用户名: 密码: 验证码:
不同化学形式三价铬肠道吸收机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题组前期试验表明纳米级硅酸盐微粒吸附铬(CrNano)能够显著改善肥育猪胴体品质并大幅度提高铬在心、肝、肾、背最长肌中的沉积,预示CrNano可能具有特异的吸收机制和较高的生物可利用率。因此,本试验研究了CrNano、吡啶羧酸铬(CrPic)和三氯化铬(CrCl3)在Caco-2细胞体外吸收模型中的转运和摄取过程,并以Sprague-Dawley (SD)大鼠为试验对象,研究了CrNano、CrPic和CrCl3对SD大鼠生长性能、胴体组成、血清相关指标以及组织铬沉积的影响,旨在比较研究和探讨CrNano、CrPic和CrCl3的吸收机理及其体内生物学效应,为CrNano改善胴体品质的作用效果提供科学依据,同时,促进纳米技术在动物营养与饲料科学领域的研究和应用。
     将Caco-2细胞接种于Snapwell细胞转运培养槽的聚碳酯微孔滤膜上,在37℃和5%CO2浓度培养条件下培养21 d,细胞跨膜电阻值高于620Ω·cm2;甘露醇透过率低于0.3%·h-1·cm-2;肠腔侧(AP)碱性磷酸酶活性显著高于基底侧(BL)酶活性。表明在本实验室构建的Caco-2细胞模型在形态上与小肠上皮细胞相似,细胞已产生极性,且细胞间已形成紧密连接,可作为小肠吸收的体外模型。
     CrNano、CrPic和CrCl3在Caco-2细胞模型中的转运和摄取试验分别从两个方向进行:肠腔侧到基底侧(AP-BL)和基底侧到肠腔侧(BL-AP),考察了浓度(0.2-20μmol/L)、时间(120 min)和温度(37℃和4℃)对转运和摄取的影响。结果表明:CrNano、CrPic和CrCl3从AP-BL和BL-AP两个方向跨细胞单层转运都呈浓度和时间依赖型,且转运不受温度影响。CrNano的表观通透系数(Papp)为5.89-7.92×10-6 cm/s,CrPic的Papp为3.52-5.31×10-6cm/s, CrCl3的Papp为0.97-1.37×10-6cm/s。Caco-2细胞从AP-BL和BL-AP两个方向对CrNano、CrPic和CrCl3的摄取都呈浓度和时间依赖型。当将孵育温度从37℃降低到4℃时,Caco-2细胞单层AP侧对CrNano的摄取量显著降低(P<0.05),而对CrPic和CrCl3的摄取量没有影响。37℃孵育条件下,CrNano、CrPic和CrCl3的转运率分别为15.83%±0.76%,9.08%±0.25%和2.11%±0.53%;摄取率分别为10.08%±0.76%,4.73%±0.60%和0.88%±0.08%。试验结果表明CrNano在Caco-2细胞中可能主要是经过跨细胞途径被动吸收,而CrPic和CrCl3可能主要是经过细胞间途径被动吸收,CrNano在Caco-2细胞中的吸收率高于CrPic和CrCl3。
     将5μmol/L不同影响因素(维生素C、CuSO4、FeCl2、ZnCl2、蔗糖、EDTA、草酸钠和柠檬酸钠)与4μmol/L铬(以CrNano、CrPic和CrCl3形式)共同孵育进行转运试验。结果表明:维生素C、CuSO4、ZnCl2、EDTA、草酸盐、柠檬酸盐和蔗糖对CrNano和CrPic的转运没有显著影响(P>0.05),但FeCl3显著降低了它们在Caco-2细胞单层中的转运量(P<0.05)。维生素C和草酸盐显著增加了CrCl3的转运量(P<0.05);FeCl3和蔗糖则显著降低了CrCl3转运量(P<0.05);而CuSO4、ZnCl2、EDTA和柠檬酸盐不影响CrCl3转运量(P>0.05)。以上结果说明不同来源的铬在吸收时所受的影响存在差异,无机CrCl3相对于CrNano和CrPic来说较易受到各种因素的干扰。
     将40只雄性SD大鼠随机分成四组,第1组饲喂基础日粮,第2、3、4组在基础日粮中分别以CrCl3、CrPic和CrNano的形式添加300μg/kg的铬,试验期间称量体重并记录饲料消耗,试验6周结束,测定体组成、血清指标和组织铬含量。结果表明:CrNano处理使日增重和饲料转化效率分别提高了12.68%(P<0.05)和25.59%(P<0.05);CrPic和CrCl3对生长性能没有显著影响(P>0.05)。CrNano使大鼠瘦体重增加了15.57%(P<0.05),体脂含量下降了24.42%(P<0.05);CrPic使大鼠瘦体重提高了14.82%(P<0.05),对体脂含量没有显著影响(P>0.05);CrCl3对体组成没有显著影响(P>0.05)。CrNano使血清中胰岛素样生长因子Ⅰ、总蛋白和高密度脂蛋白含量分别提高了78.57%(P<0.05)、25.05%(P<0.05)和23.07%(P<0.05),使血清中胰岛素、葡萄糖、甘油三酯和尿素氮含量分别降低了45.38%(P<0.05)、31.84%(P<0.05)、46.67%(P<0.05)和48.75%(P<0.05)。CrPic使血清中胰岛素样生长因子Ⅰ和高密度脂蛋白含量分别升高了38.46%(P<0.05)和26.15%(P<0.05),使血清葡萄糖、甘油三酯和尿素氮含量分别降低了15.05%(P<0.05)、36.00%(P<0.05)和57.62%(P<0.05)。CrCl3对血清相关指标没有显著影响(P>0.05)。同时,CrNano处理组大鼠全血、肝脏、肾脏、空肠和后腿肌肉中的铬含量显著高于对照组、CrCl3组和CrPic组大鼠对应器官中铬含量。这些结果表明,CrNano相对于CrPic和CrCl3来说在大鼠体内具有较高的吸收率;CrNano生物利用率显著高于CrCl3,也有高于CrPic的趋势。
     将70只雄性SD大鼠随机分为7个日粮处理组,第1组饲喂基础日粮,第2-7组分别在基础日粮中以CrNano形式添加75、150、300、450、600和1200μg/kg铬。试验期6周,试验期间称量体重并记录日粮消耗,试验期末用双能X光测定仪测定大鼠体组成,并收集组织样品,测定组织铬含量。结果如下:以CrNano形式添加75、150、300μg/kg铬显著提高了大鼠的平均日增重(P<0.05);75、150、300、450μg/kg铬显著提高了饲料转化效率(P<0.05)。300和450μg/kg铬显著提高了大鼠瘦体重(P<0.05),而150、300、450、600μg/kg铬则显著降低了大鼠体脂含量(P<0.05)。75-1200μg/kg铬显著升高了全血中的铬浓度(P<0.05);150~1200μg/kg铬都显著升高了肝脏和肾脏中的铬浓度(P<0.05);同时300、450和600μg/kg铬则显著升高了大鼠后腿肌肉中铬含量(P<0.05)。这些结果表明日粮中补充CrNano能促进大鼠生长,改善体组成,增加铬在肝、肾、肌肉等组织中的沉积,但这些作用并没有呈现严格的剂量效应。
Our previous studies showed that dietary supplementation of chromium (Cr) in the form of chromium-silicate nanocomposite (CrNano) could positively alter carcass characteristics in finishing pigs and greatly increase Cr deposit in heart, liver, kidney and longissimus muscle, which indicated that CrNano might have unique absorption mechanism in vivo and high bioavailability. Therefore, the present studies were conducted to investigate the transport and uptake of CrNano, Cr picolinate (CrPic) and Cr chloride (CrCl3) by using Caco-2 cell monolayer model. At the same time, the effects of CrNano, CrPic and CrCl3 on growth performance, carcass traits, serum parameters and tissue Cr deposit in Sprague-Dawley (SD) rats were also evaluated. Our goal was to investigate, compare and probe into the absorption mechanisms of CrNano, CrPic and CrCl3 as well as their in vivo bioeffects. The potential results will provide scientific explanation for positive effects of CrNano on carcass traits and will promote the research and application of nanotechnology in animal nutrition and feed science.
     The Caco-2 cells were seeded onto the polycarbonate microporal membranes in Snapwell bichambers and cultured on 37℃and in an atmosphere of 5% carbon dioxide. After 21 days of culture, the transepithelial electrical resistance was higher than 620Ω·cm2, the transport rate of mannitol across Caco-2 cell monolayers was less than 0.3%·h-1·cm-2, and the activity of alkaline phosphatase in apical (AP) side was greatly higher than that in basolateral (BL) side. These results indicated that the Caco-2 cells cultured in our laboratory had similarity to intestinal epithelial cells in morphology, produced polarity, formed well tight junctions between cells, and could be used as an in vitro model to investigate absorption mechanisms of substances.
