用户名: 密码: 验证码:
车桥系统耦合振动和地震响应的随机分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速铁路的迅速发展以及列车速度的不断提高,列车与支承系统的动力相互作用成为十分重要的问题,尤其是列车与桥梁系统的耦合振动分析。为了满足高速铁路线路平顺性和稳定性的要求,可能要建造连续几公里甚至几十公里的高架桥,例如京沪高速铁路中桥梁总长就占到全线长度的80.5%。大量的实测数据和数值模拟表明,由于轨道不平顺的存在,列车与桥梁之间的相互作用具有很强的随机性。而传统计算方法的低效率和复杂性限制了人们采用随机振动理论对车桥耦合系统的振动特性进行研究。迄今为止,关于车桥耦合系统随机振动分析的研究成果还比较有限。
     另外,随着桥梁在高速铁路中的大量应用,地震发生时列车在桥上的几率大大增加。因此地震作用下车桥耦合系统的动力响应以及列车运行安全性分析就成为一项十分重要的研究课题。地震动的强随机性势必使车桥系统表现出很强的随机振动,但由于车桥系统本身的时变性以及采用传统随机振动理论进行分析的复杂性,真正意义上的地震作用下车桥耦合系统的非平稳随机振动分析论著还很难找到。
     鉴于此,本博士学位论文在随机振动理论框架下将虚拟激励法、精细积分法等力学领域近年来出现的创新性研究成果引入到车桥耦合系统的随机振动分析中,并根据车辆与桥梁相互作用的特点对这些方法进行了发展,提出了各种独具特色的高效精确计算方法。利用这些强有力的分析工具对车桥耦合系统的随机振动特性以及随机地震作用下的车桥响应进行了精确细致的分析,详细地研究了列车运行速度、轨道不平顺质量、地震场地条件、地震视波速等因素对系统随机振动的影响。全文的主要研究内容如下:
     1.虚拟激励法在车桥时变系统中的发展
     虚拟激励法原来仅适用于高层建筑、大跨度结构等时不变系统,以及受单维平稳随机激励的时变系统。鉴于车桥时变系统随机振动分析的需要,本文通过严格的理论推导,系统地证明了虚拟激励法同样适用于受多维或者非平稳随机激励的时变系统,并分别构造了单维/多维、单点/多点完全相干、平稳/非平稳、均匀调制/非均匀调制等多种随机激励的虚拟激励形式。这些工作为虚拟激励法应用于高速铁路领域奠定了良好的理论基础,同时也有力地推动了随机振动理论在工程领域的广泛应用。
     2.移动质量过桥问题的精细积分高效求解
     当前求解移动质量过桥动力响应时常采用的Newmark法等传统逐步积分法都必须假定在每个积分步内移动质量的位置和惯性力的作用位置与大小都是固定不变的。因此必须采用很小的时间步长才能确保计算精度,但却严重降低了计算效率。为了克服以上限制,本文推广精细积分法来对移动质量通过时桥梁的动力响应进行高效精确求解。在每一个积分步内,首先对前后积分时刻单元节点的加速度进行时间线性插值,生成随时间连续变化的惯性力;然后根据平行力系平衡原理或者有限元的形函数分别构造基于简单分解、协调分解或混合分解方式的精细积分格式;最后将系统运动方程中的时变项移到方程右端,并采用精细积分格式进行迭代求解。这种方法可以更为真实地模拟移动质量惯性力在时间域和空间域上的连续变化,因此采用大得多的积分步长就能得到具有很高精度的计算结果。大量的数值比较表明,本文所提出的精细积分迭代求解方法在处理移动质量过桥问题时比Newmark法在计算效率和精度上均有重大改进。
     3.车桥时变系统的非平稳随机振动研究
     由于轨道不平顺的存在,当列车通过桥梁时,车桥系统会发生复杂的耦合随机振动。并且系统运动方程的质量、刚度和阻尼矩阵都是随时间连续变化的。对于这样一个时变系统,目前大多采用计算精度较差的时间历程法进行分析。本文将时变系统的虚拟激励法和扩展的精细积分迭代格式相结合,建立了一种车桥时变系统非平稳随机振动分析的高效精确算法——虚拟激励-精细积分法(PEM-PIM)。按照由易到难的原则,将研究工作分为三个步骤:首先,将时变系统的虚拟激励法分别和基于简单、协调、混合分解的精细积分迭代格式相结合,通过独轮车-桥梁系统的非平稳随机振动分析,比较了它们的计算效率和精度。然后,针对车桥垂向振动模型,考虑各车轮间轨道不平顺激励的相位差,采用PEM-PIM简单分解迭代格式研究了车桥系统垂向随机响应的统计特性;最后,将PEM-PIM算法引入到三维车桥系统的随机振动分析中,研究了三种轨道不平顺作用下三维车桥系统的非平稳随机振动特性。通过与Monte Carlo法的计算结果相比较,表明本文建立的PEM-PIM方法精确可靠。在此基础上,详细分析了列车行车速度、轨道不平顺等级和类型等因素对车桥系统随机振动的影响,得到了一些颇具参考价值的结论。
     4.地震作用下车桥系统的随机振动分析
     桥梁在高速铁路中的大量使用使得地震发生时列车在桥上的几率显著增大,研究地震作用下车桥系统的随机振动特性具有十分重要的现实意义。对于这样一个受双重随机激励的复杂时变系统,目前时间历程分析法是唯一的求解途径。本文假设水平地震动为单点均匀调制随机激励,轨道不平顺为多维多点平稳随机激励,采用PEM-PIM算法成功地实现了双重随机激励作用下车桥时变系统的非平稳随机振动分析,方便地得到了系统响应的时变功率谱和标准差等统计量。同样采用Monte Carlo法对其正确性进行了验证,并重点分析了地震场地条件、列车速度等对系统随机响应的影响。由于在实际工程分析中工程师们最为关心的是车桥系统地震响应的最大值,本文基于首次超越理论提出
With the rapid development of high-speed railway and the continuous increase of train speed, the dynamic interaction between trains and the supporting system has become a problem of great importance, particularly for the coupled vibration analysis of train-bridge systems. To meet the requirements on the smoothness of track and hence the safety and stability of running trains, elevated bridges can stretch for dozens of kilometers, e.g. bridges account for about 80.5% of the length of the Beijing-Shanghai express railway. A great deal of testing data and simulation-based numerical results show that dynamic interactions between trains and bridges are essentially random due to track irregularities. Unfortunately, the complexity and low efficiency of the conventional random vibration methods has considerably restricted the development of the relevant research work. So for, not many papers in this field can be found in the literature.
