用户名: 密码: 验证码:
新型换流变压器故障建模及保护原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换流变压器是直流输电系统中的重大技术装备,为了从根本上解决传统直流输电网侧滤波所不能解决的谐波与无功对换流变压器的不良影响,“自耦补偿与谐波屏蔽换流变压器”(简称新型换流变压器)以及相应的感应滤波技术被提出,并获得了专利。目前该专利的推广应用已获得湖南省“十五”、“十一五”重大科技专项(05GK1002-1)、(06GK1003-1)以及国家自然科学基金(50907018)资助。
     为了实现该专利的工程化,需要完成大量的理论分析和科学试验工作。由于换流变压器的可靠性与可用性对于整个直流输电系统来说很关键,其安全运行与否,将直接关系到整个直流输电系统能否连续、可靠和稳定地工作。因此本论文围绕着新型换流变压器的故障建模和保护原理开展了下面的研究工作:
     详细研究了新型换流变压器的接线方案、结构型式及其工作原理。分析了直流输电新技术研究平台的构造以及平台各部分的功能,并介绍了新型换流变压器和与之配套的滤波装置的参数。基于直流输电新技术研究平台,对传统直流输电以及基于新型换流变压器的直流输电系统在谐波抑制、节能降耗、减振降噪、改善换相方面进行了实验对比研究,对比结果表明基于新型换流变压器的直流输电系统相对于传统直流输电在这些方面具有明显的优越性,从而表明了新型换流变压器原理的正确性,具有良好的应用前景。
     与传统的换流变压器相比,新型换流变压器具有独特的绕组联结方式,而在现有的电力系统仿真软件中所用的均是传统意义上的变压器模型,没有具有特殊绕组联结方式的新型换流变压器仿真模型。本论文基于互耦的概念,把新型换流变压器看作多个线圈的耦合,从而建立了新型换流变压器的多线圈耦合模型。在此基础上,根据新型换流变压器特殊的接线方式,结合有限元仿真软件,采用MATLAB里的多线圈耦合模块分别设计了新型换流变压器正常状态和发生内部故障时的仿真模型,并设计了非线性电感支路来模拟新型换流变压器铁心饱和特性,从而设计出能仿真新型换流变压器正常运行、内外部故障、励磁涌流的通用仿真模型。
     新型换流变压器具有特殊的绕组连接方式,因此需要研究合适的数学方法来推导新型换流变压器正常状态和内部故障数学模型,并计算其任意的内外部短路故障。电网络分析中的稀疏列表法和添加法在建立电网络方程方面各有特色,但是关于如何应用稀疏列表法或添加法建立含互感支路的电网络方程以及根据节点或支路的变化应用稀疏列表法或添加法形成新网络方程的方法目前还没有相关文献介绍。本论文将新型换流变压器看作含互感支路的网络,根据新型换流变压器特殊的绕组连接方式和相应的耦合电路,首次分别将稀疏列表法和添加法应用于建立含互感支路的电网络方程,从而建立了新型换流变压器正常状态的基本数学模型。为了便于在实际工程中灵活运用,对基本模型进行拓展,建立了更为详细的计及中性点接地阻抗的节点拓展模型、计及副边角接三角形绕组抽头处滤波装置的支路拓展模型。基于所建立的正常状态数学模型,根据电网络有向图节点或支路的变化,分别采用稀疏列表法和添加法建立了新型换流变压器内部故障数学模型而且对新型换流变压器各种内外部短路故障进行了计算。
     在研究常规变压器差动保护原理的基础上,对新型换流变压器差动保护原理进行了研究。在分析新型换流变压器绕组接线方案和三绕组之间特定匝比关系的基础上,根据新型换流变压器是否接滤波装置,分别推导出了相应的新型换流变压器两侧电流关系,进而分别提出两种差动保护接线的理论方程式,据此给出了相应的模拟式和微机式差动保护接线方案图。详细对比分析了新型换流变压器正常运行、内外部故障状况时两种保护接线方案的动作特性,并根据差动保护方案动作特性分析结果选择出适合新型换流变压器的差动保护接线方案。
     对新型换流变压器励磁涌流产生机理进行了研究,并从电路基本原理的角度对励磁涌流有可能引起新型换流变压器差动保护方案误动的根本原因进行了分析,鉴于差动保护方案在鉴别新型换流变压器励磁涌流方面的不足,对一种抛开差动保护思路、综合利用变压器电压和电流信息量的新型微机型变压器保护方案—基于模型的变压器保护原理进行了研究,在数学推理验证该保护原理同样适用于新型换流变压器的前提下,将该保护原理的思路运用于新型换流变压器保护方案设计中,从而制定了基于模型的单相和三相新型换流变压器微机主保护方案。考虑到微机保护工作时用差分代替微分引起的误差可能会使新型换流变压器保护误动,对已建立的保护判据动作特性方程进行梯形积分来构成新的保护判据。
Converter transformers are important technical equipments. Traditional HVDC set filters in net side to eliminate harmonic, but this filtering method couldn't solve the problem that harmonic and reactive components bring negative effects to converter transformers. In order to solve problem radically, coupling-compensation and harmonic-shielding converter transformer, that is the new converter transformer, and its corresponding inducing filter technology are put forward. It is a patent, and its application has been funded by the key science & technology project of the Tenth Five Year Plan(05GK 1002-1) and of the Eleventh Five Year Plan of Hunan Province(06GK1003-1) and National Natural Science Foundation of China(50907018).