     The transport and uptake of CrNano, CrPic and CrCl3 in Caco-2 cell monolayers were conducted from AP to BL and BL to AP, respectively. The effects of concentration (0.2-20μmol/L of Cr), time (120 min of incubation) and temperature (37℃and 4℃on transport and uptake of CrNano, CrPic and CrCl3 were investigated. The results were as follows. Transports of CrNano, CrPic and CrCl3 across Caco-2 monolayers both from AP to BL and BL to AP direction were concentration-and time-dependent. Lowering the incubation temperature from 37℃to 4℃had no effect on transport amounts of CrNano, CrPic and CrCl3 both from AP to BL and BL to AP direction. The apparent permeability coefficient (Papp) of CrNano was between 5.89×10℃cm/s and 7.92×10-6 cm/s. Papp of CrPic was between 3.52×10-6 cm/s and 5.31×10-6 cm/s, and that of CrCl3 was between 0.97×10-6 cm/s and 1.37×10-6 cm/s. Uptakes of CrNano, CrPic and CrCl3 into Caco-2 cells both from AP to BL and BL to AP direction were concentration-and time-dependent. The uptake amount of CrNano into Caco-2 cells in AP side was significantly decreased (P<0.05) when incubation temperature lowered from 37℃to 4℃, whereas the uptake amounts of CrPic and CrCl3 were unaffected (P>0.05). The transport rate of CrNano, CrPic and CrCl3 was 15.83%±0.76%,9.08%±0.25%, and 2.11%±0.53%, respectively. The uptake rate of CrNano, CrPic and CrCl3 was 10.08%±0.76%, 4.73%±0.60%, and 0.88%±0.08%, respectively. These results indicated that absorption of CrNano in Caco-2 cell monolayers was mainly via transcellular pathway, while absorption of CrPic and CrCl3 were mainly via paracellular pathway. CrNano had higher absorption efficiency than CrPic and CrCl3 in Caco-2 cell monolayers.
     Transport of 4μmol/L of Cr in the form of CrNano, CrPic and CrCl3 were conducted with 5μmol/L of vitamin C, copper sulfate, ferric chloride, zinc chloride, sucrose, ethylene diaminetetraacetic acid (EDTA), oxalate, or citrate, respectively. Vitamin C, copper, zinc, EDTA, oxalate, citrate and sucrose had no effect on transport of CrNano and CrPic (P>0.05). However, ferric significantly reduced the transport amount of CrNano and CrPic (P<0.05). Vitamin C and oxalate significantly increased the transport amount of CrCl3 (P<0.05). Ferric and sucrose decreased the transport amount of CrCl3 (P<0.05). Copper, zinc, EDTA and citrate did not affect the transport of CrCl3 (P>0.05). These results indicated that dietary factors played different roles in affecting diverse sources of Cr. CrCl3 was easily affected by dietary factors relative to CrNano and CrPic.
     A total of forty male SD rats were randomly assigned to four dietary treatment groups. Rats in the first group were fed basal diet as a control. Rats in the second, third and fourth group were fed basal diet supplemented with 300μg/kg Cr in the form of CrCl3, CrPic and CrNano, respectively. Feeding trial was conducted for six weeks. During the period of trial, body weight of rats was weighed and feed consumption was recorded. At the end of trial, body composition, serum parameters and tissue Cr content were determined. In comparison to the control, supplemental Cr from CrNano increased average daily gain and feed efficiency by 12.68%(P<0.05) and 25.59%(P<0.05), respectively. Addition of Cr from CrPic and CrCl3 had no effect on growing performance of rats (P>0.05). Supplementation of CrNano increased lean body mass by 15.57%(P<0.05) and decreased percent body fat by 24.42%(P<0.05). Addition of CrPic increased lean body mass by 14.82%(P<0.05) while had no effect on percent body fat (P>0.05). Addition of CrCl3 had no effect on body composition of rats (P>0.05). Supplemental Cr from CrNano increased serum contents of insulin-like growth factor I, total protein and high-density lipoprotein by 78.57%(P<0.05), 25.05%(P<0.05) and 23.07%(P<0.05), respectively, and decreased serum contents of insulin, glucose, triglyceride, and urea nitrogen by 45.38%(P<0.05),31.84%(P<0.05), 46.67%(P<0.05), and 48.75%(P<0.05), respectively. Addition of Cr from CrPic increased serum contents of insulin-like growth factor I and high-density lipoprotein by 38.46%(P<0.05) and 26.15%(P<0.05), respectively, and decreased serum contents of glucose, triglyceride, urea nitrogen by 15.05%(P<0.05),36.00%(P<0.05), and 57.62%(P<0.05), respectively. However, supplementation of Cr from CrCl3 had no effect on serum parameters in the rats. In addition, Cr content in blood, liver, kidney, jejunum and hind leg muscle of rats fed supplemental Cr was higher than that in the corresponding tissues of rats fed basal diet and diet supplemented with CrCl3 and CrPic. These results suggested that CrNano had higher absorption efficiency than CrPic and CrCl3 in SD rats. In addition, CrNano had significantly higher bioavailability than CrCl3 and tended to be more bioavailable than CrPic in rats.
     A total of seventy male SD rats were randomly allotted to seven dietary treatment groups. Rats in the first group were fed basal diet as control. Rats in the second, third, fourth, fifth, sixth and seventh group were fed basal diet supplemented with 75,150,300,450,600, and 1200μg Cr/kg diet in the form of CrNano, respectively. The feeding trial was conducted for six weeks. The body weight of rats was weighed and feed consumption was recorded during the trial. At the end of the trial, body composition of rats was assessed by dual energy X-ray absorptionmetry. Samples of organs were collected for analysis. Supplementation of 75,150 and 300μg/kg Cr in the form of CrNano significantly increased average daily gain (P<0.05). Feed efficiency was increased by addition of 75,150,300 and 450μg/kg Cr from CrNano (P<0.05). Lean body mass was increased by 300 and 450μg/kg Cr as CrNano (P<0.05). Addition of 150,300,450 and 600μg/kg Cr from CrNano decreased percent body fat of rats significantly (P<0.05). Addition of from 75μg/kg to 1200μg/kg Cr from CrNano significantly increased Cr content in blood (P<0.05). The Cr concentration in liver and kidney was greatly enhanced by supplementation of from 150μg/kg to 1200μg/kg Cr (P<0.05). In addition, Cr content in hind leg muscle of rats was significantly increased by addition of 300,450 and 600μg/kg Cr from CrNano. These results suggested that supplementation of CrNano to the diet of rats could promote growth, positively alter body composition, increase Cr deposit in tissues. However, no restrict dose dependent effect was detected.
引文
Abraham A. S., Broocks B. A., Eylath U.1992. The effect of chromium supplementation on serum glucose and lipids in patients with and without non-insulin dependent diabetes. Metabolism 41,768.
    Alvarez-Hernandez X., Nichols G M., Glass J.1991. Caco-2 cell line:a system for studying intestinal iron transport across epithelial cell monolayers. Biochimica et Biophysica Acta 1070(1),205-208.
    Amerongen H. M., Mack J. A., Wilson J. M. et al.1987. A lateral membrane protein in intestinal epithelial cells (abstr.). Journal of Cell Biology 105,146a.
    Amoikon E. K., Fernandez J. M., Southern L. L. et al.1995. Effect of chromium tripicoliante on growth, glucose tolerance, insulin sensitivity, plasma metabolites and growth hormone in pigs. Journal of Animal Science 73,1123-1130.
    Anderson K. E., Stevenson B. R., Rogers J. A.1999. Folic acid-PEO-labeled liposomes to improve gastrointestinal absorption of encapsulated agents. Journal of Controlled Release 60,189-198.
    Anderson R. A.1987. Chromium. In:(Ed. W. Mertz) Trace Elements in Human and Animal Nutrition (5th Ed.). pp 225. Academic Press, San Diego, CA.
    Anderson R. A.1994. Stress effects on chromium nutrition of humans and farm animals. In Anonymous (ed):"Proc Alltech's Tenth Symposium Biotechnology in the Feed Industry." Nottingham, England:Univ Press, pp 267-274.
    Anderson R. A.1995. Chromium, glucose tolerance, and lipid metabolism. Journal of Advanced Medicine 8,37.
    Anderson R. A.1998a. Chromium, glucose intolerance and diabetes. Journal of the American College of Nutrition 17,548-555.
    Anderson R. A.1998b. Effects of chromium on body composition and weight loss. Nutrition Reviews 56,266-270.
    Anderson R. A., Bryden N. A., Polansky M. M.1997. Lack of toxicity of chromium chloride and chromium picolinate in rats. Journal of Amercian College Nutrition 16,273-279.
