用户名: 密码: 验证码:
变电站接地网缺陷诊断方法和技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接地网是变电站安全运行的重要保证,其接地性能一直受到设计和生产运行部门的重视。在我国,因接地网腐蚀、发生断裂等缺陷引起的电力系统的事故时有发生,每次事故都会造成巨大的经济损失。电力系统迫切需要一种在不挖开接地网,不影响系统正常运行的条件下,实现变电站接地网缺陷诊断的实用、有效的诊断方法和技术。本文结合国家杰出青年科学基金项目“电磁干扰的耦合机理”(编号50325723),国家自然科学基金项目“复杂媒质中大尺度导体周围瞬态电磁场(编号50577019),河北省自然科学基金“瞬态电磁环境下复杂煤质的接地网算法研究”(编号E2006000678)和唐山市供电公司科研项目“变电站接地网电气性能分析及故障诊断系统的现场研究及应用”,针对变电站接地网缺陷诊断的方法和技术进行了研究。本文主要研究成果如下:
     1.提出了变电站接地网缺陷诊断的一种新方法。通过变电站接地网的两根上引导体,直接注入异频的正弦波激励电流,基于电磁感应原理,利用探测线圈检测激励电流在地表面激发的磁感应强度,依据磁感应强度的分布特征诊断接地网网格导体的缺陷状态,通过仿真计算验证了诊断技术路线的可行性和正确性。
     2.测量和分析了不同电压等级变电站电磁干扰特性。围绕检测诊断的技术方案,测量了110kV、220kV和500kV变电站内变压器、CT、PT及母线等不同场所的工频电磁干扰水平和瞬态电磁环境的干扰频率范围,给出了检测所面临的复杂电磁环境特征。
     3.设计开发了复杂电磁环境下磁感应强度的测量系统。综合利用放大、陷波和滤波等技术措施,实现了在变电站复杂电磁环境下磁感应强度的有效测量。通过实验验证了系统的有效性,其抗干扰能力、分辨率和精度均能满足诊断需要。
     4.设计开发了异频的激励源系统。针对变电站接地网接地性能检测和缺陷诊断的需要,设计了专用的异频正弦波激励源系统。基于线性放大和阻抗变换技术,在较宽频带内和较大输出电流的情况下,实现了频率和输出电流的连续调节,解决了功率放大器和接地网负载之间的阻抗匹配问题。通过实验检验了激励源系统的频率特性、带负载能力和输出电流能力符合设计要求。通过诊断实验,验证了测量诊断系统能够满足变电站接地网缺陷诊断和接地性能检测等工程实际的需要。
     5.基于上述诊断方法和技术,分别利用试验接地网和实际变电站接地网进行了模拟断点和腐蚀变细等缺陷的实验研究,诊断实验与应用结果验证了本文诊断方法的可行性、诊断技术的有效性和检测系统的可靠性。
The grounding grids of substations are important measure to keep stable operation of power system and safety of operators or power apparatus. Its grounding capability is always paid much attention by correlated departments. The power system accidents caused by corrosion and broken point faults of the grounding grids are often taken place and economical loss is large in China and India. How to diagnosis the faults condition of grounding grids is a very important problem remained to be resolved. Grounding grids are buried in soil, so it is difficult to acquire their information. A practical and effective diagnosis method and technology without opening grids and stopping operation is needed.
     Supported by the Scientific Funds for Outstanding Young Scientists of China (No.50325723) and the National Natural Science Foundation of China (50577019), the main innovative results are as follows:
     1. A new diagnosis method of faults of substations’grounding grids is presented. An exciting current of sine wave is injected directly into grounding grids by two lead wires, and then the distributions of the surface magnetic induction intensities are measured. At last, the corrosion conditions or broken points of the mesh conductors will be found by analyzing the distribution characteristics and comparing with the results of the normal simulation computations. The feasibility and correctness of the diagnosis method and technology are tested by simulation calculations.
     2. The electromagnetic environments in different substations are measured and analyzed. The electromagnetic interference of work frequency and transient magnetic field are measured in different places near the transformer, CT, PT and mother lines in 110kV, 220kV and 500kV substations. The characteristic of complex electromagnetic environment is given in substation.