     Moreover, the frequent use of elevated bridges in high-speed railways considerably increases the probability of earthquakes taking place when trains are crossing bridges. Therefore, the dynamic responses of train-bridge systems under the action of earthquakes and their effects on the running safety of trains have become an important research subject. The strong randomness of earthquakes certainly will make train-bridge systems vibrate randomly. However, due to the time variation of train-bridge systems and the complexity of the conventional random vibration algorithm, the non-stationary random vibration analysis of train-bridge coupled systems subjected to earthquakes is too hard to be performed.
     In the present thesis, based on the theoretical framework of random vibration, some advanced computational mechanics methodology, such as the pseudo excitation method (PEM) for random vibration, the precise integration methods (PIM) in the time or space domain, and others, are introduced into the present research on random vibration analysis of train-bridge coupled systems. Some innovative schemes based on the above methodology have been further developed according to the characteristics of the dynamic interaction between trains and bridges. By using these powerful analysis tools, the random vibration and seismic responses of train-bridge coupled systems are investigated accurately and efficiently, and the influences of some important factors, such as train speeds, track irregularities, earthquake soil sites, and seismic apparent velocities, are discussed in detail. The main research contents are as follows:
     1. The extension of PEM to time-dependent train-bridge systems
     PEM was previously used only to time-independent systems, such as tall buildings or large span structures, and some time-dependent systems subjected to single-dimension stationary random excitations, In the present paper, to carry out the random vibration analysis for time-dependent train-bridge systems, PEM is strictly proven to be also applicable to the time-dependent systems that are subjected to multi-dimension or non-stationary random excitations. And the pseudo-excitations corresponding to the single-dimension or multi-dimension, single-point or multi-point fully coherent, stationary or non-stationary, uniformly modulated or non-uniformly modulated random excitations, are constituted respectively through theoretical derivation. This research work not only establishes theoretical foundation for applying PEM into the high-speed railway field, but also powerfully promotes the wide application of random vibration theory in project fields.