    Anderson R. A., Bryden N. A., Polansky M. M. et al.1989. Chromium supplementation of turkeys:effects on tissue chromium. Journal of Agricultural and Food Chemistry 37,131-134.
    Anderson R. A., Bryden N. A., Polansky M. M. et al.1990. Urinary chromium excretion and insulinogenic properties of carbohydrates. American Journal of Clinical Nutrition 51,864-868.
    Anderson R. A., Bryden N. A., Polansky M. M. et al.1996. Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats. Journal of Trace Element in Experimental Medicine 9,11-19.
    Anderson R. A., Kozolvshky A. S.1985. Chromium intaked, absorption and excretion of subjects chromium. Journal of Agricultural and Food Chemistry 37,131.
    Anderson R. A., Polansky M. M., Bryden N. A. et al.1982. Urinary chromium excretion of human subjects:Effects of chromium supplementation and glucose loading. American Journal of Clinical Nutrition 36,1184-1193.
    Aprahamian M. M., Michel C. C., Humbert W. W. et al.1987. Transmucosal passage of polyalkylcyanoacrylate nanocapsules as a new drug carrier in the small intestine. Biology of the Cell 61,69-76.
    Araki Y., Katoh T., Ogawa A. et al.2005. Bile acid modulates transepithelial permeability via the generation of reactive oxygen species in the Caco-2 cell line. Free Radical Biology & Medicine 39,769-780.
    Arave C. W., Warnick K., Walters J. L. et al.1988. Stress of transporting cows as measured by serum glucocorticoids and milk production. Journal of Dairy Science 71 (Suppl.1),214 (Abstract).
    Artursson P.1990. Epithelial transport of drugs in cell culture I:a model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. Journal of Pharmaceutical Sciences 79,476-482.
    Artursson P., Karlsson J.1991. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochemical and Biophysical Research Communication 175,880-885.
    Artursson P., Palm K., Luthman K.1996. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Advanced Drug Delivery Reviews 22, 67-84.
    Artursson P., Ungell A. L., Lofroth J. E.1993. Selective paracellular permeability in two models of intestinal absorption:cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharmaceutical Research 10, 1123-1129.
    Bahadori B., Wallner S., Schneider H. et al.1997. Effects of chromium yeast and chromium picolinate on body composition in obese non-diabetic patients during and after a very-low-calorie diet. Acta Medica Austriaca 5,185-187.
    Bailey J. R., Sephton D. H., Diedzic W. R. Oxygen uptake by isolated perfused fish hearts with differing myoglobin concentrations under hypoxic conditions. Journal of Molecular Cellular Cardiology 22,1125-1134.
    Barnard R. J., Wen S. J.1994. Exercise and diet in the prevention and control of the metabolic syndrome. Sports Medicine 18,218-228.
    Barr W. H., Riegelman S.1970. Intestinal drug absorption and metabolism Ⅰ: comparison of methods and models to study physiological factors of in vitro and in vivo intestinal absorption. Journal of Pharmaceutical Science 59,154-163.
    Baruthio F.1992. Toxic effects of chromium and its compounds. Biological Trace Element Research 32,145-153.
    Bean C., Zhang J. P.2007. China, People Republic of Livestock and Products Semi-Annual Report. USDA Foreign Agricultural Service Global Agriculture Information Network Report, pp:13-18.
    Bernao A., Meseguer I., Aguilar M. V. et al.2004. Effect of different doses of chromium picolinate on protein metabolism in infant rats. Journal of Trace Element in Medicine and Biology 18,33-39.
    Berner T. O., Murphy M. M., Slesinski R.2004. Determining the safety of chromium tripicoliante for addition to foods as a nutrient supplement. Food and Chemical Toxicology 42,1029-1042.
    Berrio L. F., Southern L. L., Fernandez J. M.1995. Effect of dietary chromium tripicolinate on insulin binding in isolated pig fat cells and erythrocyte ghosts. FASEB Journal 9, A449(Abstract).
    Blais A., Lecoeur S., Milhaud G. et al.1999. Cadmium uptake and transepithelial transport in control and long-term exposed Caco-2 cells:the role of metallothionein. Toxicology and applied pharmacology 160,76-85.
    Boleman S. L., Boleman S. J., Bidner T. D. et al.1995. Effect of chromium picolinate on growth, body composition, and tissue accretion in pigs. Journal of Animal Science 73,2033-2042.
    Brameld J. M., Atkinson J. L., Saunders J. C. et al.1996. Effects of growth hormone administration and dietary protein intake on insulin-like growth factor I and growth hormone receptor mRNA expression in porcine liver, skeletal muscle and adipose tissue. Journal of Animal Science 74,1832-1841.
    Brameld J. M., Weller P. A., Saunders J. C. et al.1995. Hormone control of insulin-like growth factor I and growth hormone mRNA expression in porcine hepatocytes in culture. Journal of Endocrinology 146,239.
    Braude R.1945. Some observation on the need for copper in the diet of fattening pigs. Journal of Agricultural Science 35,163.
    Bronk J. R., Hastewell J. G.1987. The transport of pyrimidines into tissue rings cut from rat small intestine. The Journal of Physiology 382,475-488.
    Bulbulian R., Pringle D. D., Liddy M. S.1996. Chromium picolinate supplementation in male and female swimmers. Medicine & Science in Sports & Exercise 28,511.
    Bunting L. D., Fernandez J. M., Thompson D. L.1994. Influence of chromium picolinate on glucose usage and metabolic criteria in growing Holstein calves. Journal of Animal Science 72(6),1591-1599.
    Burton J. L.1995. Supplemental chromium:its benefits to the bovine immune system. Animal Feed Science and Technology 72(6),1591-1599.
    Burton J. L., Mallard B. A., Mowat D. N. et al.1993. Effects of supplemental chromium on immune responses of periparturient and early lactation dairy cows. Journal of Animal Nutrition 71,1532-1539.
    Buur A., Trier L., Magnusson C. et al.1996. Permeability of 5-fluorouracil and prodrugs in Caco-2 cell monolayers. International Journal of Pharmaceutics 129, 223-231.
    Campbell W. W., Joseph L. J. O., Davey S. L. et al. 1999. Effects of resistance training and chromium picolinate on body composition and skeletal muscle in older men. Journal of Applied Physiology 86(1),29-39.
    Chang X., Mowat D. N.1992. Supplemental chromium for stressed and growing feeder calves. Journal of Animal Science 70,559-565.
    Chen N. S., Tsai A., Dyer I. A.1973. Effect of chelating agents on chromium absorption in rats. Journal of Nutrition 103,1182-1186.
    Christison G. I., Johnson H. D.1972. Cortisol turnover in heatstressed cows. Journal of Animal Science 35,1005.
    Clancy S. P., Clarkson P. M., DeCheke M. E. et al.1994. Effects of chromium picolinate supplementation on body composition, strength and urinary chromium loss in football players. International Journal of Sport Nutrition 4,142-153.
    Clark E. R.1936. Growth and development of function in blood vessels and lymphatics. Annals of Internal Medicine 9,1043-1049.
    Cogburn J. N., Donovan M. G., Schasteen C. S.1991. A model of human (?)mall intestinal absorptive cells.1.Transport barrier. Pharmceutical Research 8(2), 210-216.
    Corning instructions for use. Transwell Permeable Supports Selection and Use. Corning Incorporated, One Riverfront Plaza, NY 14831-0001. http:// www.corning.com/lifesciences
    Crow S. D., Newcomb M. D.1997. Effect of dietary chromium additions along with varying protein levels on growth performance and carcass characteristics of growing and finishing pigs. Journal of Animal Science 75(Supp.1),79(Abstract).
    Crow S. D., Newcomb M. D., Ruth P.1997. Effect of dietary chromium addition on growth performance and carcass characteristics of growing and finishing pigs. Journal of Animal Science 75(Supp.1),79(Abstract).
    Dantzig A. H., Bergin L.1990. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochimica et Biophysica Acta 1027,211-217.
    Davis M. L., Seaborn C. D., Stoecher B. J.1995. Effects of over-the-counter drugs on 51chromium retention and urinary excretion in rats. Nutrition Research 15, 201-210.
    Delie F.1998. Evaluation of nano-and microparticle uptake by the gastrointestinal tract. Advanced Drug Delivery Reviews 34,221-233.
    Desai M. P., Labhasetwar V. G., Amidon L. et al.1996. Gastrointestinal uptake of biodegradable microparticles:effect of particle size. Pharmaceutical Research 13, 1838-1845.
    Desai M. P., Labhasetwar V., Walter E. et al.1997. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharmaceutical Research 14,1568-1573.
    Digling D., Zemel M. B.1998. Chromium picolinate antagonizes the lipogenic and antilipolytic effects of insulin in human adipocytes. FASEB Journal 12, A505.