     In order to apply the patent into projects, there are lots of academic analyses and scientific test work need to be finished. The reliability and usability of converter transformers are very important to the whole HVDC system, and the safety of converter transformers operation influences the continuity, credibility and stability of whole HVDC system. So, this thesis surrounds faulty model building and protection principle for new converter transformer to develop following work:
     The wiring scheme, structure type and operating principle are studied in detail. The structure and function of each part of one platform for research of new technology in HVDC are analyzed, and the parameters of the new converter transformer and corresponding filters are introduced. Based on the platform, the HVDC based on new converter transformer and traditional HVDC are contrasted by experiments in the aspects of eliminating harmonic, saving energy and lowering costs, decreasing vibration and noises, and improving phase conversion, the results of which show the HVDC based on the new converter transformer has obvious advantage in the above aspects, which indicate that principle of the new converter transformer is correct and has good applied foreground.
     Compared with the traditional converter transformer, the new converter transformer has unique connection mode. But the exiting simulation soft wares don't directly provide the simulation model for the new converter transformer with special winding wiring mode. Based on the coupling concept, this thesis regard the new converter transformer as mutual coupling multi-coils, and then the models of mutual coupling multi-coils are established, based on which, according to the special winding wiring mode of the new converter transformer, with a finite element simulation software, multi-coil coupling module of MATLAB was used to design the normal and internal faulty simulation model of the new converter transformer separately, and a nonlinear inductance branch was designed to simulate the characteristic of saturated core of the new converter transformer. So the universal simulation models which could simulate normal operation, external and internal faulty and inrush current of the new converter transformer have been designed.
     The new converter transformer has special winding wiring mode, so it is essential to study appropriate mathematical methods to derive normal and internal faulty mathematical models, calculate arbitrary external and internal faults of the new converter transformer. Sparse tabular method and additive process in electric network analysis have different advantages in the aspect of establishing network equations, but how to use sparse tabular method or additive process to build the equations of electric network containing coupled branches and form new equations according to the changes of nodes or branches are not introduced in any article at present. this thesis regarded the new converter transformer as a electric network containing coupled branches, according to winding wiring mode and corresponding coupled circuit of which, this thesis respectively adopts sparse tabular and additive process to directly build the equations of electric network containing coupled branches, and the normal condition's basic mathematical model of the new converter transformer is established. Considering that models can be selected flexibly in practical projects, through evolution of the basic mathematical model, the node evolution model including the earth impedance of the neutral point, the branch evolution model including the filters connected with the secondary corner delta winding's tap are established respectively. Based on normal mathematical model, according to the change of nodes or branches, sparse tabular method and additive process are used respectively not only to build the interior fault condition's mathematical models but also calculate all kinds of inner and external faults of the new converter transformer.
     Based on the study of principle of differential protection for ordinary transformer, the principles of differential protection for new converter transformer are researched. Based on the analysis on the special windings wiring mode and turns ration relation of the new converter transformer, according to the filters connected or not connected to the new converter transformer, the relation between bilateral currents of the new converter transformer were separately gotten, and based on which, two differential protection wiring schemes were separately put forward, and corresponding simulation and microcomputer differential protection wiring schemes were separately put forward too. The action characteristic of two differential protection wiring schemes were analyzed and compared according to all kinds of operation condition of the new converter transformer, and according to the results, the differential protection wiring scheme which is better has been selected.