     2. Efficient precise integration calculation for dynamic responses of FE bridges subjected to a moving mass
     When solving dynamic responses of bridges due to a moving mass, generally direct integration methods, such as the Newmark method, requires the position and magnitude of the inertia force of moving mass to be invariant in each integration step, so that a very small integration step size is needed to ensure sufficient precision, which will increase computational effort considerable. In order to overcome this shortcoming, PIM is extended to deal with dynamic analysis of FE bridge model subjected to a moving mass. In each time step, an iterative linear interpolation scheme based on the accelerations at the element nodes at the beginning and end of the time interval, firstly, is adopted to generate the interaction forces that vary continuously with time. And then according to the force equilibrium principle or FEM shape functions, three precise integration forms, based on the simplified, consistent and hybrid decompositions respectively, are proposed and used iteratively to calculate the bridge responses. These methods can well simulate the continuous varying of the inertia forces of moving mass both in the time and space domains, and thus can give high precision results by using large integration steps. Numerous numerical comparisons show that each proposed method is greatly superior to the Newmark method.
     3. Non-stationary random vibration analysis of time-dependent train-bridge systems
     When train cross bridges, due to track irregularity, the interaction between train and bridge will generate complicated random vibration. The mass, stiffness and damping of train-bridge system is time-dependent. For such a system, the most common analysis method is the time history method of low precision. In the present paper, by combining PEM of time-dependent system and extended PIM iterative forms, a new efficient and accurate algorithm for non-stationary random vibration analysis of time-dependent train-bridge systems is proposed, which is named as PEM-PIM. According to the principle of "From easiness to difficulty", the main research takes three steps. Firstly, PEM of time-dependent system is combined respectively with three PIM iterative forms, and then used in the one-wheel vehicle and bridge coupled system to analyse and compare their computational efficiency and precision. Secondly, for the vertical vehicle-bridge system taken phase-lags between successive wheels into account, the PEM-PIM scheme, based on simplified decomposition, is adopted to investigate the statistical characteristics of vertical random responses. Thirdly, this PEM-PIM scheme is introduced into the 3D random vibration analysis of train-bridge systems, in which three types track irregularities are considered. In the numerical examples, the proposed method is justified by comparing with Monte Carlo simulation results. Also, the influences of train speeds and track irregularities on system random vibrations are discussed.
     4. Earthquake induced random vibration analysis for train-bridge systems
     With more and more bridges used in high-speed railways, the probability of earthquakes taking place when trains are crossing bridges increases considerably, which establishes the importance of investigating the safety of train-bridge systems under the action of earthquakes. At present, for such a problem, the time history method is the only method to deal with it. In this thesis, the lateral horizontal earthquake is assumed to be a single-dimension uniformly modulated non-stationary random process, while the excitations due to track irregularity are assumed to be multi-dimension multi-phase stationary random ones. The non-stationary random responses of train-bridge systems due to such two random excitations are calculated by applying the PEM-PIM scheme, and their time-dependent PSD and standard deviations are obtained conveniently. Besides, a new formula to estimate maximum responses, based on the first-passage failure criterion, is suggested. The numerical results indicate its reliability.