     3. The measuring system of electromagnetic induction intensity in complex electromagnetic environment is designed. The measuring availability of electromagnetic induction intensity is carried out by using these technology measures of amplifier, notch-filter and band-pass filter, and so on. The availability of the measuring system is tested by experiments and its immunity ability, distinguish rate and precision satisfy the diagnosis demands.
     4. A special sine-wave exciting source of different power frequency system for testing the grounding grids functions and diagnosing faults is designed. Based on technologies of linear amplifying and impedance transformation, the problem of impedance matching between the power amplifier and the load of grounding grid is solved in the conditions of wider frequency band and heavier output current. At the same time, the working frequency and output current can be adjusted continuously. Experimental results show that the frequency characteristics and the abilities of driving load and current output can satisfy the design demands. The practical applications show that the design of the source is reasonable and it can be used to check the grounding system function and examine the fault.
     5. The faults of broken point and corrosion are simulated by experiments in a testing grounding grid. The diagnosis method and technology are tested and applied in a few practical substations. The testing results show that this diagnosis idea is feasible, this diagnosis method is effective and this diagnosis technology is dependable.
引文
[1]谢广润,电力系统接地技术,北京:水利电力出版社,1991.150-158
    [2]中华人民共和国水利电力部,SDJ8-79,电力设备接地设计技术规程.北京:水利电力出版社,1979
    [3]中国电力企业联合会标准化部,DL/T 621-1997,交流电气装置的接地--电气工业标准汇编电气卷.北京:中国电力出版社,1997:537-568
    [4]周配明,广西合山电厂污闪及地网故障分析.贵阳:贵州省电机工程学会安全技术委员会, 1991.
    [5]周配明,“地网”的不良引起事故扩大的分析.贵阳:贵州省电机工程学会安全技术委员会, 1991.
    [6]鲍敏择.110KV变电所接地装置事故扩大分析.高电压技术,1993,19(4):53-55.
    [7]重庆电力局,华莹山电厂“94.1.1”事故调查报告.重庆:重庆电力局.1994.
    [8]何金良,曾嵘.电力系统接地技术.北京:科学出版社,2007.550-553
    [9] Frank Wenner, A Method of Measuring Earth Resistivity, Bulletin, Washington, D. C.: National Bureau of Standards, 1915, 12
    [10] Hans R. Seedher, J. K. Arora, Estimation of Two Layer Soil Parameters Using Finite Wenner Resistivity Expressions, IEEE Transaction on Power Delivery, 1992, 7(3): 1213-1217
    [11] Huina Yang, Jiansheng Yuan, and Wei Zong, Determination of Three-layer Earth Model from Wenner Four-probe Test Data, IEEE Transactions on Magnetics, 2001, 37(5): 3684-3687
    [12] H. B. Dwight, Calculation of Resistances to Ground, AIEE Transactions, 1936: 1319-1328
    [13] R. Rudenberg, Grounding Principles and Practice, Part I, II, III, &IV, Electrical Engineering, 1945, 64:1-4
    [14] E. D. Sunde, Earth Conduction Effects in Transmission Systems, New York: D. Van Nostrand Company Inc. 1949
    [15] S. J. Schwarz, Analytical Expressions for the Resistance of Grounding Systems, IEEE Trans. Power Apparatus and Systems, 1954, 73: 1011-1016
    [16] J. Zaborszky, Efficiency of Grounding Grids with Nonuniform Soil, IEEE Trans. Power Apparatus and Systems, 1955, 74: 1230-1233
    [17] J. Endrenyi, Evaluation of Resistivity Tests for Design of Station Grounds in Nonuniform Soil, IEEE Trans. Power Apparatus and Systems, 1963, 69: 966-970
    [18] B. Thapar and K. K. Puri, Mesh Potentials in High-voltage Grounding Grids, IEEE Trans. Power Apparatus and Systems, 1967, 86: 249-254
    [19] Roger F. Harrington, Field Computation by Moment Methods, New York: Macmillan, 1968
    [20] Trinh N. Giao, Maruvada P. Sarma, Effect of Two-layer Earth on the Electric Field near HVDC Ground Electrodes, IEEE Trans. Power Apparatus and Systems, 1972, 91: 2356-2365
    [21] D. Mukhedkar, Y. Gervais, F. Dawalibi, Modelling of Potential Distribution around a Grounding Electrode, IEEE Trans. Power Apparatus and Systems, 1973, 92(5): 1455-1459
    [22] F. Dawalibe, D. Mukhedkar, Optimum Design of Substation Grounding in Two-layer Earth Structure, Part I, II, III, IEEE Trans. Power Apparatus and Systems, 1975, 94(2): 252-272