     Mechanism of inrush current of the new converter transformer are studied, and the ultimate reasons why inrush current maybe cause the differential protection scheme act incorrectly has been analyzed from the angle of basic principle of the circuit. Considering the shortage of differential protection scheme in distinguishing inrush current of the new converter transformer, the principle of a new microcomputer protection scheme based on the transformer model which casts the method of differential protection and utilize synthetically the information of voltages and currents of a transformer is studied. The protection scheme based on the transformer model was proved to be also suitable for the new converter transformer by mathematic illation. Based on this precondition, this thesis applied the protection scheme based on the transformer model to the protection scheme design for single-phase and three-phase new converter transformers. Considering the use of difference instead of differential possibly maybe cause prodigious error and malfunction when microcomputer protection devices run, the new criterion was instituted by applying the trapezoidal integration to the old action equations.
引文
[1]赵畹君.高压直流输电工程技术.北京:中国电力出版社,2004
    [2]浙江大学发电教研组.直流输电.北京:水利电力出版社,1985
    [3]韩民晓,文俊,徐永海.高压直流输电原理与运行.北京:机械工业出版社,2009
    [4]刘振亚,特高压直流输电理论.北京:中国电力出版社,2009
    [5]Padiyar K R. HVDC transmission-technology and system interaction. Proc of Int Conf on power system. New York,1990,45-49
    [6]Farhad N, Hasmukh S P. HVDC power transmission system. Proceeding of The IEEE,1988,76(4):495-506
    [7]Gerhard S, Bernd F, Stefan K. HVDC transmission and the environment. Power Engineering,1996,10(1):204-210
    [8]Hammons T J, Woodford J, Loughtan M. Role of HVDC transmission in future energy development. IEEE Power Engineering Review,2000,2(3):10-25
    [9]袁清云.特高压直流输电技术现状及在我国的应用前景.电网技术,2005,29(14):1-3
    [10]杨勇.高压直流输电技术发展与应用前景.电力自动化设备,2001,21(9):58-60
    [11]陈红军,孟庆东.高压直流输电技术的特点及其在电网中的作用.中国电力,2001,34(12):68-71
    [12]Vijay K Sood.高压直流输电与柔性交流输电控制装置-静止换流器在电力系统中的应用.徐政译.北京:机械工业出版社,2006
    [13]张文亮,胡毅.发展特高压交流输电_促进全国联网.高电压技术.2003,29(8):20-22
    [14]Hingorani N G. High-voltage DC transmission:a power electronics workhorse. Spectrum, IEEE,1996,33(4):63-72
    [15]Bahrman M P. Overview of HVDC transmission. Power Systems Conference and Exposition,2006:18-23
    [16]杨勇.高压直流输电技术发展与应用前景.电力自动化设备,2001,21(9):58-60
    [17]CIGRE Working Group. Electric power transmission at voltage of 1000kV or ±600kV DC and above network problems and solutions peculiar to UHV AC transmission. CIGRE,1998
    [18]P. C. S. Krishnayya, P. J. Lambetch and etc. Technical problems associated with developing HVDC converter stations for voltage above 600kV. IEEE Trans. Power Delivery,1987,2(1):174-181
    [19]EPRI EL-1170. Bipolar HVDC transmission system study between ± 600kV and ± 1200kV. Corona studies, phase 1, EPRI,1979
    [20]EPRI EL -2794. Bipolar HVDC transmission system study between ± 600kV and ± 1200kV. Corona studies, phase 2, EPRI,1982