    Dix C. J., Hassan I. F., Obray H.1990. The transport of vitamin B12 through polarized monolayers of Caco-2 cells. Gastroenterology 98,1272-1279.
    Donaldson D. L., Lee D. M., Smith C. C. et al.1985. Glucose tolerance and plasma lipid distributions in rats fed a high-sucrose, high-cholesterol, low-chromium diet. Metabolism 34,1086-1093.
    Donaldson R. M. Intrinsic factor and the transport of cobalamin. In:Johnson L R. ed. Physiology of the Gastrointestinal Tract. Vol 4, (2nd ed.). New York:Raven Press. 1987:959-973.
    Dowling H. J., Offenbacher E. G., Pi-Sunyer F. X.1989. Absorption of inorganic, trivalent chromium from the vascularly perfused rat small intestine. Journal of Nutrition119,1138-1145.
    Evans G. W.1989. The effects of chromium picolinate on insulin controlled parameters in humans. International Journal of Biosocial and Medical Research 11,163-180.
    Evans G W., Bowman T. D.1992. Chromium picolinate increases membrane fluidity and rate of insulin internalization. Journal of Inorganic Biochemistry 46,243.
    Evock-Clover C. M., Polansky M. M., Anderson R. A. et al.1993. Dietary chromium supplementation with or without somatotropin treatment alters serum hormones and metabolites in growing pigs without affecting growth performance. Journal of Nutrition 123(9),1504-1512.
    Evock-Clover C. M., Steele N. C.1994. Effects of dietary chromium picolinate (CrPic) with or without recombinant porcine somatotropin (rPST) administration on growth performance and carcass composition of growing-finishing pigs. Journal of Animal Science 72(Suppl.1),159(Abstract).
    Fairweather-tait S., Hurrell R.1996. Bioavailability of minerals and trace elements. Nutrition Research Reviews 9,295-324.
    Felig P.1975. Amino acid metabolism in man. Annual Review of Biochemistry 44, 933-955.
    Felig P.1984. Insulin is the mediator of feeding-related thermogenesis:insulin resistance and/or deficiency results in a thermogenic defect which contributes to the pathogenesis of obesity. Clinical Physiology 4,267-273.
    Finley J. W., Briske-Anderson M., Reeves P. G. et al.1995. Zinc uptake and transcellular movement by Caco-2 cells:studies with media containing fetal bovine serum. Journal of Nutritional Biochemistry 6,137-144.
    Finley J. W., Monroe P.1997. Mn absorption:the use of Caco-2 cells as a model of the intestinal epithelia. Journal of Nutritional Biochemistry 8,92-101.
    Fisher R. B.1981. Active transport of salicylate by rat jejumum. Quarterly Journal of Experimental Physiology 66,91-98.
    Florence A. T., Hillery A. M., Hussain N. et al.1995. Nanoparticles as carriers for oral peptide absorption:studies on particle uptake and fate. Journal of Controlled Release 36,39-46.
    Florence A. T., Jani P. U.1993. Particulate delivery:the challenge of the oral route. In: Rolland, A. (ed.), Pharmaceutical Particulate Carriers:Therapeutic Application. New York:Marcel Dekker Inc.,65-108.
    Fogh J., Fogh J. M., Orfeo T.1977. One hundred and twenty-seven cultured human colon cell lines producing tumors in nude mice. Journal of the National Cancer Institute 59,221-226.
    Food and Drug Administration,1995. Food Labeling:Reference Daily Intakes. Federal Register 60 (249),67163-67175.
    Gan L. L., Thakker D. R.1997. Applications of the Caco-2 model in the design and development of orally active drugs:elucidation of biochemical and physical barriers posed by the intestinal epithelium. Advanced Drug Delivery Reviews 23, 77-98.
    Ganapathy M. E., Brandsch M., Prasad P. D. et al.1995. Differential recognition of β-lactam antibiotics by intestinal and renal peptide transporters, PEPT1 and PEPT2. The Journal of Biological Chemistry 270,25672-25677.
    Ganapathy V., Brandsch M., Leibach F. H. Physiology of the Gastrointestinal Tract. New York:Raven Press.1994:1773-1794.
    Gang X., Xu Z. R., Wu S. H. et al.2001. Effect of chromium picolinate on growth performance, carcass characteristics, serum metabolites and metabolism of lipid in pigs. Asian-Australasian Journal of Animal Science 14(2),258-262.
    Giles J.2004. Nanoparticles in the brain, tiny particles enter the brain after being inhaled. Nature,12th January (http://www.nature.com/nsu/040105/040105-9.html).
    Giri J., Usha K., Sunitha T.1990. Evaluation of the selenium and chromium content of plant foods. Plant Foods for Human Nutrition 40,49-59.
    Glinsmann W. H., Mertz W.1966. Effect of trivalent chromium on glucose tolerance. Metabolism 15,510-519.
    Goihl J.1997. Phytase effects on mineral utilization in weaning pigs explored. Feedstuff's 1,15.
    Gore J., Hoinard C., Maingault P.1986. Biotin uptake by isolated rat intestinal cells. Biochimica et Biophysica Acta 90,1251-1259.
    Grant K. E., Chandler R. M., Castle A. L. et al.1997. Chromium and exercise training: effect on obese women. Medicine and Science in Sports and Exercise 29(8), 992-998.
    Gref R., Minamitake Y., Peracchia M. T. et al.1994. Biodegradable long-circulating polymeric nanospheres. Science 263 (5153),1600-1603.
    Gres M. C., Julian B., Bourrie M. et al.1998. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line:comparison with the parental Caco-2 cell line. Pharmaceutical Research 15 (5),726-733.
    Guan X. F., Matte J. J., Ku P. K. et al.2000. High chromium yeast supplementation improves glucose tolerance in pigs by decreasing hepatic extraction of insulin. Journal of Nutrition 130,1274-1279.
    Hagen C. D., Lindemann M. D., Purser K. W.2000. Effect of dietary chromium tripicolinate on productivity of sows under commercial conditions. Swine Health Production 8,59-63.
    Hahn C. J., Evans G W.1975. Absorption of trace metals in the zinc deficient rat. American Journal of Physiology 228,1020-1023.
    Halleux C., Schneider Y. J.1991. Iron absorption by intestinal epithelial cells:Caco-2 cells cultivated in serum-free medium, on polyethyleneterephthalate microporous membranes, as an in vitro model. In Vitro Cellular & Developmental Biology 27A(4),293-302.
    Hambidge K. M.1971. Chromium nutrition in the mother and the growing child. In Mertz W. and Cornatzer W. E. ed. Newer Trace Element in Nutrition. New York: Dekker.
    Harper A. F., Kornegay E. T.1996. Supplemental dietary chromium and fish meal for pigs from weaning to slaughter weight. Effect of dietary chromium addition growth performance and carcass characteristics of growing and finishing pigs. Journal of Animal Science 74(Supp.1),194(Abstract).
    Harper A. F., Lindemann M. D., Kornegay E. T.1997. Effect of supplemental dietary chromium on growth performance of weanling swine. Journal of Animal Science 73 (Suppl),194.
    Harper J.M. M., Soar J. B., Buttery P. J.1987. Changes in protein metabolism of ovine primary muscle cultures on treatment with growth hormone, insulin-like growth factor I or epidermal growth factor. Jounral of Endocrinology 112,87.
    Harris J. E., Crow S. D., Newcomb M. D.1995. Effect of chromium picolinate on growth performance and carcass characteristics of pigs fed adequate and low protein diets. Journal of Animal Science 73(Suppl 1),194(Abstract).
    Hashizume T., Haglof S. A., Malven P. V.1994. Intracerebral methionine-enkephalin, serum cortisol, and serum endorphin during acute exposure of sheep to physical or isolation stress. Journal of Animal Science 72,1893-1902.
    Hasten D. L., Hegsted M., Glickman-Weiss E. L.1993. Effects of chromium picolinate and exercise on the body composition of the rat. FASEB Journal 7, A77 (Abstract).
    Hasten D. L., Hegsted M., Keenan M. J. et al.1996. Effects of various forms of dietary chromium on growth and body composition in the rat. Nutrition Research 17 (2),283-294.
    Hasten D. L., Hegsted M., Keenan M. J. et al.1997. Dosage effects of chromium picolinate on growth and body composition in the rat. Nutrition Research 17, 1175-1186.
    Hasten D. L., Rome E. P., Franks B. D. et al.1992. Effects of chromium picolinate on beginning weight training students. International Journal of Sport Nutrition 2, 343-350.
    Hasten D. L., Siver F., Fornea S. et al.1994. Dosage effects of chromium picolinate on body composition. FASEB Journal 8, A195 (Abstract).
    He Y. Q., Liu S. P., Liu Q. et al.2001. Absorption, fluorescenc and resonance rayleigh scattering spectral characteristics of interaction of gold nanoparticle with safranine T. Science in China (Series B) 48(3),216-226.