    [23] F. Dawalibe, D. Mukhedkar, Multi-Step Analysis of Interconnected Electrodes, IEEE Trans. Power Apparatus and Systems, 1976, 95(1): 113-119
    [24] F. Dawalibe, D. Mukhedkar, Transferred Earth Potentials in Power Systems, IEEE Trans. Power Apparatus and Systems, 1978, 97(1): 90-101
    [25] Robert J. Heppe, Computation of Potential at Surface above an Energized Grid or Other Electrode, Allowing for Non-uniform Current Distribution, IEEE Trans. Power Apparatus and Systems, 1979, 98(6): 1978-1989
    [26] F. Dawalibe, D. Mukhedkar, Influence of Ground Rods on Grounding Grids, IEEE Trans. Power Apparatus and Systems, 1979, 98(6): 2089-2097
    [27] F. Dawalibe, D. Mukhedkar, Resistance Measurement of Large Grounding Systems, IEEE Trans. Power Apparatus and Systems, 1979, 98(6): 2348-2354
    [28] Pierre Kouteynikoff, Numerical Computation of Grounding Resistance of Substations and Towers, IEEE Trans. Power Apparatus and Systems, 1980, 99(3): 957-965
    [29] F. Dawalibi, Measured and Computed Currents Densities in Buried Ground Conductors, IEEE Trans. Power Apparatus and Systems, 1981, 100(8): 4083-4091
    [30] EPRI Report, EL-2699, Transmission Line Grounding, United States: Electric Power Research Institute, 1982, 10
    [31] F. Dawalibi, Earth Resistivity Measurement Interpretation Techniques, IEEE Trans. Power Apparatus and Systems, 1984, 103(2): 374-382
    [32] R. P. Nagar, R. Velazquez, Review of Analytical Methods for Calculating the Performance of Large Grounding Electrodes, IEEE Trans. Power Apparatus and Systems, 1985, 104(12): 3124-3133
    [33] F. Dawalibi, A. Pinho, Computerized Analysis of Power Systems and Pipelines Proximity Effects, IEEE Transaction on Power Delivery, 1986, 1(2): 40-47
    [34] E. B. Joy, R. E. Wilson, Accuracy Study of the Ground Grid Analysis Algorithm, IEEE Transaction on Power Delivery, 1986, 1(3): 97-103
    [35] F. P. Dawalibi, Electromagnetic Fields Generated by Overhead and Buried Short Conductors, Part 1 and Part 2, IEEE Transaction on Power Delivery, 1986, 1(4): 105-119
    [36] B. Thapar, S. L. Goyal, Scale Model Studies of Grounding Grids in Non-Uniform Soils, IEEE Transaction on Power Delivery, 1987, 2(2): 1060-1066
    [37] P. Meliopoulos, J. Dunlap, Investigation of Grounding Related Problems in AC/DC Converter Stations, IEEE Transaction on Power Delivery, 1988, 3(2): 558-567
    [38] P. J. Lagace, Evaluation of the Voltage Distribution around Toroidal HVDC Ground Electrodes in N-layer Soils, IEEE Transaction on Power Delivery, 1988, 3(4): 1573-1579
    [39] P. Meliopoulos, Analysis of DC Grounding Systems, IEEE Transaction on Power Delivery, 1988, 3(4): 1595-1604
    [40] R. Verma, D. Mukhedkar, Impulse Impedance of Buried Ground Wire, IEEE Trans. Power Apparatus and Systems, 1980, 99(5): 2003-2007
    [41] B. R. Gupta, B. Thapar, Impulse Impedance of Grounding Grids, IEEE Trans. Power Apparatus and Systems, 1980, 99(6): 2357-2362
    [42] R. Verma, D. Mukhedkar, Fundamental Considerations and Impulse Impedance of Grounding Grids, IEEE Trans. Power Apparatus and Systems, 1981, 100(3): 1023-1030
    [43] P. Meliopoulos, R. P. Webb, and E. B. Joy, Analysis of Grounding Systems, IEEE Trans. Power Apparatus and Systems, 1981, 100(3): 1039-1048
    [44] D. Lu, R. M. Shier, Application of a Digital Signal Analyzer to the Measurement of Power System Ground Impedances, IEEE Trans. Power Apparatus and Systems, 1981, 100(4): 1918-1922
    [45] P. Meliopoulos, M. G. Moharam, Transient Analysis of Grounding Systems, IEEE Trans. Power Apparatus and Systems, 1983, 102(2): 389-397
    [46] M. M. Babu Narayanan, S. Parameswaran, D. Mukhedkar, Transient Performance of Grounding Grids, IEEE Transaction on Power Delivery, 1989, 4(4): 2053-2059
    [47] L. Grcev, F. Dawalibi, An Electromagnetic Model for Transients in Grounding Systems, IEEE Transaction on Power Delivery, 1990, 5(4): 1773-1781.
