用户名: 密码: 验证码:
长江口外海域浮游植物生态动力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口海域是海洋中的高生产力区,往往又是人类活动的重要区域和重要渔场所在。长江是我国第一大河,长江巨大径流带来的丰富营养盐使长江口附近海域成为高生产力海区,口外海域历史上是著名的渔场。长江流域是经济的迅猛发展和城市化进程的加快使工农业废水和生活污水排放量不断增加,长江口外海域富营养化加剧,导致赤潮频发。环境的破坏加之过度捕捞等因素,长江口外海区的生态严重失衡,海洋经济生物个体小型化、低值化现象严重。长江口外海区受复杂底形(如水下河谷)、巨量径流、季风、陆架环流的影响,动力过程十分复杂。研究长江口外海域的浮游植物生态动力学,对于长江口外海域的生态修复、环境保护和赤潮防治,渔业资源的可持续利用等具有重要的科学和现实意义。
     本文主要通过现场观测、资料分析和数值模型试验相结合的方法研究了长江口外海域浮游植物的时空分布特征,着重分析了浮游植物生长的主要限制因子和关键物理过程对浮游植物生长的作用。
     利用细胞体积转换生物量法,对2006年7月大面调查的浮游植物种类鉴定和细胞丰度计数结果进行了叶绿素a浓度的计算,并分别给出了硅藻和甲藻类的生物量。通过浮游植物细胞体积估算生物量是研究浮游植物现存量的一个可行的方法,能较客观地反映浮游植物的生物量,有助于在物种水平上开展海洋浮游生态系统模型的数值模拟研究。调查结果显示,长江口外海域夏季的浮游植物转换生物量在冲淡水区最高,江苏外海居中,而近河口区和台湾暖流区最低。温盐、水体稳定度和营养盐是影响长江口外海域浮游植物分布的主要环境因子。
     2009年8月底至9月初的长江口外海区多学科综合观测结果也显示,长江口外海的叶绿素a分布可分为四个特征区:高度层化的长江冲淡水扩展区,浊度锋向海侧为表层叶绿素a浓度高值区,叶绿素a高值区下层存在DO浓度小于2.00mg/L的低氧区;高度层化的台湾暖流区,表层叶绿素a浓度低,相对高值区位于次表层;表底层混合良好的江苏外海,叶绿素a浓度居中;近岸层化、低叶绿素a的高浊度区。123.0°E以西海域的叶绿素a高值区位于表层水中,即盐度跃层上方,而123.0°E以东海域的叶绿素a高值区位于次表层水,即温度跃层上方。海水表层DO的分布取决于叶绿素a浓度的分布,表层以下水体的含氧量则与水体层化程度密切相关。数据分析显示水体层化程度(PEAP)与水体缺氧程度存在较强的线性相关性。根据调查资料构建了一个夏末长江口外海域叶绿素a分布态势形成机制图。
     在分析观测资料和历史资料的基础上,基于海洋数值模式ECOM-si,耦合太阳辐射强度、海表热通量和泥沙计算模块,考虑硅藻和甲藻两个浮游植物类群,建立了一个N2P2ZD型的海洋浮游植物生态动力学数值模型。模型经参数敏感性测试,稳定性良好,通过长时间序列站点和大面调查资料验证,模式具有一定的精度,可应用于长江口外海域浮游植物生态动力学的研究。
     以2006年和2009年的现场调查范围为参考,设定29.5°N-32.5°N,122.25°E-124.0°E范围内的海域为浮游植物生态动力学数值模拟研究的目标海域。目标海域浮游植物的生长主要受控于营养盐、周年变化的水温和光照条件,同时受处在食物链上游的浮游动物摄食压力的控制。硅藻有春季和夏末两次较明显的水华,甲藻仅有春季水华。水温控制水华年内首次发生的时间。7月后,受水温过高的影响,甲藻生物量处于较低水平,生物基础浓度无法达到发生赤潮的量值。硅藻在5月至9月均保持较高的生物量,说明这段时间都是长江口外海域硅藻赤潮可能发生的时间窗口。硅藻的生长更多地受光照和营养盐的限制,而甲藻生物量更多受水温的限制。
     目标海域的DIN浓度受长江径流高浓度DIN入海的影响较大,而来自长江径流的P04-P浓度相对较低,因此长江径流的P04-P输入相对不是目标海域最主要的P04-P来源。目标海域的P04-P平均浓度更多受外海开边界的影响。开边界的营养盐输入对目标海域的浮游植物年均生物量有较大影响,特别是来自台湾海峡边界的P04-P输入。台湾海峡边界营养盐的输入较台湾以东边界重要,且对硅藻的影响大于甲藻。
Estuary is always the high productivity of the ocean area, they often are an important area of human activity and an important fishing ground lies. The Changjiang (Yangtze River) is China's longest, and its huge runoff with rich nurients make the Changjiang Estuary to be productive waters. There are famous fishing grounds lies in the Changjiang Estuary in history. The rapid economic development and urbanization process of Changjiang Valley accelerated industrial and agricultural waste water and domestic sewage discharge rising waters of the Changjiang Estuary eutrophication, leading to frequent red tide. Damage to the environment coupled with overfishing and other factors, situation of ecological imbalance and individual smaller and lower value of marine economic organisms is serious off the Changjiang Estuary. Affected by the complex bottom topography (such as submarine valley), huge runoff, monsoon and shelf circulation, dynamic process off the Changjiang River is very complicated. Though, phytoplankton dynamics Study off the Changjiang Estuary has important scientific and practical significance to ecological restoration, environmental protection, red tide prevention, sustainable use of fishery resources.