    [21]ABB Corp. HVDC Transmission at 800kV. International Workshop for 800kV HVDC System. Delhi,2005
    [22]Siemens. UHVDC System and equipment. International Workshop for 800kV HVDC Systems. Delhi,2005
    [23]苏宏田,齐旭,吴云.我国特高压直流输电市场需求研究.电网技术,2005,29(24):1-4
    [24]周小谦.我国“西电东送”的发展历史、规划和实施.电网技术,2003,27(5):1-5,36
    [25]陈黔明,赵明娜.三峡的建设与会沙江的西电东送.电网技术,1995,19(8):38-41,47
    [26]张惠勤.加快西北地区电力开发实施西电东送战略.电网技术,2001,25(12):11-13,17
    [27]黄莹,徐政,曾德文,等.西电东送纯直流输电方案研究.电网技术,2004,28(19):1-4
    [28]李立浧.直流输电技术的发展及其在我国电网中的作用.电力设备,2004,5(11):1-3
    [29]舒印彪.中国直流输电的现状及展望.高电压技术,2004,30(11):1-2,20
    [30]刘振亚,印舒彪.特高压直流输电技术研究成果专辑.北京:中国电力出版社,2005
    [31]国家电网公司.三峡-常州±500kV直流输电工程换流站.北京:中国电力出版社,2004
    [32]袁清云.我国特高压我国特高压直流输电发展规划与研究成果.电力设备,2007,8(3):1-2,20
    [33]喻新强.国家电网公司直流输电系统可靠性统计与分析.电网技术,2009,33(12):1-7
    [34]韩晓东,翟亚东.高压直流输电用换流变压器.高压电器,2002,38(3):5-6
    [35]刘振亚.特高压直流输电电气设备.北京:中国电力出版社,2009
    [36]Forrest J A C. Harmonic load losses in HVDC converter transformers[J]. Power Delivery, IEEE Transactions,1991,6(1):153-157
    [37]韩光.换流变压器直流偏磁现象及其影响的研究.西安交通大学博士学位论文,2002
    [38]Dawalibi F P, Li Y, Li C, Liu J. Mitigation of Transformer Saturation Due To Neutral HVDC Currents. Transmission and Distribution Conference and Exhibition:Asia and Pacific, IEEE,2005:1-6
    [39]Chen S, Wood A R, Arrillaga J. HVDC converter transformer core saturation instability:a frequency domain analysis. Generation, Transmission and Distribution, IEE Proceedings,1996,143(1):75-81
    [40]Xu W, Krakos J E, Mansour Y. A three-phase converter model for harmonic analysis of HVDC system. IEEE Trans on Power Delivery,1994, 9(3):1724-1731
    [41]贺以燕.关于国内生产高压直流换流变压器的思考.变压器,1997,34(5):10-14
    [42]涂明,王瑞珍,文成.换流变压器的结构型式技术参数及绝缘试验.湖北电力,1998,22(4):12-16
    [43]吕晓德,陈世坤,方治强,等.换流变压器阀侧绕组端部电场的特性分析.变压器,1998,35(6):15-20
    [44]杨小兵,李兴源,金小明,等.云广特高压直流输电系统中换流变压器铁心饱和不稳定分析.电网技术,2008,32(19):5-9
    [45]李锋锋,邰能灵.国家电网直流输电系统换流变运行情况分析.华东电力,2007,35(1):58-60
    [46]吕鹏飞,卢宇,王德林,等.灵宝背靠背直流换流站220kV换流变压器故障保护动作分析.电力系统自动化,2008,32(12):100-103
    [47]肖燕彩,文继锋,袁源,等.超高压直流系统中的换流变压器保护.电力系统自动化,2006,30(9):91-94
    [48]张海燕,常勇,陕华平,等.超高压直流输电系统换流变压器运行维护总结.电网技术,2009,33(19):186-189
    [49]张雪松.数字式变压器差动保护若干问题研究.浙江大学博士学位论文,2006
    [50]索南加乐,张健康,张军民,等.交直流混联系统对变压器保护性能的影响及解决措施.电力系统自动化,2010,34(3):101-106
    [51]D.J.Greene. Nonlinear modeling of transformer. IEEE Trans on Industry Applications.1988,24(3):434-438
    [52]A.Morched, L.Marti, J.Ottenvangers. A high frequency transformer model for the EMTP. IEEE Trans on Power Delivery.1993,8(3):1615-1626
    [53]P.T.Vaessen. Transformer model for high frequencies[J]. IEEE Trans on Power Delivery.1988,3(4):1761-1768
    [54]Francisco de Leon, Adam Semlyen. Complete transformer model for electromagnetic transients. IEEE Trans. on Power Delivery,1994,9(1):231-239
    [55]汤蕴缪,罗应立,梁艳萍.电机学(第三版).北京:机械工业出版社,2008
    [56]A. Semlyen, E.Acha, J.Arrilaga. Harmonic Nortone equivalent for the Magnetizing branch of a transofrmer. IEE Proeeeding-C.1987,134(2):162-169
    [57]R.C.degeneff, M.R.Gutierrez, M.Vakilian. Nonlinear lumped Parameter transofrmer model reduetion technique. IEEE Transactions on Power DeliVery. 1994,10(2):862-865