    [48] Takehiko Takahashi, Calculation of Earth Resistivity for a Deep-Driven Rod in a Multi-layer Earth Structure, IEEE Transaction on Power Delivery, 1991, 6(2): 608-614
    [49] Y. Leonard Chow, Complex Images for Electrostatic Field Computation in Multilayered Media, IEEE Transactions on Microwave Theory and Techniques, 1991, 39(7): 1120-1125
    [50] P. R. Pillai, E. P. Dick, A Review on Testing and Evaluating Substation Grounding Systems, IEEE Transaction on Power Delivery, 1992, 7(1): 53-61
    [51] P. S. Melipoulos, An Advanced Computer Model for Grounding System Analysis, IEEE Transaction on Power Delivery, 1993, 8(1): 13-23
    [52] F. P. Dawalibi, Effects of Deteriorated and Contaminated Substation Surface Covering Layers on Foot Resistance Calculations, IEEE Transaction on Power Delivery, 1993, 8(1): 7-12
    [53] Ma, Analysis of Grounding Systems in Soils with Hemispherical Layering, IEEE Transactions on Power Delivery, 1993, 8(4): 1773-1781
    [54] F. Dawalibi, Behaviour of Grounding Systems in Multilayer Soils: A Parametric Analysis, IEEE Transaction on Power Delivery, 1994, 9(1): 334-342
    [55] Y. L. Chow, A Simplified Method for Calculating the Substation Grounding Grid Resistance, IEEE Transaction on Power Delivery, 1994, 9(2): 736-742
    [56] Selby, F. Dawalibi, Determination of Current Distribution in Energized Conductors for the Computation of Electromagnetic Fields, IEEE Transaction on Power Delivery, 1994, 9(2): 1069 -1078
    [57] W. Xiong, F. P. Dawalibi, Transient Performance of Substation Grounding Systems Subjected to Lighting and Similar Surge Current, IEEE Transaction on Power Delivery, 1994, 9(3): 1412-1420
    [58] Frank E. Menter, EMTP-Based Model for Grounding System Analysis, IEEE Transaction on Power Delivery, 1994, 9(4): 1838-1849.