     Mainly through field observations, data analysis and numerical model simulation, this paper studied the phytoplankton ecosystem characteristics off the Changjiang Estuary, focusing on the analysis of the major limiting factor and the key physical processes on phytoplankton growth.
     Using data of phytoplankton species identification and cell abundance during the large area survey in July 2006, the cell volume based conversion biomass (chlorophyll-a concentration) was calculated, and were given diatoms and dinoflagellates biomass respectively. Estimation of phytoplankton cell volume based conversion biomass is a feasible method to objectively reflect the phytoplankton biomass, contributing to the species level in the conduct of marine phytoplankton dynamic numerical model study. Phytoplankton biomass off the Changjiang Estuary waters in summer was the highest in the Changjiang Dilute Water (CDW) area, medium off Jiangsu Coast (JSC), and in areas near the river mouth and the Taiwan Warm Current (TWC) were the lowest. Temperature, salinity, water stability and nutrients that affect the distribution of phytoplankton off the Changjiang Estuary were the most important environmental factors.
     A multidisciplinary observations in the end of August 2009 to early September off the Changjiang Estuary also showed that chlorophyll-a distribution can be divided into four zones:the CDW expansion area, featuring high chlorophyll-a in the surface water on the offshore side of turbidity front, and a hypoxic zone where DO was 1.02-2.00 mg/L underneath the high chlorophyll-a zone; the TWC zone which had strong stratification,with low chlorophyll-a in the surface water and relatively high value in the subsurface water; off the well mixed JSC (Jiangsu Coast) zone, featuring medium chlorophyll-a of 2-6 mg/m3 in the areas of shallower than 20 m; and the stratified strongly Near-shore Diluted Water(NDW) zone, with relatively low chlorophyll-a. The high chlorophyll-a zone west of 123.0°E located in the surface water above the halocline, the relatively high chlorophyll-a zone east to 123.0°E located in the subsurface water above the thermocline. Data analysis show that there is a strong linear relationship between the degree of water stratification (PEAP) and the oxygen level of water. According to the survey data, the dynamics pattern of chlorophyll-a distribution in later summer was obtained.
     Based on the analysis of observational and historical data, a N2P2ZD style numerical phytoplankton dynamics model coupled the ocean marine model ECOM-si with additional modules of solar radiation, sea surface heat flux and sediment was established. In the model, phytoplankton was divided into two groups, diatoms and dinoflagellatesc. Through sensitivity test, a long sequence sites and large area survey data validation, the model was validated stability and has a certain precision, can be applied to ecological dynamics study of phytoplankton off the Changjiang Estuary.
     We take the 2006 and 2009 field survey area as a reference and set area 29.5°N-32.5°N,122.25°E-124.0°E as the target area for the phytoplankton dynamics model study. Phytoplankton growth in the target area is mainly controlled by nutrients, annual changes in water temperature and light conditions, and endured the grazing pressure of zooplankton which is on the upper food chain. Diatoms have two obvious algal blooms in spring and late summer, dinoflagellates have bloom only in spring. Water temperature was the key factor of the first bloom occurred time. After July, by the impact of the high water temperature dinoflagellate biomass was at a low level, the basis biomass before the red tide occurrence can not be achieved. In May to September, diatoms maintained a high biomass, which means these months are the time window that red tide of diatoms may occur off the Changjiang Estuary. Growth of diatoms affected more by light and nutrient limitation, and biomass of dinoflagellates affected more by water temperature.