    [58]V.Brandwajn, H.W.Dommel, I.I.Dommel. Matrix representation of three-phase N-winding transformers for steady-state and transient studies. IEEE Trans.on Power Apparatus and Systems,1982, PAS-101(6):1369-1378
    [59]何仰赞,温增银,汪馥英,等.电力系统分析(第三版).武汉:华中理工大学出版社,1996
    [60]吴命利,范瑜.星形延边三角形接线平衡变压器的阻抗匹配与数学模型.中国电机工程学报,2004,24(11):160-166
    [61]陆家榆,陈莉,丁青青,等.星形延边三角形联结平衡变压器运行特性的数学模型.中国电机工程学报,1998,18(5):345-349
    [62]Chen Tsai Hsiang, Chen Mo Shing, Toshio Inoue, et al. Three-phase co-generator and transformer models for distribution system analysis. IEEE Transaction on Power Delivery,1991,6(4):1671-1681
    [63]黄锐锋,李琳.新的基于相分量的变压器模型及其在统一广义双侧消去法中的应用.中国电机工程学报,2004,24(7):188-193
    [64]Moorthy S S, Hoadley D. A new phase-coordinate transformer model for ybus analysis. IEEE Trans. on Power System,2002,17(4):951-956
    [65]F. A. Fouad, T. W. Nell, N.A. Demerdash. Saturated transformer inductances determined by energy perturbation techniques, IEEE Trans. Power Apparatus and Systems,1982,11(PAS-101):4185-4193
    [66]R. K. Aggarwal, P. L. Mao. Digital simulation of the transient phenomena in high voltage power transformers with particular reference to accurate fault detection, IEE Proceeding of International Conference on simulation,1998: 390-397
    [67]丁平,龚庆武,陈伟,等.基于多线圈耦合的变压器数学模型及其应用.中国电机工程学报,2006,26(21):166-171
    [68]Dommel H W. EMTP Theory Book. Portland:Bonneville Power Administration, 1986
    [69]Xusheng Chen, S.S.Venkata. A three-phase three-winding core-type transformer model for low-frequeney transient studies. IEEE Transactions on power Delivery. 1997,12(2):775-782
    [70]W.Enright, O.B.Nayak, G.D.lrwin, et al. An electromagnetic transient model of multi-limb transformers using normalized core concept. Proc. Int. Conf. Power syst. Transients,1997:93-98
    [71]W.Enright, O.B.Nayak, N.R.Watson. Three phase five-limb unified magnetic equivalent circuit transformer models for PSCADV3. Proc. Int. Conf. Power syst. Transients,1999:462-467
    [72]N.D.Hatziargyriou, J.M.Prousalidis, B.C.PaPadias. Generalised transformer model based on the analysis of its magnetic core cicruit. IEE Porceeding-C. 1993,140(4):269-279
    [73]Xiaosong LI, Qiaofu Chen, Jianbo Sun. Analysis of magnetic field and circulating currents for HTS transformer windings. IEEE Transaction on Applied Superconductivity,2005,15(3):3808-3813
    [74]S Bouissou, F Piriou. Numerical simulation of power transformer using 3D finite element method coupled to circuit equation. IEEE Transaction on Magnetics,1994,30(5):3224-3227
    [75]A.Keyhani, S.W.Chua, S.A.Sebo. Maximum likelihood estimation of transformer high frequency parametrers from test data. IEEE Trans.on Power Delivery,1991,6(2):858-865
    [76]E.B.Makram, R.L.Thompson, A.A.Girgis. A new laboratory experiment for transformer modeling in the presence of harmonic distortion using a computer controlled harmonic generator. IEEE Trans. on Power Systems,1988,3(4): 1857-1863