    He Y., Sanderson I. R., Walker W. A.1994. Uptake, transport and metabolism of exogenous nucleosides in intestinal epithelial cell cultures. Journal of Nutrition 124,1942-1949.
    Heimbach J. T., Anderson R. A.2005. Chromium:recent studies regarding nutritional roles and safety. Nutrition Today 40,189-195.
    Hidalgo I. J., Borchardt R. T.1990a. Transport of a large neutral amino acid (phenylalanine) in a human intestinal epithelial cell line:Caco-2. Biochimica et Biophysica Acta 1028,25-30.
    Hidalgo I. J., Borchardt R. T.1990b. Transport of bile acids in a human intestinal epithelial cell line, Caco-2. Biochimica et Biophysica Acta 1035,97-103.
    Hidalgo I. J., Li J. B.1996. Carrier-mediated transport and efflux mechanisms in Caco-2 cells. Advanced Drug Delivery Reviews 22,53-66.
    Hidalgo I. J., Raub T. J., Borchardt R. T.1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96,736-749.
    Hofinann A. F. Intestinal absorption of bile acids and biliary constituents:The intestinal component of the enterohepatic circulation and the intergrated system. In:Johnson L R. ed. Physiology of the Gastrointestinal Tract. Vol 3, (3rd ed.). New York:Raven Press,1994:1845-1865.
    Hu M.1993. Comparison of uptake characteristics of thymidine and zidovudine in a human intestinal model system. Journal of Pharmaceutical Sciences 82,829-833.
    Hu M., Borchardt R. T.1992. Transport of a large neutral amino acid in a human intestinal epithelial cell line (Caco-2):uptake and efflux of phenylalanine. Biochimica et Biophysica Acta 1135,233-244.
    Hussain N., Jaitley V., Florence A. T.2001. Recent advances in the understanding of uptake of microparticles across the gastrointestinal lymphatics. Advacned Drug Delivery Reviews 50,107-142.
    International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risks in humans. Chromium, nickel and welding. World Health Organization,1990; 49:19-527.
    Inui K. I., Yamamoto M., Saito H.1992. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2:specific transport systems in apical and basolateral membranes. Journal of Pharmacology and Experimental Therapeutics 261,195-201.
    Ismail M.1999. The use of Caco-2 cells as an in vitro method to study bioavailability of iron. Malaysian Journal of Nutrition 5,31-45.
    Jumarie C., Campbell P. G., Berteloot A. et al.1997. Caco-2 cell line used as an in vitro model to study cadmium accumulation in intestinal epithelial cells. The Journal of Membrane Biology 158,31-48.
    Jumarie C., Fortin C., Houde M. et al.2001. Cadmium uptake by Caco-2 cells:effects of Cd complexation by chloride, glutathione, and phytochelatins. Toxicology and Applied Pharmacology 170,29-38.
    Kaats G. R., Blum K., Fisher J. A. et al.1996. Effects of chromium picolinate supplementation on body composition:a randomized double-masked placebo-controlled study. Current Therapeutic Research 57,747-756.
    Kaats G R., Wise J. A., Blum K. et al.1992. The short-term therapeutic efficacy of treating obesity with a plan of improved nutrition and moderate calorie restriction. Current Therapeutic Research 51,261-274.
    Kegley E. B., Spears J. W., Brown T. T. Jr.1996. Immune response and disease resistance of calves fed chromium nicotinic acid complex or chromium chloride. Journal of Dairy Science 79,1278-1283.
    Kim D. S., Kim T. W., Park I. K. et al.2002, Effects of chromium picolinate supplementation on insulin sensitivity, serum lipids, and body weight in dexamethasone treated rats. Metabolism 51,589-594.
    Kim S. W., Han I. K., Choi K. J. et al.1996. Effect of excessive dietary chromium picolinate on growth performance, nutrient utilizability and serum traits in broiler chicks. Asian-Australasian Journal of Animal Sciences 9,349-354.
    Kitchalong L., Fernandez J. M., Bunting L. D. et al.1993. Chromium picolinate supplementation in lamb rations:Effects on performance, nitrogen balance, endocrine and metabolic parameters. Journal of Animal Science 71(Suppl.1), 291 (Abstract).
    Koea J. B., Breier B. H., Shaw J.H. F.1992. Possible role for IGF-I:Evidence in sheep for in vivo regulation of IGF-I mediated protein anabolism. Endocrinology 130,2423.
    Koike T. I., Kratzer F. H., Vohra P.1964. Intestinal absorption of zinc or calcium-ethyl-enediaminetertraacetic acid complex in chickens. Proceedings of the Society for Experimental and Biological Medicine 117,483-486.
    Korneagy E. T., Wang Z., Wood C. M.1997. Supplemental chromium picolinate influences nitrogen balance dry matter digestibility and carcass traits in growing-finishing pigs. Effect of dietary chromium addition growth performance and carcass characteristics of growing and finishing pigs. Journal of Animal Science 75,1319-1323.
    Kozlovsky A. S., Moser P. B., Reiser S. et al.1986. Effects of diets high in simple sugars on urinary chromium losses. Metabolism 35,515-518.
    Kreuter J.1996. Nanoparticles and microparticles for drug and vaccine delivery. Journal of Anatomy 189,503-505.
    Kuwayama K., Miyauchi S., Tateoka R. et al.2002. Fluorescein uptake by a monocarboxylic acid transporter in human intestinal Caco-2 cell. Biochemical Pharmacology 63,81-88.
    Lamson D. W., Plaza S. M.2002. The safety and efficacy of high-dose chromium. Alternative Medicine Review 7(3),218-235.
    Lee D., Yen H. T., Shen T. F. et al.,1997. The effects of chromium picolinate supplementation on growth performance and immunity response of weanling pigs. Journal of the Chinese Society of Animal Science 26,373-386.
    Lee J., Pena M. M., Nose Y. et al.2002. Biochemical characterization of the human copper transporter Ctr1. Journal of Biological Chemistry 277(6),4380-4387.
    Lefavl R. G., Anderson R. A., Keith R. E.1992. Efficacy of chromium supplementation in athletes:Emphasis on anabolism. International Journal of Sport Nutrition 2,111-122.
    Lien T. F., Chen S. Y., Wu C. P.1996. Effects of chromium picolinate and chromium chloride on growth performance and serum traits of growing-finishing swine. Journal of Animal Science 74(Supp.1),185(Abstract).
    Lin X. L., Xu Z. R.2004. Effects of montmorillonite nanocomposite on mercury residues in growing/finishing pigs. Asian-Australasian Journal of Animal Science 17(10),1434-1437.
    Lindemann M. D.1996. Supplemental chromium may provide benefits but cost must be weighed. Feedstuffs 65(52),14-17.
    Lindemann M. D., Carter S. D., Chiba L. I. et al.2004. A regional evaluation of chromium tripicolinate supplementation of diets fed to reproducing sows. Journal of Animal Science 82,2972-2977.
    Lindemann M. D., Harper A. F., Kornegay E. T.1994. Reproductive response in swine to the supplementation of chromium from chromium picolinate. Proc. Mid-West Amer. Soc. Anim. Sci. Mtg. (Abstr).
    Lindemann M. D., Purser K. W.1997. Evaluation of dietary chromium supplementation for growing-finishing pigs in a commercial setting. Journal of Animal Science 75(Suppl.1),67(Abstract).
    Lindemann M. D., Wood C. M., Harper A. F. et al.1993. Chromium picolinate addition to diets of growing-finishing pigs. Journal of Animal Scence 71 (Suppl 1):14 (abstract).
    Lindemann M. D., Wood C. M., Harper A. F. et al.1995. Dietary chromium picolinate additions improve gain:feed and carcass characteristics in growing-finishing pigs and increase litter size in reproducing sows. Journal of Animal Science 73, 457-465.
    Lukaski H. C.1999. Chromium as a supplement. Annual Review of Nutrition 19, 279-302.
    MacKenzie R. D., Byerrum R. U., Ham C. F. 1958. Chronic toxicity studies, Ⅱ. Hexavalent and trivalent chromium administered in drinking water to rats. A.M.A Archives of Industrial Health 18,232-234.
    Martini L. A., Tchack L., Wood R. J.2002. Iron treatment downregulates DMT1 and IREG1 mRNA expression in Caco-2 cells. Journal of Nutrition 132,693-696.
    Matsuda K.1976. Studies on cathepsins of rat liver lysosomes. Ⅲ. Hydrolysis of peptides, and inactivation of angiotensin and bradykinin by cathepsin A. Journal of Biochemistry 80(4),659-669.
    Matthews J.O., Higbie A. D., Southern L. L. et al.2003. Effect of chromium propionate and metabolizable energy on growth, carcass traits, and pork quality of growing-finishing pigs. Journal of Animal Science 81,191-196.