     DIN concentration in target area affected significantly by the high concentration of DIN during the Changjiang runoff discharged into the estuary while the PO4-P concentration in the Changjiang runoff is relatively low, so PO4-P input by the Changjiang runoff is not the most important source of PO4-P in the target area. The annual average concentration of PO4-P in the target area is more affected by the open boundaries. Nutrient supply from the open boundaries has a great impact on annual average biomass of phytoplankton in the target area, especially the PO4-P input from the Taiwan Strait boundary. Nutrients input of Taiwan Strait boundary is more important than the boundary east of Taiwan, and the effect on diatoms is more than dinoflagellates.
引文
Baretta J W,1995. The European regional seas ecosystem model, a complex marine ecosystem model [J]. Netherlands Journal of Sea Research,33(3/4):233-246.
    Beardsley, R.C., et al.,1985. Discharging of the Changjiang (Yangtze River) into the East China Sea, Continental Shelf Research,4(1/2):57-76.
    Clement Fontana, Christian Grenz,Christel Pinazo, et al.2009.Assimilation of SeaWiFS chlorophyll data into a 3D-coupled physical-biogeochemical model applied to a freshwater-influenced coastal zone[J]. Continental Shelf Research,29:1397-1409.
    Chai F, Dugdale R C, Peng T H, et al.,2002. One-dimensional ecosystem model of the equatorial Pacific upwelling system, Part I:Model development and silicon and nitrogen cycle [J]. Deep Sea Research Ⅱ,49:2 71322 745.
    Chai C, Yu Z M, Shen Z L et al.2009. Nutrient characteristics in the Changjiang River Estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam. Science of the Total Environment, 407:4687-4695.
    Chen C, Beardsley R C, Cowles G.2006.FVCOM User Manual.
    Chen C, Ji R, David J. Schwab, et al.2002.A model study of the couple biological and physical dynamics in Lake Michigan. Ecological Modelling.152:145-168.
    Chen C., Zhu J, Ralph E, et al.,2001. Prognostic modeling studies of the Keweenaw Current in Lake Superior, Part I:formation and evolution. Journal of Physical Oceanography,31(2):379-395.
    Cui Maochang, Zhu Hai,2001. Coupled physical2ecological modeling of the central part of Jiaozhou bay II: Coupled with an ecological model [J].Chinese Journal of Oceanology Liminology,19(1):21228.
    D.A. Siegel, T.K. Westberry, M.C. O'Brien, et al.2001.Bio-optical modeling of primary production on regional
    scales:the Bermuda BioOptics project [J].Deep-Sea Research II.48:1865-1896.
    E. Garcia-Gorriz, N. Hoepffher, M. Ouberdous.2003.Assimilation of SeaWiFS data in a coupled
    physical-biologicalmodel of the Adriatic Sea[J]. Journal of Marine Systems.40-41:233-252.
    Eppley R.W.,1972. Temperature and phytoplankton growth in the sea [J], Fishery Bulletin,70:1063-1085.
    Eppley R.W., Reid F. M.H., Strickland J.D.H.,1970. Estimates of phytoplankton crop size, growth rate and primary production. In:Strickland JDH.(ed.) The ecology of the plankton off La Jolla, California, in the period April Through September 1967, Bull Scripps Ins Oceanogr.,17:33-42.
    Fouest V.Le, Zakardjian B., Saucier F.J.,et al.2006.Application of SeaWIFS-and AVHRR-derived data for mesoscale and regional validation of a 3-D high-resolution physical-biological model of the Gulf of St. Lawrence (Canada). Journal of Marine Systems,60:30-50
    Fouest V L, Zakardjian B, Saucier F J et al.2006. Application of SeaWIFS-and AVHRR-derived data for mesoscale and regional validation of a 3-D high-resolution physical-biological model of the Gulf of St. Lawrence (Canada). Journal of Marine Systems,60:30-50.
    Gao H.1998. Modelling annual cycles of primary production in different regions of the Bohai sea [J]. Fisheries Oceanography,7(3/4):258-264.