     5. The random seismic responses of train-bridge coupled systems with wave passage effect considered
     It is well known that for long-span bridges subjected to earthquakes, it is very important to account for the phase-lags between ground joints, i.e. the so-called wave passage effect. The seismic responses with wave passage effect considered may be quite different from the results obtained based on the assumption of uniform ground motion. In similar fashion, it is necessary to consider the wave passage effect in the seismic response analysis of train-bridge coupled systems. However, no research on such random vibration analysis has been found up to now. The present paper, for the first time, establishes the time-dependent motion equation of the train-bridge system subjected to multi-point earthquake excitations based on the concept of pseudo-static displacement. With the horizontal and vertical earthquake excitations assumed to be 2D uniformly modulated, multi-point fully coherent random excitations, the accurate non-stationary random vibration analysis for such a system is performed successfully by using PEM of time-dependent system. The numerical results show the effectiveness and accuracy of the proposed method, and the influence of seismic apparent wave velocity is discussed.
引文
[1]张曙光.高速列车设计方法研究[M].北京:中国铁道出版社,2009.
    [2]夏禾.车辆与结构动力相互作用[M].北京:科学出版社,2002.
    [3]王贵春,潘家英.轨道不平顺导致的车桥耦合振动分析[J].铁道工程学报,2006,(8):30-33.
    [4]Crandall S H. Random vibration [M]. Cambridge:MIT Press,1958.
    [5]Lin Y K. Probabilistic theory of structural dynamic [M]. New York:McGraw-Hill,1967.
    [6]Nigam N C. Introduction to random vibration [M]. Cambridge:MIT Press,1983.
    [7]徐昭鑫.随机振动[M].北京:高等教育出版社,1990.
    [8]曾庆元,郭向荣.列车桥梁时变系统振动分析理论与应用[M].北京:中国铁道出版社,1999.
    [9]Lin J H. A fast CQC algorithm of PSD matrices for random seismic responses [J]. Computers and Structures,1992,44(3):683-687.
    [10]Lin J H, Zhang W S, Williams F W. Pseudo-excitation algorithm for non-stationary random seismic responses [J]. Engineering Structures,1994,16(4):270-276.
    [11]林家浩,钟万勰.关于虚拟激励法与结构随机响应的注记[J].计算力学学报,1998,15(2):29-35.
    [12]Lin J H, Zhao Y, Zhang Y H. Accurate and highly efficient algorithms for structural stationary/non-stationary random responses [J]. Computer Methods in Applied Mechanics and Engineering,2001,191(1-2):103-111.
    [13]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [14]Lin J H, Zhang Y H. Chapter 30:"Seismic Random Vibration of Long-span Structures". In: de Silva C, ed. Vibration and Shock Handbook. Boca Raton, Florida:CRC Press,2005:1313-1353.
    [15]Zhong W X. Review of a high-efficiency algorithm series for structural random responses [J]. Progress in Natural Science,1996,6(3):257-268.
    [16]Zhong W X, Willians F W. A precise time step integration method [J]. Journal of Mechanical Engineering Science,1994,208(C6):427-430.
    [17]钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1993,34(2):131-136.
    [18]钟万勰.计算结构力学与最优控制[M].大连:大连理工大学出版社,1993.
    [19]钟万勰.卡尔曼-布西滤波的精细积分[J].大连理工大学学报,1999,39(2):191-200.
    [20]钟万勰.应用力学对偶体系[M].北京:科学出版社,2002.
    [21]梁爱虎,杜修力,陈厚群.基于非平稳随机地震动场的拱坝随机地震反应分析方法[J].水利学报,1999,(6):21-25.
    [22]Sun D K, Xu Y L, Ko J M, et al.. Fully coupled buffeting analysis of long span cable-supported bridges: formulation [J]. Journal of Sound and Vibration,1999,228(3):569-588.
    [23]赵又群,郭孔辉.具有随机道路输入的人-车-路闭环操纵系统的响应分析与操纵安全性评价[J].汽车工程,1997,19(5):273-278.