    Matthews J. O., Southern L. L., Fernandez J. M. et al.2001. Effect of chromium picolinate and chromium propionate on glucose and insulin kinetics of growing barrows and on growth and carcass traits of growing-finishing barrows. Journal of Animal Science 79,2172-2178.
    McCarty M. F.1993. Hypothesis:Sensitization of insulin-dependent hypothalamic glucoreceptors may account for the rat-reducing effects of chromium picolinate. Journal of Optimal Nutrition 2,36-53.
    Meaney C. M., O'Driscoll C. M.2000. A comparison of the permeation enhancement potential of simple bile salt and mixed bile salt:fatty acid micellar systems using the Caco-2 cell culture model. International Journal of Pharmaceutics 207,21-30.
    Mertz W.1969. Chromium occurrence and function in biological systems. Physiological Review 49,163.
    Mertz W.1974. The newer essential trace elements, chromium, tin, nickel, vanadium and silicon. Proceedings of Nutrition Society 33 (3),307-313.
    Mertz W.1982. Clinical and public health significance of chromium. In Clinical, Biochemical and Nutritional Aspects of Trace Elements, pp.10-40 (A.S. Prasad, Editor). New York:Alan R. Liss.
    Mertz W.1993. Chromium in human nutrition:a review. Journal of Nutition 123(4), 626-633.
    Mertz W., Roginski E. E.1969. Effect of Cr3+ supplement on growth and survival under stress in rats fed low protein diets. Journal of Nutrition 91,531-536.
    Mertz W., Roginski E. E., Schwarz K.1961. Effect of trivalent chromium on glucose uptake by epididymal fat tissue of rats. Journal of Biological Chemistry 236, 318-322.
    Min J. K., Kim W. Y., Chae B. J. et al.1997. Effects of chromium picolinate (CrP) on growth performance, carcass characteristics and serum traits in growing-finishing pigs. Asian-Australasian Journal of Animal Science 10,8-14.
    Mooney K. W., Cromwell G L.1995. Effects of dietary chromium picolinate supplementation on growth, carcass characteristics, and accretion rates of carcass tissues in growing-finishing swine. Journal of Animal Science 73,3351-3357.
    Mooney K. W., Cromwell G L.1996. Effects of chromium picolinate on performance and tissue accretion in pigs of different lean gain potential. Journal of Animal Science 74(Suppl 1),65(Abstract).
    Mooney K. W., Cromwell G L.1997. Efficacy of chromium picolinate and chromium chloride as potential carcass modifiers in swine. Journal of Animal Science 75(2), 2661-2671.
    Mooney K. W., Cromwell G L.1999. Efficacy of chromium picolinate on performance and tissue accretion in pigs with different lean gain potential. Journal of Animal Science 77(5),1188-1199.
    Moonsie-Shageer S., Mowat D. N.1993. Effect of level of supplemental chromium on performance, serum constituents and immune status of stressed feeder calves. Journal of Animal Science 71,232-238.
    Mooradian A. D., Morley J. E.1987. Micronutrient status in diabetes mellitus. American Journal of Clinical Nutrition 45(5),877-895.
    Mossop R. T.1983. Effects of chromium (III) on fasting blood glucose, cholesterol and cholesterol HDL levels in diabetics. The Central African Journal of Medicine 29(4),80-82.
    Mostafa-Tehrani A., Ghorbani G., Zare-Shahneh A. et al.2006. Non-carcass components and wholesale cuts of Iranian fat-tailed lambs fed chromium nicotinate or chromium chloride. Small Ruminant Research 63,12-19.
    Mowat D. N.1997. Organic chromium in Animal Nutrition. Chromium Books, Guelph. ON, Canada.
    Mowat D. N., Chang X., Yang W. Z.1993. Chelated chromium for stressed feeder calves. Canadian Journal of Animal Sciences 73,49-55.
    National Research Council (NRC),1997. The role of chromium in animal nutrition. National Academy Press. Washington, DC.
    National Research Council (NRC),1998. Nutrient requirements of swine,10th Ed., National Academy Press. Washington, DC.
    National Research Council.1989. Chromium. In Recommended Dietary Allowances, Food and Nutrition Board, pp.241-243. Washington, DC:Natl. Acad.10th ed.
    Ng K. Y., Borchardt R. T.1993. Biotin transport in a human intestinal epithelial cell line (Caco-2). Life Sciences 53,1121-1127.
    Offenbacher E. G.1994. Promotion of chromium absorption by ascorbic acid. Trace Element Electrolytes 11,178.
    Okada S., Suzuki M., Ohba H.1983. Enhancement of ribonucleic acid synthesis by chromium (III) in mouse liver. Journal of Inorganic Biochemistry 19,95-103.
    Olin K. L., Stearns D. M., Armstrong W. H. et al.1994. Comparative retention/absorption of 51 chromium (51Cr) from 51Cr chloride,51Cr nicotinate and 51Cr picolinate in a rat model. Trace Element Electrolytes 11,182-186.
    Osiecka I., Cortese M., Porter P. A. et al.1987. Intestinal absorption of a-methyldopa: In vitro mechanistic studies in rat small intestinal segments. Journal of Pharmacology and Experimental Therapeutics 242,443-449.
    Osiecka I., Porter P. A., Borchardt R. T. et al.1985. In vitro drug absorption models. I. Brush border membrane vesicles, isolated mucosal cells and everted intestinal rings:characterization and salicylate accumulation. Pharmaceutical Research 2, 284-292.
    Ostrowska H.1997. Cathepsin A-like activity in thrombin-activated human platelets substrate specificity, pH dependence, and inhibitory profile. Thrombosis Research 1,393-404.
    Owen R. L.1999. Uptake and transport of intestinal macromolecules and microorganisms by M cells in Peyer's patches:a personal and historical perspective. Seminars in Immunology 11,157-163.
    Page T. G., Boleman S. L., Pike M. M. et al.1992a. Effect of chromium picolinate on carcass traits and aging on pork quality. Journal of Animal Science 70(Suppl.1), 218(Abstract).
    Page T. G., Southern L. L., Ward T. L. et al.1992b. Effect of chromium picolinate on growth, serum and carcass traits, and organ weights of growing-finishing pigs from different ancestral sources. Journal of Animal Science 70(Suppl.1), 235(Abstract).
    Page T. G., Southern T. L., Ward T. L. et al.,1993. Effect of chromium picolinate on growth and serum and carcass traits of growing-finishing pigs. Journal of Animal Science 71,656-662.
    Page T. G, Ward T. L., Southern L. L.1990. Chromium supplementation of corn-soybean meal diets for finishing swine. Journal of Animal Science 68(Suppl. 1),39(Abstract).
    Pan M, Souba W. W., Karincb A. M., Lin C. M. et al.2002a. Epidermal growth factor regulation of system L-alanine transport in undifferentiated and differentiated intestinal Caco-2 cells. Journal of Gastrointestinal Surgery 6,410-417.
    Pan M., Souba W. W., Wolfgang C. L. et al.2002b. Posttranslational alanine trans-stimulation of zwitterionic amino acid transport systems in human intestinal Caco-2 cells. Journal of Surgical Research 104,63-69.
    Pasman W. J., Westerterp-Plantenga M. S. Saris W. H. M.1997. The effectiveness of long-term supplementation of carbohydrate, chromium, fibre, and caffeine on weight maintenance. International Journal of Obesity and Related Metabolic Disorder 21,1143-1151.
    Pell J. M., Bates P. C.1992. Differential actions of growth hormone and insulin-like growth factor-I on tissue protein metabolism in dwarf mice. Endocrinology 130(4), 1942-1950.
    Peterson M. D., Mooseker M. S.1992. Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe Clones of the human intestinal cell line Caco-2. Journal of Cell Science 102,581-600.
    Pigman E. A., Blanchard J., Laird H. E.1997. Study of cadmium transport pathways using the Caco-2 cell model. Toxicology and Applied Pharmacology 142, 243-247.
    Pinto M., Robine-Leon S., Appay M-D. et al.1983. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biology of the Cell 47,323-330.
    Pollard G V., Richardson C. R., Karnezos T. P.2002. Effects of supplemental organic chromium on growth, feed efficiency and carcass characteristics of feedlot steers. Animal Feed Science and Technology 98,121-128.
    Porte D. Jr., Woods S. C.1981. Regulation of food intake and body weight by insulin. Diabetologia 20,274-279.
    Press R. I., Geller J., Evans G. W.1990. The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects. The Western Journal of Medicine 152,41-45.
    Q'Quinn P. R., Smith J. W., Ⅱ, Nelssen J. L. et al.1998. Effects of source and level of added chromium on growth performance and carcass characteristics of growing-finishing pigs. Journal of Animal Science 76(Supp.2),125(Abstr.)