    Gao X L, Song J M.2005.Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China. Marine Pollution Bulletin,50:327-335.
    Garcia-Gorriz E, Hoepffner N, Ouberdous M.2003.Assimilation of SeaWiFS data in a coupled physical-biological model of the Adriatic Sea. Journal of Marine Systems,40-41:233-252.
    Harisson P. H., Hu M. H., Yang Y. P., et al,1990. Phosphate limitation in estuarine and coastal waters of China [J]. J. Exp. Biol. Ecol.,140:79287.
    HydroQual, Inc.2002. A Primer for ECOMSED (Users Manual):27-28
    Ji R, Cabell Davis, Changsheng Chen, et al,2008. Influence of local and external processes on the annual nitrogen cycle and primary productivity on Georges Bank:A 3-D biological-physical modeling study. Journal of Marine Systems,73:31-47.
    Large, W.G. and S. Pond,1982. Sensible and Latent Heat Flux Measurements over the Ocean[J] J. Phys. Oceanogr.,12,464-482,1982.
    Lewis, R.1997. Dispersion in Estuaries and Coastal Waters. John Wiley & Sons.312 pp.
    Maar M, Timmermann K, Petersen J K, Gustafsson K E, Storm L M.2010. A model study of the regulation of blue mussels by nutrient loadings and water column stability in a shallow estuary, the Limfjorden. Journal of Sea Research,64(3):322-333.
    Marret F, Scourse J.2002. Control of modern dinoflagellate cyst distribution in the Irish and Celtic seas by seasonal stratification dynamics. Marine Micropaleontology,47:101-116.
    Michael D.2005.A bio-physical coastal ecosystem model for assessing environmental effects of marine bivalve aquaculture[J]. Ecological Modeling.183:323-346.
    Moore J K, Doney S C, Kleypas J A, et al.,2002. An intermediate complexity marine ecosystem model for the global domain [J], Deep-Sea Research Ⅱ,49 (1-3):4032462.
    Mullin MM, Sloan PR, Eppley RW,1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol Oceanogr.,11:307-311.
    Rabouille C, Conley D J, Dai M H et al.2008. Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rhone rivers. Continental Shelf Research,28:1527-1537.
    Raleigh R. H., Kevin E. K., Julian P. M., et al.2003. A four-dimensional validation of a coupled physical-biological model of the Arabian Sea [J]. Deep-Sea Research Ⅱ,50:2917-2945.
    Scott C. D., David M. G., Raymond G. N.1996.A new coupled, one-dimensional biological-physical model for the upper ocean:Applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site [J]. Deep-Sea Research Ⅱ.43(2-3):591-624.
    Shanmugam P, Ahn Y H, Ram P S.2008. SeaWiFS sensing of hazardous algal blooms and their underlying mechanisms in shelf-slope waters of the Northwest Pacific during summer. Remote Sensing of Environment, 112:3248-3270.
    Simpson J H, Bowers D.1981. Models of stratification and frontal movement in the shelf seas. Deep-Sea Res.,28: 727-738.
    Sukru T. Besiktepe, Pierre F.J. Lermusiaux, Allan R. Robinson.2003. Coupled physical and biogeochemical data-driven simulations of Massachusetts Bay in late summer:real-time and postcruise data assimilation [J]. Journal of Marine Systems.40-41:171-212.
    Sun J., Liu D.Y.2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research [J].25(11):1331-1346
    Strathman RR,1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol Oceanogr.,12:411-418.
    V. Casulli and P, Zanolli,1998. A three-dimensional semi-implicit algorithm for environmental flows on unstructured grids, In Proc. of Conf. on Num. Methods for Fluid Dynamics, pp.57-70, Univ. of Oxford.
    V. Casulli, RA. Waiters,2000. An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numerical Methods in Fluids,32:331-348.
    V. Casulli, P. Zanolli,2002. Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems, Mathematical and Computer Modelling,2002(36):1131-1149.
    V. L. Fouest, B. Zakardjian, F.J. Saucier, et al.2006.Application of Sea WIFS-and AVHRR-derived data for mesoscale and regional validation of a 3-D high-resolution physical-biological model of the Gulf of St. Lawrence (Canada)[J], Journal of Marine Systems.60:30-50.
    Wei H., Sun J., Andreas Mollc, et al.,2004. Phytoplankton dynamics in the Bohai Sea-observations and modeling. Journal of Marine Systems,44:233-251.