    [24]Bennett P N. Extended eigenvalue analysis of advanced aerospace structures [D]. Cardiff:College of Cardiff University of Wales,1994.
    [25]Lin J H, Yan F, Bennett P N, et al. Propagation of stationary random waves along substructural chains [J]. Journal of Sound and Vibration,1995,180(5):757-767.
    [26]星谷胜(日).随机振动分析[M].北京:地震出版社,1977.
    [27]Soong T T. Random vibration of mechanical and structural systems [M]. Englewood Cliffs:PTR Prentice Hall,1993.
    [28]Newland D E. An introduction to random vibrations, spectral and wavelet analysis (3rd Ed) [M]. England:Longman Scientific & Technical,1993.
    [29]Roberts J B, Spanos P D, Random vibration and statistical linearization [M]. Wiley:New York, 1990.
    [30]欧进萍,王光远.结构随机振动[M].北京:高等教育出版社,1998.
    [31]庄表中,王行新.随机振动概论[M].北京:地震出版社,1982.
    [32]朱位秋.随机振动[M].北京:科学出版社,1992.
    [33]张景绘.工程随机振动理论[M].西安:西安交通大学出版社,1988.
    [34]Priestley M B. Evolutionary spectra and non-stationary random process [J]. Journal of the Royal Statistical Society:Series B,1965,28(2):204-230.
    [35]Priestley M B. Power spectral analysis of non-stationary random processes [J]. Journal of Sound and Vibration,1967,6(1):86-97.
    [36]Hammond J K. On the response of single and MDOF system to non-stationary random excitation [J]. Journal of Sound and Vibration,1968,7(3):393-416.
    [37]Lin Y K, Cai G Q. Exact stationary response solution for second order nonlinear systems under parametric and external white noise excitations, Part II [J]. Journal of Applied Mechanics,1988, 55(3):702-705.
    [38]Caughey T K. Nonlinear theory of random vibration [J]. Advance in Applied Mechanics,1971, 11:209-243.
    [39]朱位秋.随机平均法及其应用[J].力学进展,1987,17(3):342-351.
    [40]Roberts J B, Spanos P D. Stochastic averaging:an approximate method of solving random vibration problems [J]. International Journal of Non-Linear Mechanics,1986,21(2):111-134.
    [41]Iyengar R N. Random vibration of a second order nonlinear elastic system [J]. Journal of Sound and Vibration,1975,40(2):155-165.
    [42]Noori M, Davoodi H, Saffar A. An Ito based general approximation technique for random vibration of hysteretic systems, Part Ⅰ:an gaussian analysis [J]. Journal of Sound and Vibration,1988, 127(2):331-342.
    [43]Lin Y K, et al. Methods of Stochastic Dynamics [J]. Struct. Saf.,1986,3:176-194.
    [44]Wen Y K. Equivalent Linearization for Hysteretic Systems Under Random Excitation [J]. J. Applied. Mechanics, ASME,1980,47(1):150-154.
    [45]Lutes L D. Approximate technique for treating random vibration of hysteretic systems [J]. Journal of the Acoustical Society of America,1970,48(1B):299-306.
    [46]朱位秋,余金涛.预测非线性系统随机响应的等效非线性系统法[J].固体力学学报,1989,10(1):34-44.
    [47]朱位秋.非线性随机动力学与控制:Hamilton理论体系框架[M].北京:科学出版社,2003.
    [48]Wen Y K. Method for Random Vibration of Hysteretic Systems [J]. J. Engineering Mechanics Division,1976, (4):249-263.
    [49]Wen Y K. Methods of Random Vibration for Inelastic Structures [J]. Applied Mechanics Rev,1989, 42(2):39-52.
    [50]王军,林家浩.剪切型非线性滞迟系统随机地震响应的虚拟激励分析[J].固体力学学报,2001,22(1):23-30.
    [51]赵岩,林家浩,郭杏林.桥梁滞变非线性随机地震响应分析[J].计算力学学报,2005,22(2):145-148.