    [59] Y. L. Chow, Grounding Resistance of Buried Electrodes in Multi-layer Earth Predicted by Simple Voltage Measurements along Earth Surface– A Theoretical Discussion, IEEE Transaction on Power Delivery, 1995, 10(2): 707-715
    [60] Ma, F. Dawalibi, On the Equivalence of Uniform and Two-layer Soils to Multilayer Soils in the Analysis of Grounding Systems, IEE Proc.-Gener. Transm. Distrib., 1996, 143(1): 49-55
    [61] Leonid. Grcev, Computer Analysis of Transient Voltages in Large Grounding Systems, IEEE Transaction on Power Delivery, 1996, 11(2): 815-823
    [62] P. J. Lagace, Interpretation of Resistivity Sounding Measurements in N-Layer Soil using Electrostatic Images, IEEE Transactions on Power Delivery, 1996, 11(3): 1349-1354
    [63] Leonid. Grcev, Markus Heimbach, Frequency Dependent and Transient Characteristics of Substation Grounding Systems, IEEE Transaction on Power Delivery, 1997, 12(1): 172-178
    [64] Y. L. Chow, Surface Voltages and Resistance of Grounding Systems of Grid and Rods in Two-Layer Earth by the Rapid Galerkin's Moment Method, IEEE Transaction on Power Delivery, 1997, 12(1): 179-185
    [65] Markus Heimbach, Leonid. D. Grcev, Grounding System Analysis in Transients Programs Applying Electromagnetic Field Approach, IEEE Transaction on Power Delivery, 1997, 12(1): 186-193
    [66] Hans Kr. Hoidalen, Jarle Sletbak, and Thor Henriksen, Ground Effects on Induced Voltages from Nearby Lighting, IEEE Transaction on Electromagnetic Compatibility, 1997, 39(4): 269-278
    [67] B. Kostic, Analysis of complex Grounding Systems Consisting of Foundation Grounding Systems with External Grids, IEEE Transaction on Power Delivery, 1998, 13(3): 752-756
    [68] Hyung-Soo Lee, Efficient Ground Grid Designs in Layered Soils, IEEE Transaction on Power Delivery, 1998, 13(3): 745-751
    [69] Z. Stojkovic, M. S. Savic, J. M. Nahman, Sensitivity Analysis of Experimentally Determined Grounding Grid Impulse Characteristics, IEEE Transaction on Power Delivery, 1998, 13(4): 1136-1142
    [70] Qingbo Meng, Jinliang He, F. P. Dawalibi, A New Method to Decrease Ground Resistances of Substation Grounding Systems in High Resistivity Regions, IEEE Transaction on Power Delivery, 1999, 14(3): 911-916
    [71] Geri, Behaviour of Grounding Systems Excited by High Impulse Currents: the Model and Its Validation, IEEE Transaction on Power Delivery, 1999, 14(3): 1008-1017
    [72] F. Otero, J. Cidras, J. L. del Alamo, Frequency-Dependent Grounding System Calculation by Means of a Conventional Nodal Analysis Technique, IEEE Transaction on Power Delivery, 1999, 14(3): 873-878
    [73] Jinxi Ma, F. P. Dawlibi, Analysis of Grounding Systems in Soils with Cylindrical Soil Volumes, IEEE Transaction on Power Delivery, 2000, 15(3): 913-918
    [74] J. Cidras, A. F. Otero, C. Garrido, Nodal Frequency Analysis of Grounding Systems Considering the Soil Ionization Effect, IEEE Transaction on Power Delivery, 2000, 15(1): 103-107
    [75] J. Ma, F. P. Dawalibi, Influence of Inductive Coupling between Leads on Ground Impedance Measurements using the Fall-of-potential Method, IEEE Transaction on Power Delivery, 2001, 16(4): 739-743
    [76] Jinxi Ma, F. P. Dawalibi, Analysis of Grounding Systems in Soils with Finite Volumes of Different Resistivities, IEEE Transaction on Power Delivery, 2002, 17(2): 624-627
    [77] CIGRE WG 36.04, Guide on Electromagnetic Compatibility in Electric Power Plants and Substations, Publication No. 124, Paris: CIGRE, 1997
    [78] IEEE-SA Standards Board, IEEE Guide for Safety in AC Substation Grounding, IEEE STD 80-2000
    [79]张波,崔翔,赵志斌,大型变电站接地网的频域分析方法,中国电机工程学报,2002,22(9):59-63.