    Wiggert J.D., Murtugudde R.G., Christian J.R.2006. Annual ecosystem variability in the tropical Indian Ocean:Results of a coupled bio-physical ocean general circulation model[J]. Deep-Sea Research Ⅱ.53: 644-676.
    Wu H., Zhu J.R.,2010. Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to saltwater intrusion in the Changjiang Estuary. Ocean Modelling,33:33-51.
    Zhang J.1996.Nutrient elements in large Chinese estuaries. Continental Shelf Research.16(8):1023-1045
    Zhang J, Liu S M, Ren J L et al.2007.Nutrient gradients from the eutrophic Changjiang (Changjiang River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Progress in Oceanography,74:449-478
    Zheng L., Chen C., Zhang Frank Y. Development of water quality model in the Satilla River Estuary, Georgia[J]. Ecological Modelling.2004,178:457-482
    Zhou M J, Shen Z L, Yu R C.2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research,28:1483-1489.
    Zhu H, Cui M.C.,2000. Coupled physical-ecological modeling of the central part of Jiaozhou bay I:Physical modeling [J], Chinese Journal of Oceanology Liminology,18(4):309-314.
    Zhu J, Chen C, Ralph E, Green S A, et al.,2001. Prognostic Modeling Studies of the Keweenaw Current in Lake Superior, Part II:Simulation. Journal of Physical Oceanography,31(2):396-410.
    Zhu ZY.NgWM, Liu S M et al.2009. Estuarine phytoplankton dynamics and shift of limiting factors:A study in the Changjiang (Changjiang River) Estuary and adjacent area. Estuarine, Coastal and Shelf Science, 84:393-401.
    陈炳章,王宗灵,朱明远.温度、盐度对具齿原甲藻生长的影响及其与中肋骨条藻的比较[J].海洋科学进展,2005,23(1):60-64
    陈长胜.海洋生态系统动力学与模型.北京,高等教育出版社,2003,404
    陈艳拢,赵冬至,杨建洪,赵玲.赤潮藻类温度生态幅的定量表达模型研究[J].海洋学报,2009,31(5):156-161
    柴心玉,钱树本,张庆.长江口及济州岛邻近海域叶绿素a分布及其与水团、跃层的相关性[J].青岛海洋大学学报,1991,21(2):69-82
    邓光,耿亚洪,胡鸿钧,齐雨藻,吕颂辉,李中奎,李夜光.几种环境因子对高生物量赤潮甲藻——东海原甲藻光合作用的影响[J].海洋科学,2009,33(12):34-39
    费尊乐.近海水域漫衰减系数的估算[J].黄渤海海洋,1984,2(1):26229
    傅明珠,王宗灵,孙萍等.2006年夏季南黄海浮游植物叶绿素a分布特征及其环境调控机制[J].生态学报,2009,29(10):5366-5375
    高会旺,王强.1999年渤海浮游植物生物量的数值模拟[J].中国海洋大学学报,2004,34(5):867-873