    [77]E.P.Dick, W.Watson. Transformer models for transient studies on field measurements. IEEE Trans. on Power Apparatus and Systems,1981, PAS-100(1): 409-418
    [78]C.Bengtsson. Status and trends in transformer monitoring. IEEE 1995 Powertech Conference Proceedings. Aug.1995, Stockhlom, Sweden. Page:1379-1384
    [79]Denis Vinicius Coury, Paulo Guidetti Camos, Maria Cristina Tavares. Modeling a power transformer for investigation of digital protection schemes. The 8th International Conference on Harmonics and Quality of Power ICHQP'98, Athens, Greece, October 14-16,1998
    [80]Bastard P, Bert rand P, Meunier M. A transformer model for winding fault studies [J]. IEEE Trans on Power Delivery,1994,9(2):690-699
    [81]Kezunovic M, Guo Y. Modeling and Simulation of the Power Transformer Faults and Related Protective Relay Behavior, IEEE Transaction on Power Delivery, 2000,15(1):44-50
    [82]王雪,王增平.变压器内部故障仿真模型的设计.电网技术,2004,28(12):50~52
    [83]徐岩.电力变压器内部故障数字仿真及其保护新原理的研究.华北电力大学博士学位论文,2005
    [84]Keizo Inagaki, Masuar Higkai, Yoshikai Matsui, et al. Digiatl Protection Mehotd for Power Transformers Based on an Equivalent Cicruit ComPosed of Inverse Inductance. IEEE Trans. on Power Delivery 1988,3(4):1501-1510
    [85]H wang, Karen L Butler. Modeling transformers with internal incipient faults. IEEE Trans on Power Delivery,2002,17(2):500-509
    [86]H wang, Karen L Butler. Finite element analysis of internal winding faults in distribution transformers. IEEE Trans on Power Delivery,2001,16(3):422-428
    [87]刘万顺.电力系统故障分析(第二版).北京:中国电力出版社,1998
    [88]Brandwajn V, Tinney W F. Generalized Method of Fault Analysis. IEEE Trans on Power Apparatus and Systems,1985, PAS-104:1301-1306
    [89]肖乐军,江荣汉,刘福生,等.阻抗匹配平衡变压器牵引供电系统的短路分析.电力系统及其自动化学报,1995,7(4):19-24
    [90]Laughton M A. Analysis of unbalanced polyphase networks by the method of phase coordinates, part Ⅱ:fault analysis. Proc. IEE.1969,116(5):857-865
    [91]Alex Berman, Wilsun Xu. Analysis of faulted power systems by phase coordinates. IEEE Transactions on Power Delivery,1998,13(2):587-595
    [92]于大勇,张国庆,姜彤等.电力系统故障分析的相分量法研究.黑龙江电力,2003,25(3):366-368
    [93]肖乐军,聂光前,刘福生.阻抗匹配平衡变压器短路计算的相分量法.湖南大学学报.1995,22(2):83-88
    [94]Han Z X. Generalized method of analysis of simultaneous faults in electric power system. IEEE Trans on PAS2101,1982.2(10):36-41
    [95]张小平,陈珩.不对称三相电力系统潮流故障的统一分析法.电力系统自动 化.1994,18(8):18-24
    [96]姜彤.电力系统故障分析及其多态计算方法的研究.哈尔滨工业大学博士学位论文,2002
    [97]关根泰次.电力系统暂态解析论.蒋建民译.北京:机械工业出版社,1989
    [98]唐宏丹,孙辉,谈晓魏.改进的不对称电力系统故障计算方法.继电器,2005,33(12):10-12
    [99]陈青,江世芳.一种求解电力系统复杂故障的新算法.中国电机工程学报,2000,20(9):41-43
    [100]王春,陈允平,谈顺涛.电力系统复杂故障通用算法的研究.中国电机工程学报,1995,15(6):417-422
    [101]曹国臣,武晓梅.不对称电力系统故障计算的研究.东北电力技术,1997,23(1):7-10
    [102]曹国臣,武晓梅,宋家骅,等.一种基于分解协调法的电力系统故障计算方法.中国电机工程学报,1999,19(1):14-19
    [103]姜彤.电力系统多态相分量法的故障分析.哈尔滨工业大学学报,2001,33(4):505-507
    [104]姜彤,白雪峰,郭志忠,等.利用矩阵变换求解电力系统短路故障的残压变换法.中国电机工程学报,2005,25(23):61-65
    [105]姜彤,白雪峰,郭志忠,等.基于对称分量模型的电力系统短路故障计算方法.中国电机工程学报,2003,23(2):50-53
    [106]韩正庆.变压器仿真计算模型与保护原理研究.西南交通大学博士学位论文,2006
    [107]张举,黄少峰.我国微机继电保护的发展历史现状与展望.继电器,1996,24(1):3-6