    [80]张波,变电站接地网频域电磁场数值计算方法研究及其应用,华北电力大学博士学位论文,河北保定,2003
    [81]赵志斌,复杂土壤中接地网性能分析与变电站内空间电磁场的计算,华北电力大学博士学位论文,河北保定,2004
    [82]华北电力大学工作报告,500kV变电站保护下放后接地网接地性能问题的研究,保定,2002,2
    [83]鲁志伟,文习山,史艳玲,大型变电站接地网工频接地参数的数值计算.中国电机工程学报,2003,23(12):89-93。
    [84]杨道武,李景禄,发电厂变电所接地装置的腐蚀及防腐措施,电磁避雷器,2004,2:43-45
    [85]张守本,金属腐蚀探测,铀矿地质,2003,19(2):114-117
    [86]徐宏武,邵雁,邓春为,接地雷达技术及其探测的应用,岩土工程技术,2005,19(4):191-194
    [87] Nikolakados, S. Corrosion and cathodic protection of steel grounding systems. Materials Performance, 1988,27(7): 11-15
    [88] Lawson, Vernon R. Problems and detection of line anchor and substation ground grid corrosion. IEEE Transactions on Industry Applications, 1988, 24(1): 25-32
    [89] Sen, P.K. Steel grounding. Industrial and Commercial Power Systems Technical Conference 1985. Conference Record (Cat. No.85CH2183-2), 1985,1-6
    [90] Garrity, Kevin C.; Bianchetti, Ronald. Corrosion control considerations for generating stations. ASQC, 1985, 28-34
    [91] Wu,x-d. Corrosion analysis and countermeasures for grounding net of 500kV transmission lines. Corrosion and Protection. 2002, 23(12): 545-547
    [92] F. Dawalibi, Electromagnetic fields generated by overhead and buried short conductors . IEEE Trans. On Power Delivery,1986, PWRD-1(4): 112-119.
    [93]张晓玲,变电站接地网腐蚀和断点的诊断理论与方法.重庆大学,硕士学位论文,1998
    [94]王旭东,发、变电站接地网电气连接故障点检测方法研究,重庆大学硕士学位论文,重庆,1995
    [95]李思芸,发变电站接地网腐蚀及断点的诊断原理和方法,清华大学硕士学位论文,北京,1999
    [96]胡军,实用化发变电站接地网故障诊断系统的研究,清华大学硕士学位论文,北京,2000
    [97] Hu Jun,Zeng Rong,He Jinliang,et al.Novel method of corrosion diagnosis for grounding grid.International Conference on Power System Technology,Perth,Australia,2000.1365-1370
    [98]何金良,曾嵘,吴维韩,发变电站接地网腐蚀及断点的诊断方法及其测量、诊断系统,中国专利,99109622.3,1999-07-02
    [99]刘庆珍蔡金锭.电力系统接地网故障的无伤检测方法.高电压技术,2003(6):47-48
    [100]黄文武,文习山,朱正国.接地网腐蚀与断点诊断软件系统的开发.高电压技术,2005(7):42-44
    [101]滕永禧.接地网腐蚀诊断方法研究.硕士论文,重庆大学,2004.
    [102]刘健,王建新,王森.一种改进的接地网故障诊断算法及测试方案评价.中国电机工程学报,2005(3):71-77
    [103]曹永刚,丁晓群,周玲.用模糊技术诊断接地网状态.江苏电机工程,2005(4):14-16
    [104]姚金霞,变电站接地网故障诊断研究,硕士论文,山东大学,2003.
    [105]何智强,文习山,潘卓洪.一种地网腐蚀故障诊断的新算法.高电压技术,2007,33(4):83-86.
    [106]彭珑,郭洁,李晓峰.微量处理法在变电站接地网腐蚀诊断中的应用.高电压技术,2007,33(7):199-202.
    [107]刘宝成.低电压大电流法检测接地网技术研究.华北电力技术,1999(2):7-8
    [108] Bo Zhang, ZhiBin Zhao, Xiang Cui, Diagnosis of Breaks in Substation’s Grounding Grid by Using Electromagnetic Method, IEEE Transactions on Magnetics, 2002, 38 (2): 473-476.
    [109]武汉高压研究所科学技术报告,500kV变电站电磁骚扰水平及输变电设备电磁环境影响研究,武汉,2005,3
    [110]王德芳,叶妙元,磁测量,北京,机械工业出版社:1990.49-59
    [111]胡筠,有源滤波器设计,北京,人民邮电出版社:1986.201-230
    [112] Miroslav D. Lutovac著,朱义胜,董辉译,信号处理滤波器设计,北京,电子工业出版社:2004.128-147
    [113]苏文平,何希才,新型电子电路应用实例精选,北京,北京航空航天大学出版社:2000.208-218
    [114] Linear technology corporation(USA) databook LTC1068 series
    [115]谢沅清,晶体管低频电路,北京,人民邮电出版社:1981.283-296
    [116]王沛清,扩音机原理与维修[M].长沙:湖南科学技术出版社,1980,227-238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700