    高会旺,杨华,张英娟,等.渤海初级生产力的若干理化影响因子初步分析[J].青岛海洋大学学报,2001,31(4):487-494
    郭玉洁,杨则禹.长江口区浮游植物数量变动及生态分析[A].海洋科学集刊,1992,33:167-190
    国家海洋局.中国海洋环境公报2005-2009(www.soa.gov.cn/hyjww/index.htm)
    海洋图集编委会.渤海、黄海、东海海洋图集[M].北京,海洋出版社,北京,1991
    侯继灵,张传松,石晓勇,陆茸,王修林.磷酸盐对两种东海典型赤潮藻影响的围隔实验[J].中国海洋大学学报,2006,36(Sup.):163-169
    胡敦欣,韩舞鹰,章申,等.长江、珠江口及邻近海域陆海相互作用[M].北京,海洋出版社,2001:1-218
    胡明辉,杨逸萍,徐春林,等.长江口浮游植物生长的磷酸盐限制[J].海洋学报,1989,11(4):4392443
    霍文毅,俞志明,邹景忠,等.胶州湾中肋骨条藻赤潮与环境因子的关系[J].海洋与湖沼,2001,32(3):312-317
    李道季,张经,黄大吉等.长江口外氧的亏损[J].中国科学D辑,地球科学,2002,32(8):686-694
    李彦宾.长江口及邻近海域季节性赤潮生消过程控制机理研究.中国海洋大学博士论文.2008
    林军,朱建荣,张经等.长江口外海区浮游植物生物量分布及其与环境因子的关系[J].水产学报,2011,35(1):74-87
    刘高峰.长江口水沙运动机三维泥沙模型研究.华东师范大学博士毕业论文,2010:97-161
    刘桂梅,孙松,王辉,等.春秋季黄海海洋锋对中华哲水蚤分布的影响[J].自然科学进展,2002,12(11):1150-1154
    刘浩,尹宝树,渤海生态动力过程的模型研究Ⅰ.模型描述[J].海洋学报,2006,28(6):21-31
    柳丽华,左涛等.2004年秋季长江口海域浮游植物的群落结构和多样性[J].海洋水产研究,2007,28(3):112-119
    刘媛,曹振锐,黄邦钦,等.东、黄海典型海区浮游植物对营养盐添加的响应[J].厦门大学学报,2004,43:147-152
    栾青杉,孙军等.2004年秋季长江口及其邻近水域浮游植物群集[J].海洋科学进展,2008,26(3):364-371
    栾青杉,孙军等.2005年秋季长江口及其邻近水域浮游植物群集[J].长江流域资源与环境,2010,19(2):202-208
    栾青杉,孙军.2005年夏季长江口水域浮游植物群集特征及其与环境因子的关系[J].生态学报,2010,30(18):4967-4975
    蒲新明,吴玉霖,张永山.长江口区浮游植物营养盐限制因子的研究1.秋季的营养限制情况[J].海洋学报,2000,22(4):58-66
    蒲新明,吴玉霖,张永山.长江口区浮游植物营养盐限制因子的研究2.春季营养限制情况[J].海洋学报,2001,23(3):58-65
    乔方利,赵伟,袁业立.渤黄东海潮流长期物质输运研究[J].自然科学进展,2004,1(11):1265-1271
    唐启升,苏纪兰.海洋生态动力学研究与海洋生物资源可持续利用[J].地球科学进展,2001,16(1):5-11
    沈志良,陆家平,刘兴俊,等.长江口区营养盐的分布特征及三峡工程对其影响[A].海洋科学集刊[C],1992,33:109-130
    沈志良.长江口海区理化环境对初级生产力的影响[J].海洋通报,1993(1):47251
    史峰岩,朱首贤,朱建荣,丁平兴.杭州湾、长江口余流及其物质输运作用的模拟研究Ⅰ.杭州湾、长江口三维联合模型[J].海洋学报,2000,22(5),1-12
    宋书群,孙军,俞志明.长江口及其邻近水域叶绿素a垂直格局及成因初析植物生态学报[J].2009,33(2):369-379
    宋书群,孙军,沈志良等.三峡库区蓄水后夏季长江口及其邻近水域粒级叶绿素a[J].中国海洋大学学报,2006,36(Sup.):114-112
    苏纪兰,唐启升.中国海洋生态系统动力学研究.Ⅱ.渤海生态系统的动力学过程[M].北京,科学出版社,2002:445
    孙百晔,梁生康,王长友,王晓波,王修林,李雁宾.光照与东海近海中肋骨条藻(Skeletonema costatum)赤潮发生季节的关系[J].环境科学,2008,29(7):1849-1854
    孙百晔,王修林,李雁宾,王长友,王爱军,梁生康,张传松.光照在东海近海东海原甲藻赤潮发生中的作用[J].环境科学,2008,29(2):362-367
    孙军,刘东艳,钱树本.浮游植物生物量研究Ⅰ浮游植物生物量细胞体积转换法[J].海洋学报.1999,21(2):
    75-85