    Qaddoumi M. G, Ueda H., Yang J. et al. 2000. Uptake of biodegradable nanoparticles in pigmented rabbit conjunctival epithelial cells. Investigative Ophthalmology Visual & Science 41,765.
    Raffaniello R. D., Lee S. Y., Teichberg S. et al. 1992. Distinct mechanisms of zinc uptake at the apical and basolateral membranes of Caco-2 cells. Journal of Cellular Physiology 152,356-361.
    Richardson H. B. D., Hilton J. W., Ferguson H. W.1984. Influence of dietary selenium on the occurrence of nephrocalcinosis in the rainbow trout. Salmogairdneri. Journal of Fish Disease 7(5),379-389.
    Roginski E. E., Mertz W.1969. Effects of chromium 3+ supplementation on glucose and amino acid metabolism in rats fed a low protein diet. Journal of Nutrition 97 (4),525-530.
    Rollinson C. L., Rosenbloom E., Lindsay L.1967. Reactions of chromium (III) with biological substances. In Proc.7th Intern. Congr. Nutrition. Pergamon, New York, Vol.5, pp.692-698.
    Rossi A., Poverini R., Lullo G D. et al. 1996. Heavy metal toxicity following apical and basolateral exposure in the human intestinal cell line Caco-2. Toxicology in vitro 10,27-36.
    Sahin K., Sahin N., Ertas T. G O. N.2001. The effect of supplemental dietary chromium on performance, some blood parameters and tissue chromium contents of rabbits. Turkey Journal of Veterinary Animal Science 25,217-221.
    Sahoo S. K., Labhasetwar V.2003. Nanotech approaches to drug delivery and imaging. Drug Discovery Today 8(24),1112-1120.
    Said H M, Redha R, Nylander W.1987. A carrier-mediated Na+ gradient-dependent transport for biotin in human intestinal brush-border membrane vesicles. American Journal of Physiology 253, G631-G636.
    Saito H, Inui K. I.1993. Dipeptide transporters in apical and basolateral membranes of the human intestinal cell line Caco-2. American Journal of Physiology 265, G289-G294.
    Sanchez L., Ismail M., Liew F. Y. et al. 1996. Iron transport across Caco-2 cell monolayers:Effect of transferring, lactoferrin and nitric oxide. Biochimica et Biophysica Acta 1289,291-297.
    SAS.1989. SAS/STAT User's Guide, Version 6.02th. SAS Institute Inc., Cary, NC.
    Sasaki Y., Weekes T. E. C.1986. Metabolic response to cold. In:Control of digestion and metabolism in ruminants. (Ed. L. P. Milligan, W. L. Grovum and A. Dobson). Prentice-Hall, Englewood Cliffs, NJ. pp.326.
    Sattler S., Schaefer U., Schneider W. et al.2000. Binding, uptake, and transport of hypericin by Caco-2 cell monolayers. Journal of Pharmaceutical Sciences 86(10), 1120-1126.
    Schroeder H. A.1966. Chromium deficiency in rats:a syndrome simulating diabetes mellitus with retarded growth. Journal of Nutrition 88,439-445.
    Schroeder H. A., Mrrchener M., Nason A. P.1971. Influence of various sugars, chromium and other trace metals on serum cholesterol and glucose of rats. Journal of Nutrition 101,247-257.
    Schwartz K., Mertz W.,1957. A glucose tolerance factor and its differentiation from factor 3. Archives of Biochemistry and Biophysics 72,515-518.
    Schwarz K., Mertz W.,1959. Chromium (Ⅲ) and the glucose tolerance factor. Archives of Biochemistry and Biophysics 85,292-295.
    Seaborn C. D., Stoecher B. J.1989. Effects of starch, sucrose, fructose and glucose on chromium absorption and tissue concentrations in obese and lean mice. Journal of Nutrition 119,1441-1451.
    Seaborn C.D., Stoecker B. J.1990. Effects of antacid or ascorbic acid on tissue accumulation and urinary excretion of51 chromium. Nutrition Research 15,201.
    Seerley R. W.1993. Organic chromium and manganese in human nutrition:Important possibilities for manipulating lean meat deposition in animals. Proceedings of Alltech's 9th Annual Symposium,41-51.
    Sha X. Y., Fang X. L.2004. Transport characteristics of 9-nitrocamptothecin in the human intestinal cell line Caco-2 and everted gut sacs. International Journal of Pharmaceutics 272,161-171.
    Shara M., Yasmin T., Kincaid A. E. et al.2005. Safety and toxicological evaluation of a novel niacin-bound chromium (III) complex. Journal of Inorganic Biochemistry 99,2161-2183.
    Shelton J. L., Payne R. L., Johnston S. L. et al.2003. Effect of chromium propionate on growth, carcass traits, pork quality, and plasma metabolites in growing-finishing pigs, Journal of Animal Science 81,2515-2524.
    Simanjuntak M. T., Tamai I., Terasaki T. et al.1990. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport. Journal of Pharmacobio-dynamics 13,301-309.
    Smith T., Gibson C., Howlin B. et al.1991. Active transport of amino acids by gamma-glutamyl transpeptidase through Caco-2 cell monolayers. Biochemical and Biophysical Research Communications 178,1028-1035.
    Stearns D. M., Wise Sr. J. P., Patierno S. R. et al.1995. Chromium(III) picolinate produces chromosome damage in Chinese hamster ovary cells. FASEB Journal 9, 1643-1648.
    Steele N. C.1979. Trivalent chromium and nicotinic acid supplementation for the turkey poult. Poultry Science 58,983.
    Swanson K. C., Harmon D. L., Jacques K. A. et al.2000. Efficacy of chromium-yeast supplementation for growing beef steers. Animal Feed Science and Technology 86(1),95-105.
    Takanaga H., Tamai I., Terasaki T.1994. pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells. Journal of Pharmacy and Pharmacology 46, 567-570.
    Tang L., Li D. F., Wang F. L. et al.2001. Effects of different sources of organic chromium on immune function in weaned pigs. Asian-Australasian Journal of Animal Science 14 (8),1164-1169.
    Tao X., Xu Z. R., Xia M. S. et al.2004. Magnesium-aluminum mixed oxides for alleviating fluorosis in growing-finishing pigs. Fluoride 37(4),291-295.
    Tennant J., Stansfield M., Yamaji S. et al.2002. Effects of copper on the expression of metal transporters in human intestinal Caco-2 cells. FEBS Letters 527,239-244.
    Thomas V. L., Gropper S. S.1996. Effect of chromium nicotinic acid supplementation on selected cardiovascular disease risk factors. Biological Trace Element Research 55,297-305.
    Tomas F. M., Kmowles S. E., Owens P. C.1991. Effects of full-length and truncated insulin-like growth factor I on nitrogen balance and muscle protein metabolism in nitrogen-restricted rats. Journal of Endocrinology 128,97-105.
    Trent L. K., Thieding-Cancel D.1995. Effects of chromium picolinate on body composition. Journal of Sports in Medical and Physical Fitness 35,273-280.
    Tsuji A., Takanaga H., Tamai I. et al.1994. Transcellular transport of benzoic acid across Caco-2 cells by a pH-dependent and carrier-mediated transport mechanism. Pharmaceutical Research11,30-37.
    Uyanik F., Atasever A., Ozadamar S. et al.2002. Effects of dietary chromium chloride supplementation on performance, some serum parameters, and immune response in broilers. Biological Trace Element Research 90(1-3),99-116.
    Vaidyanathan V. G., Nair B. U.2003. Synthesis, characterization and binding studies of chromium (III) complex containing an intercalating ligand with DNA. Journal of Inorganic Biochemistry 95,334-342.
    Vijayalakshmi D., Belt J. A.1988. Sodium-dependent nucleoside transport in mouse intestinal epithelial cells, two transport systems with differing substrate specificities. The Journal of Biological Chemistry 262,19419-19423.
    Vincent J. B.2000. The biochemistry of chromium. Journal of Nutrition 130, 715-718.
    Vincent J. B.2001. The bioinorganic chemistry of chromium (Ⅲ). Polyhedron 20,1-26.
    Vincent J. B.2003. The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Sports Medicine 33(3),213-230.
    Vincent J. B.2004. Recent advances in the nutritional biochemistry of trivalent chromium. Proceedings of the Nutrition Society 63,41-47.
    Vohra P., Kratzer F. H.1966. Influence of various phosphates and other complexing agents on the availability of zinc for turkey poults. Journal of Nutrition 89, 106-112.
    Wada O., Wu G. Y., Yamamoto A. et al.,1983. Purification and chromium-excretory function of low-molecular-weight, chromium-binding substances from dog liver. Environmental Research 32,228-239.