    [108]I.Hermanto, Y.V.S.Murty, M.A.Rahman. A stand-alone digital protective relay for power transformers. IEEE Trans. on Power Delivery,1991,6(1):85-92
    [109]Liu Pei, Malik O P, Chen Deshu, et al. Improved Operation of Differential Protection of Power Transformer for Internal Faults. IEEE Trans.on Power Delivery,1992,7(4):1912-1919
    [110]Sidhu T S, Sachdev M S. Online identification of magnetizing inrush and internal faults in three-phase transformers. IEEE Trans. on Power Delivery,1992, 7(4):1885-1891
    [111]王祖光.间断角原理的变压器差动保护.电力系统自动化,1979,3(1):18-30
    [112]徐习东,吴俊.基于最小二乘法的间断角测量.继电器,2004,32(7):24-27
    [113]徐习东,何奔腾.变压器差动保护中CT饱和后间断角的测量.电力系统自动 化,1998,22(5):22-25
    [114]孙志杰,陈云岑.波形对称原理的变压器差动保护.电力系统自动化,1996,20(4):42-46
    [115]苗友忠,贺家李,孙雅明.变压器波形对称原理差动保护不对称度的分析和整定.电力系统自动化,2001,25(16):26-29,44
    [116]李贵存,刘万顺,滕林,等.基于波形相关性分析的变压器励磁涌流识别新算法.电力系统自动化,2001,25(17):25-28
    [117]何奔腾,徐习东.波形比较法变压器差动保护原理.中国电机工程学报,1998,18(6):395-398
    [118]林湘宁,刘沛,杨春明,等,利用改进型波形相关法鉴别励磁涌流的研究.中国电机工程学报,2001,21(5):56-60,70
    [119]陈德树,尹项根,张哲,等.虚拟三次谐波制动式变压器差动保护.中国电机工程学报,2001,21(8):19-23
    [120]P.L.Mao, R.K.Aggarwal. A Wavelet Transformer Based Decision Making Logic Method for Discrimination between Internal Faults and Inrush Currents in Power Transofrmers. International Journal of Electrical Power and Energy Systems, 2000,22(6):389-395
    [121]焦邵华,刘万顺,刘建飞,等.用小波理论区分变压器的励磁涌流与短路电流的新原理.中国电机工程学报,1999,19(7):1-5,76
    [122]M.G.Morante, D.W.Nicolett. A Wavelet-based Dieffrential Transformer Protection[J]. IEEE Transactions on Power Delivery,14(4),1999:1351-1358
    [123]L.G.Perez, A.J.Flechsig, J.L Meador, et al.Training an artificial neural network to discriminate between magnetizing inrush and internal faults. IEEE Transactions on Power Delivery,1994,9(1):434-441
    [124]葛大麟.神经网络技术应用于变压器差动保护.供用电.2002,4(19):8-10
    [125]Zaman, M.R.Ralmtan, M.A, Experimental testing of the artificial neural network based Protection of power transformers. IEEE Transactions on Power Delivery, 1998,13(2):510-517
    [126]王增平,高中德,张举,等.模糊理论在变压器保护中的应用,电力系统自动化,1998,22(2):13-16,450
    [127]Andrzej Wisnziewski, Bogdan Kaseztnn, A multi-crietria dieffrential transformer relay based on fuzzy logic. IEEE Trnasactions on Power Delivery, 1995,10(4):1786-1792
    [128]范文涛,王广延.基于模糊集理论的变压器微机差动保护新判据.中国电机工程学报,1997,17(6):403-407
    [129]B.Kasztenny, E.Rosolowski, M.M.Saha, et al. A self-organizing fuzzy logic based protective relay-an application to power transformer protection. IEEE Transactions on Power Delivery,1997,12(3):1119-1127
    [130]Thorp J S, Phadke A G. A Microprocessor Based Voltage Restrained Three Phase Transformer Differential Relay. Proceeding of the South Eastern Symposium on System Theory,1982,4:312-316
    [131]郝文斌.变压器暂态仿真模型及基于支持向量机的变压器保护原理研究.西南交通大学博士学位论文,2006
    [132]Kuniaki Yabe. Power Differential for Discrimination between Fault and Magnetizing Inrush Current in Transformers. IEEE Transactions on Power Delivery.1997,12(3):1109-1118
    [133]马静,王增平,吴劫.基于广义瞬时功率的新型变压器保护原理.中国电机工程学报,2008,28(13):78-83