    孙军,田伟.2009年春季长江口及其邻近水域浮游植物物种组成与粒级叶绿素a[J].应用生态学报,2011,22(1):235-242
    孙军,刘东艳,钟华,等.浮游植物粒级研究方法的比较[J].青岛海洋大学学报,2003,33(6):917-924
    孙军.海洋浮游植物细胞体积和表面积模型及其转换生物量.中国海洋大学博士论文.2004:154-164
    王爱军,王修林,韩秀荣,李雁宾,祝陈坚.光照对东海赤潮高发区春季赤潮藻种生长和演替的影响[J].海洋 环境科学,2008,27(2):144-148
    王保栋,战闰,藏家业.黄海、东海浮游植物生长的营养盐限制性因素初探[J].海洋学报,2003,25(supp.2):190-195
    王金辉,黄秀清.具齿原甲藻的生态特征及赤潮成因浅析[J].应用生态学报,2003,14(7):1065-1069
    王正方,张庆,吕海燕.温度、盐度、光照强度和pH对海洋原甲藻增长的效应[J].海洋与湖沼,2001,32(1):15-18
    王宗灵,李瑞香,朱明远,陈炳章,郝彦菊.半连续培养下东海原甲藻和中肋骨条藻种群生长过程与种间竞争研究[J].海洋科学进展,2006,24(4):495-503
    吴玉霖,傅月娜,张永山,等.长江口海域浮游植物分布及其与径流的关系[J].海洋与湖沼,2004,35(3):246-251
    吴增茂,俞光耀,张志南,等.胶州湾北部水层生态动力学模型与模拟Ⅱ:胶州湾北部水层生态动力学的模拟研究[J].青岛海洋大学学报,1999,29(3):429-435
    厦门水产学院主编.海洋浮游生物学[M].农业出版社,1981:16-34
    杨东方,王凡,高振会等.长江口理化因子影响初级生产力的探索Ⅱ.磷不是长江口浮游植物生长的限制因子[J].春季营养限制情况.海洋科学进展,2006,24(1):97-107
    杨陇慧,朱建荣,朱首贤.长江口、杭州湾及邻近海区潮流场三维数值模拟[J].华东师范大学学报,2001,3:112-122
    杨茹君,王修林,辛宇等.海洋浮游植物粒度生理的效应及其影响因素[J].海洋科学,2005,29(6):53-59
    俞光耀,吴增茂,张志南,等.胶州湾北部水层生态动力学模型与模拟Ⅰ:胶州湾北部水层生态动力学模型[J].青岛海洋大学学报,1999,29(3):421-428
    于萍,张前前,王修林,祝陈坚,韩秀荣,王磊.温度和光照对两株赤潮硅藻生长的影响[J].海洋环境科学,2006,25(1):38-40
    张传松,王江涛,朱德弟,等.2005年春夏季东海赤潮过程中营养盐作用初探.[J].海洋学报.2008,30(2):153-159
    张书文,夏长水,袁业立.黄海冷水团水域物理—生态耦合数值模式研究[J].自然科学进展,2002,12(3):3152319
    张秀芳,刘永健.东海原甲藻Prorocentrum donghaiense Lu生物学研究进展[J].生态环境,2007,16(3):1053-1057
    赵亮.渤海浮游植物生态动力学模型研究青岛海洋大学博士论文.2002
    赵卫红,李金涛,王江涛.夏季长江口海域浮游植物营养限制的现场研究[J].海洋环境科学,2004,23(4):1-5
    赵冉,白洁,孙军等.2006年夏季长江口及其邻近水域浮游植物群集[J].海洋湖沼通报2009,2:89-96
    赵冉,孙军,白洁.2006年秋季长江口及其邻近水域浮游植物群集[J].海洋科学,2010,34(4):32-39
    周伟华,袁翔城,霍文毅等.长江口邻域叶绿素a和初级生产力的分布[J].海洋学报,2004,26(3):143-150
    朱建荣.长江口外海区叶绿素a浓度分布及其动力成因分析[J].中国科学D辑,地球科学,2004,34(8):757-762
    朱建荣,丁平兴,胡敦欣.2000年8月长江口外海区冲淡水和羽状锋的观测[J].海洋与湖沼,2003,34(3):249-255
    朱建荣,丁平兴,朱首贤.黄海东海夏季环流的数值模拟[J].海洋学报,2002,24(Supp.1):123-133
    朱建荣,沈焕庭.长江冲淡水扩展机制[J].华东师范大学出版社,1997
    朱建荣,杨陇慧,朱首贤.预估修正法对河口海岸海洋模式稳定性的提高[J].海洋与湖沼,2002,33(1):15-22
    朱建荣,朱首贤,ECOM模式的改进及在长江河口的应用[J].海洋与湖沼,2003,34(4):364-374
    朱首贤,丁平兴,史峰岩,朱建荣.杭州湾、长江口余流及其物质输运作用的模拟研究Ⅱ.冬季余流及其对物质的输运作用[J].海洋学报,2000,22(6):1-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700