    Wade M. J., Davis B. K., Carlisle J. S. et al.1993. Environmental transformation of toxic metals. Occupational Medicine 8,575-597
    Wang M. Q., Xu Z. R.2004. Effect of chromium nanoparticle on growth performance, carcass characteristics, pork quality and tissue chromium in finishing pigs, Asian-Australasian Journal of Animal Science 17,1118-1122.
    Wang M. Q., Xu Z. R., Zha L. Y. et al.2007. Effects of chromium nanocomposite supplementation on blood metabolites, endocrine parameters and immune traits in finishing pigs. Animal Feed Science and Technology www. elsevier. com/locate/ anifeedsci.
    Wang Z. S., Li R. M.2001. Measure of Cr (Ⅵ) and Cr (III) in waste water with atomic absorption spectroscopy in graphite furnace. Applied Science and Technology 28(3),39-41.
    Ward J., Tse M.1999. Nucleoside transport in human colonic epithelial cell lines: evidence for two Na+-independent transport systems in T84 and Caco-2 cells. Biochimica et Biophysica Acta 1419,15-22.
    Ward T. L., Southern L. L., Anderson R. A.1995. Effect of dietary chromium source on growth, carcass characteristics, and plasma metabolite and hormone concentrations in growing-finishing swine. Journal of Animal Science 73(Suppl 1), 189(Abstract).
    Ward T. L., Southern L. L., Bidner T. D.1997. Interactive effects of dietary chromium tripicolinate and crude protein level in growing-finishing pigs provided inadequate and adequate pen space. Journal of Animal Science 75,1001-1008.
    Ward T. L., Southern L. L., Bolemon S. L.1994. Effect of dietary chromium picolinate on growing broiler chickens. Poultry Science 72 (Suppl.l),37.
    Wenk C., Gebert S., Pfirter H.1995. Chromium supplements in the feed for growing pigs:influence on growth and meat quality. Archives of Animal Nutrition 48, 71-81.
    Weser U., Koolman J.1970. Reactivity of some transition metals on nuclear protein biosynthesis in rat liver. Cellular and Molecular Life Sciences 26(3),246-247.
    Windmueller H. G, Spaeth A. E.1975. Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Archives of Biochemistry and Biophysics 171,662-672.
    Xi G., Xu Z. R., Wu S. H. et al.2001. Effect of chromium picolinate on growth performance, carcass characteristics, serum metabolites and metabolism of lipid in pigs. Asian-Australasian Journal of Animal Science 14(2),258-262.
    Xu Z. R., Shi Y. H., Feng J. L. et al. 2005. Effects of modified montmorillonite nanocomposite on growing/finishing pigs during aflatoxicosis. Asian-Australasian Journal of Animal Science 18,1305-1309.
    Yamaji S., Tennant J., Tandy S. et al.2001. Zinc regulates the function and expression of the iron transporters DMT1 and IREG1 in human intestinal Caco-2 cells. FEBS Letters 507,137-141.
    Yamamoto A., Wada O., Oho T.1987. Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. European Journal of Biochemistry 165,627-631.
    Yamashita S., Furubayashi T., Kataoka M. et al.2000. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. European Journal of Pharmaceutical Sciences 10,195-204.
    Yamauchi K., Komatsu T., Kulkami A. et al.2002. Glutamine and arginine affect Caco-2 cell proliferation by promotion of nucleotide synthesis. Nutrition 18, 329-333.
    Yang H. T., Wang G J.2003. Transport and uptake characteristics of a new derivative of berberine (CPU-86017) by human intestinal epithelial cell line:Caco-2. Acta Pharmacologica Sinica 24,1185-1191.
    Yousef M. K., Johnson H. D.1967. Calorigenesis of cattle as influenced by hydrocortisone and environmental temperature. Journal of Animal Science 26, 1087.
    Yu D. Y, Xu Z. R., Yang X. G 2006. In vitro, in vivo studies of Cu(Ⅱ)-exchanged montmorillonite for the removal of lead (Pb). Animal Feed Science and Technology 127,327-335.
    Zhang J. S., Gao X. Y., Zhang L. D. et al.2001.Biological effects of a nano red elemental selenium. BioFactors 15,27-38.
    Zodl B., Zeiner M., Paukovits P. et al.2005. Iron uptake and toxicity in Caco-2 cells. Microchemical Journal 79,393-397.
    Zodl B., Zeiner M., Sargazi M. et al.2003. Toxic and biochemical effects of zinc in Caco-2 cells. Journal of Inorganic Biochemistry 97,324-330.
    邓岳松,陈权军.2003.纳米硒对尼罗罗非鱼生长的影响.力陆水产6,16-19.
    董晓慧,陈靖华,滕冰等.2000.不同形式铬对肉鸡生产性能、营养物质代谢和器官重的影响.动物营养学报13,46-49.
    方洛云.不同锌源对断奶仔猪生长、免疫和消化的影响及其作用机理的探讨.浙江大学硕士学位论文,浙江杭州.2002,5.
    高学云,张劲松,张立德.2000a.纳米红色元素硒对C57小鼠Lewis肺癌移植瘤形成与转移的影响.中国公共卫生16(2),109-110.
    高学云,张劲松,张立德.2000b.纳米红色元素硒对小鼠的免疫功能的调节作用.中国公共卫生16(5),421-422.
    关荣发.纳米三价铬对生长肥育猪胴体组成和免疫机能的影响及其作用机理探 讨.浙江大学硕士学位论文,浙江杭州,2003,5.
    郭彤.载铜硅酸盐纳米微粒对断奶仔猪肠道病原菌吸附、杀菌机理的研究.博士学位论文.杭州:浙江大学,2004:46.
    刘彩霓,呙于明,涂荣秀.1997.酵母铬对肉仔鸡脂类代谢及生产性能影响的研究.动物营养学报9(4),24-30.
    刘平祥.1999.铬对产蛋鸡生产性能的影响及其在体内的分布.江西农业大学学报21,564-568.
    史荧华.纳米级硅酸盐结构微粒(NSP)吸附猪饲粮中黄曲霉毒素的研究.浙江大学博士学位论文.浙江杭州.2005,5.
    宋保强,孙海香,夏枚生等.2004.纳米硒对肉鸡肝脏谷胱甘肽过氧化物酶mRNA表达和酶活的诱导作用.中国畜牧杂志40(11),13-15.
    王峰,许梓荣,孙建华.2006.饲喂六六六污染饲料对生长肥育猪生产性能及血清指标的影响.浙江大学学报:农业与生命科学版32,283-286.
    王敏奇.纳米粒径化处理三价铬对杜长大肥育猪胴体组成、肉质和组织铬沉积的影响及其机理研究.浙江大学博士学位论文,浙江杭州,2004,5.
    王明运.1987.激素生物化学.北京,人民卫生出版社,29-132.
    王艳华.纳米铜和硫酸铜对断奶仔猪生长、腹泻和消化的影响及作用机理探讨.浙江大学硕士学位论文,浙江杭州,2002,5.
    吴世林,蒋宗勇.1998.猪铬营养与应用研究进展(综述).养猪4,10-13.
    胥保华.纳米硒对Avian肉鸡的生物学效应及其分子机理的研究.浙江大学博士学位论文.浙江杭州.2005,5.
    许梓荣.介观动物营养学.浙江大学“985工程”二期建设项目申报书.2002,12.
    许梓荣.介观动物营养学阶段性研究汇报与评估.浙江大学“985工程”研究成果.2003,2.
    杨晓玲,周明.2006.微量元素铬对猪体的营养与免疫作用.江西饲料2,11-14.
    杨晓霞.1996.大鼠注射不同剂量铬对血清、肝脏铬分布的影响.营养学报18(3),358-361.
    杨陟华,朱茂祥,龚诒芬等.1999,纳米硒对D-半乳糖造成小鼠免疫失衡和氧化损伤的保护作用.微量元素与健康研究16(1),4-7.
    张劲松,高学云,张立德等.2000.蛋白质分散的纳米红色元素硒的延缓衰老作 用.营养学报22(3),219-222.
    张立德,牟季美.纳米材料学.沈阳,辽宁科学技术出版社,1994,1-5.
    张敏红,张卫红,卢凌等.1998a.急性短期高温对空腹状态下猪的铬代谢及生理生化反应的影响.畜牧兽医学报39(3),204-211.
    张敏红,张卫红,张应龙等.1998b.持续日变高温对猪的铬代谢及血液生化指标的影响.畜牧兽医学报29(2),112-120.
    张伟,韩友文,霍贵成.1999.铬的营养及其在猪饲料中的应用,霍贵成编,者营养与饲料,哈尔滨,黑龙江科学技术出版社.
    张阳德.纳米生物技术学.北京,科学出版社,2005,4.
    朱茂祥,张劲松,杨陟华等.2000.纳米硒对4-甲基亚硝胺-1-(3-吡啶)-1-丁酮诱发昆明小鼠肺癌的防治研究.癌症19(10),883-886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700