System for Engine 75 to 2 250 kW [J]. Diesel and Gas Turbine Worldwide,2000(2):45-48.
    [11]程慧,解永刚,朱国荣,火电厂废气脱硝技术发展趋势,浙江电力,2005,2:38-40.
    [12]毛本将.电子束脱硫关键技术与工艺研究.中国工程物理研究院,四川,2004.
    [13]J. Sidney Clements, Akira Mizuno, Wright C. Finney and Robert H. Davis, Combined Removal of SOz, NOx and Fly Ash from Simulated Flue Gas Using Pulsed Streamer Corona. IEEE TRANSACTIONS ON INDUSTRY APLICATIONS,1989, Vol.25, NOL:62-69.
    [14]G. Dinelli, L. Civitano. and M. Rea, Industrial Experiments on pulse Simultaneous Remvole of NOx and SOx from flue gas, IEEE Trans, and Application. Vol.25pp.457-473,1990.
    [15]Manabu Higashi, Satoshi Uchida, Nagatoshi Suzuki, and Kan-ichi. Soot Elimination and NOx and SO2 Reduction in Diesel-Engine Exhaust by a Combination of Discharge Plasma and Oil Dynamics. IEEE TRANSACTIONS PLASMA SCIENCE, VOL.20. NO.1, FEBRUARY, 1992,1-12.
    [17]Yan K P, Takashi Y, Sei ji K, et al. NO removal characteristics of a corona radical shower system under DC and AC/DC superimposed operations. IEEE Transactions on Industry Applications,2001,37(5):1499.
    [18]依成武,刘恒权,白希尧,张芝涛,邹庆伟.等离于体分解二氧化硫实验,1994,环境科学,Vol.15,No.3:68-70.
    [19]张芝涛,鲜于泽,白敏冬等.强电离放电研究.东北大学学报,2002,23(5):507-510.
    [20]Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier discharge[J]. J Phys D:Appl Phys,1987,20:1421-1437.
    [21]Baldur Eliasson, Ulrich Kogelschatz. IEEE Trans on Plasma Sci,1991,19(6):1063.
    [22]S. Tanaka, H. Uyama,O. Matsumoto. Plasma Chem. And Plasma rocess,1994,14(4):491.
    [23]H. V. Boenig. Fundamentals of Plasma Chemistry and Technology. Lancaster, UK: Technomic,1988
    [24]水野彰.放电にょる排かス处理技术.静电学会誌[J]19(4),1995:289-295.
    [25]白敏的,自希尧,张芝涛,邓淑芳.强电场电离放电产生羟基等离子体反应过程的研究.核聚变与等离子体物理,2004,24(3):219-224.
    [26]Basfar A A, Fageeha O I, Kunnummal N, et al. A review on electron beam flue gas treatment (EBFGT) as a multicomponent air pollution control technology. NUKLEONIKA, 2010,55(3):271-277.
    [27]自希尧,张芝涛,杨波等.强电离放电及其应用研究的进展.中原工学院学报,2003,8(14):5-9.
    [28]Hoigne J, Bader H. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions[J]. Watar Res,1976,10(2):377-386.
    [29]白希尧,白敏冬,杨波,等.先进氧化技术及其研究进展[J].自然科,2004,26(2):69-74.
    [30]徐新华,赵伟荣.水与废水的臭氧处理[M].北京:化学工业出版社,2003.
    [31]孙存普,张建中,段绍瑾.自由基生物学导论[M].合肥中国科技大学出版社,1999:194-198.
    [32]Chen S M. Kuo C H. Kinetic Studies of the Oxidation of Toluene by Ozone and Hydrogen Peroxide Mixture:(MS Thesis). Miss State University, US,1995.
    [33]Brunet R, Bourbigot M M, Dore M. Oxidation of Organic Compounds Through the Combination Ozone-Hydrogen Peroxide. Ozone Science and Engineering.1984, 6(3):163-183.
    [34]Prengle H W. Experimental Rate Constant and Reactor Considerations for the Destruction of Micropollutants and Trihalomethane Precursors by Ozone with UV Radiations. Environmental science & Technology.1983,17(12):743-747.
    [35]Andreozzi R, Caprio v, Insola A et al. Advanced oxidation processes for the treatment of mineral oil-contaminated wastewaters. Water Research.2000, 34(2):620-628.
    [36]Gehr R. Nicell J. Pilot studies and assessment of downstream effects of UV and ozone disinfection of a physicochemical wastewater. Water Quality Research Journal of Canada.1996,31(2):263-81.
    [37]Shin G A, Linden K. Handzel T. Lowpressure UV inactivation of Cryptosporidium parvum based on cell culture infectivity. Proceedings of American Water Works Association Water Quality and Technology Conference, Tampa, FL,1999.
    [38]Fox A M. Dulay T M. Heterogenous photocatalysis. Chemical Reviews. 1993,93(1):341-357.
    [39]Legrini 0. Oliveros E. Braun A M. Photochemical processes for water treatment. Chemical Reviews.1993,93(2):671-698.
    [40]Linkous C A. Carter G J. Locuson D B. Photocatalytic inhibition of algae growth using TiO2, O3and cocatalyst modification. Environmental Science and Technology.2000, 34(22):4754-4758.
    [41]Swaminathan K. Pachhade K. Sandhya S. Decomposition of a dye intermediate, (H-acid) 1 amino-8-naphthol-3,6 disulfonic acid in aqueous solution by ozonation. Desalination.2005,186(1-3):155-164.
    [42]Young K. Jaylin C. Yungshuen S. Decomposition of diazinon in aqueous solution by ozonation. Water Research.1998,32(6):1957-1963.
    [43]Elovitz M S, von Gunten U. Hydroxyl radical/ozone ratios during ozonation processes. I. The Ret concept. Ozone Science and Engineering.1999,21 (3):239-260.
    [44]Han S, Nam S, Kang J. OH radical monitoring technologies for AOP advanced oxidation process. Water Science and Technology.2002,46(11-12):7-12.
    [45]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37-38.
    [46]Hoffman M R, Martin S T, Choi W et al. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews.1995,95:69-96.
    [47]Vinodgopal K, Kamat P V. Enhanced rates of photocatalytic degradation of an azo-dye using SnO2/TiO2 coupled semiconductor thin films. Environmental science & Technology.1995,29(3):841-845.
    [48]白敏冬,张芝涛,白希尧.海洋生物入侵性传播及绿色防治[M].北京:科学出版社,2005.
    [49]郝吉明,王书肖,路永琪.燃煤二氧化硫污染控制技术手册[M].北京:化工出版社,2005.
    [50]潘巧媛.氧活性粒子注入废气资源化脱硫脱硝研究:(博士学位论文).大连:大连海事大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700