    [134]Keizo Inagaki, Masaru Higaki, Yoshiaki Matsui, et al. Digital Protection Method for Power Transformers Based on an Equivalent Circuit Composed of Inverse Inductance. IEEE Trans.on Power Delivery,1988,3(4):1501-1510
    [135]王增平,徐岩,王雪,等.基于变压器模型的新型变压器保护原理的研究.中国电机工程学报,2003,23(12):54-58
    [136]韩正庆,刘淑萍.基于模型的变压器保护判据分析与改进.电力自动化设备,2007,27(2):31-34
    [137]Phadke A G, TroP J S. A New Computer-based Flux Restrained Current Differential Relay for Power Transformer Protection. IEEE Trans on Power Apparatus and System,1983,102(11):3624-3629
    [138]马丁,J希思科特.变压器实用技术大全.北京:机械工业出版社,2004
    [139]同向前,薛钧义.电力调谐滤波器的最佳偏调谐设计.电工技术学报,2005,20(4):98-101
    [140]赵曙光,焦李成,王军宁,等.混合滤波系统中无源滤波器的自适应进化设计方法.电力系统自动化,2004,28(2):54-57
    [141]李勇,罗隆福,刘福生,等.变压器感应滤波技术的发展现状与应用前景.电工技术学报,2009,24(3):86-92
    [142]罗隆福,张杰,李勇,等.基于遗传算法的换流变压器滤波装置的优化设计高压电器,2007,43(5):361~363,367
    [143]许加柱,罗隆福,李季,等.自耦补偿与谐波屏蔽换流变压器的接线方案和原理研究.电工技术学报,2006,21(9):44-50
    [144]Longfu Luo, Yong Li, Jiazhu Xu, et al. A new converter transformer and a corresponding inductive filtering method for HVDC Transmission System. IEEE Transactions On Power Delivery,2008,23(3):1426-1431
    1145] Yong Li, Longfu Luo, Christian Rehtanz, et al. Study on characteristic parameters of a new converter transformer for HVDC systems. IEEE Transactions On Power Delivery,2008,24(4):2125-2131
    [146]罗隆福,李勇,刘福生,等.基于新型换流变压器的直流输电系统滤波装置.电工技术学报,2006,21(12):108-115
    [147]罗隆福,张杰,李勇,等.基于稀疏列表法的新型换流变压器数学模型.电工技术学报,2008,23(4):59-65
    [148]罗隆福,尚荣艳,许加柱,等.基于新型换流变压器的直流输电系统改善换相的机理研究.中国电机工程学报,2009,29(9):50-56
    [149]金建铭.电磁场有限元方法.西安:西安电子科技大学出版社,2001
    [150]王赞基,刘秀成,陈香辉,等.用于内部故障分析的变压器电感参数计算模型.电力系统自动化,2000,24(24):21-25
    [151]P. Palmer-Buckle, K. Butler, N. D. R. Sarma, et al. Simulation of Incipient Transformer Faults. Proc. IEEE Midwest Symposium on Circuits and Systems, 1998,23(2):50-53
    [152]H. A. Darwish, A. I Taalab, H. E. Labna. Step-by-Step Simulation of Transformer Winding Faults for Electromagnetic Transient Programs. Transmission and Distribution Conference and Exhibition,2005/2006 IEEE PES, 2006:177-183
    [153]G. Ghanavati, S. M. Kouhsari, A. Koochaki, et al. Calculation of transformer Internal Faults in Short Circuit Analysis[C], IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008:1-7
    [154]王维俭.大型发电机变压器内部故障分析与继电保护.北京:中国电力出版社,2006
    [155]王维俭,候炳蕴.大型机组继电保护理论基础(第二版),北京:水利电力出版社,1989
    [156]李季,罗隆福,许加柱,等.新型换流变压器及其滤波数学模型及其仿真计算.电工技术学报,2006,22(5):45-52
    [157]罗隆福,李勇,许加柱,等.基于相分量法的新型换流变压器数学模型.电工技术学报,2007,22(1):34-40
    [158]程少庚,崔杜武,刘小河.电网络分析.北京:机械工业出版社,1993
    [159]刘长学.超大规模稀疏矩阵计算方法.上海:上海科学技术出版社,1991
    [160]张伯明,陈寿孙,严正.高等电力网络分析(第二版).北京:清华大学出版社,2007
    [161]许正亚.变压器及中低压网络数字式保护.北京:中国水利水电出版社,2004
    [162]陈曾田.电力变压器保护(第二版).北京:中国电力出版社,1989
    [163]王维俭.电气主设备继电保护原理与应用(第二版).北京:中国电力出版社,2002
    [164]张保会,尹项根.电力系统继电保护.北京:中国电力出版社,2005
    [165]王维俭.发电机变压器继电保护应用(第二版).北京:中国电力出版社,2005
    [166]M.A.Rahman, A.Gangopadhyay. Digital simulation of magnetizing inrush currents in three-phase transformers. IEEE Transactions On Power Delivery, PWRD-1(4),1986:235-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700