    [52]杜永峰,李慧,金德保.大震下被动与智能隔震结构动力可靠度的对比[J].地震工程与工程振动,2006,26(4):212-219.
    [53]Lee M, Penzien J. Stochastic analysis of structures and piping systems subjected to stationary multiple support excitations [J]. Earthquake Engineering and Structural Dynamics,1983, 11(1):91-110.
    [54]Lin Y K, Zhang R, Youg Y. Multiply supported pipeline under seismic wave excitations [J]. Journal of Engineering Mechanics,1990,116(5):1094-1108.
    [55]Perotti F. Structural response to non-stationary multi-Support random excitation [J]. Earthquake Engineering and Structural Dynamics,1990,19:513-527.
    [56]Harichandran R S. An efficient, adaptive algorithm for large scale random vibration analysis [J]. Earthquake Engineering and Structural Dynamics,1993,22:151-165.
    [57]赵又群,何小明,郭孔辉.汽车由路面激发的演变随机响应预测[J].机械工程学报,2004,40(1):179-182.
    [58]李强,周济.重型越野车的非平稳随机激励系统优化设计方法[J].机械强度,1998,20(1):45-52.
    [59]周劲松,李大光,沈钢,等.磁浮车辆运行平稳性的虚拟激励分析方法[J].交通运输工程学报,2008,8(1):5-9.
    [60]周劲松,李大光,张祥韦,等.平稳性快速算法及其在高速铁道车辆动力学分析中的运用[J].铁道学报,2008,30(6):36-39.
    [61]周劲松,宫岛,孙文静,等.铁道客车车体垂向弹性对运行平稳性的影响[J].铁道学报,2009,31(2):32-37.
    [62]李杰,秦玉英,赵旗,等.虚拟激励法及在汽车振动分析中的应用[J].机械科学与技术,2009,28(3):281-285.
    [63]彭献,刘晓晖,文桂林.基于虚拟激励法的变速行驶车辆振动分析[J].湖南大学学报,2007,34(11):37-41.
    [64]Willis R. Appendix of the report of commissioners appointed to inquire applocation of iron to railway structures [R]. London:His Majesty's Stationary Office,1849.
    [65]Timoshenko S. On the forced vibration of bridges [G]. Philosophical Magazine Series,1922,6(43)
    [66]Krylov A N. Mathematical collection of paper of the academy of sciences [G]. St. Petersburg,1905, 61.
    [67]Muchnikov V M. Some methods of computing vibration of elastic systems subjected moving loads [M]. Moscow:Gosstroiizdat,1953.
    [68]Biggs J M. Introduction of structural dynamics [M]. New York:McGraw-Hill,1964.
    [69]Chu K H, Garg V K, Dhar C L. Railway-bridge impact: simplified train and bridge model [J]. Journal of the Structural Division, ASCE,1979,105(9):1823-1844.
    [70]Chu K H, Garg V K, Wiriyachai A. Dynamic interaction of railway train and bridge [J]. Vehicle System Dynamics,1980,9(4):207-236.
    [71]Garivaltis D S, Garg V K. Dynamic response of a six-axle locomotive to random irregulaities [J]. Vehicle System Dynamic,1980,9(3):117-147.
    [72]Wiriyachai A. Impact and fatigue in open-deck railway truss bridge [D]. Chicago, Illinois:Illinois Institute of Technology,1980.
    [73]Wiriyachai A, Chu K H, Garg V K. Bridge impact due to wheel and track irregularities [J]. Journal of Engineering Mechanics Division,1982,108(4):648-666.
    [74]Bhatti M H. Vertical and lateral dynamic response of railway bridges due to nonlinear vehicle and track irregularities [D]. Chicago, Illinois:Illinois Institute of Technology,1982.
    [75]Wang T L. Impact and fatigue in open deck steel truss and ballasted prestressed concrete railway bridges [D]. Chicago, Illinois: Illinois Institute of Technology,1984.
    [76]Wang T L, Chu K H. Railway bridge vehicle interaction studies with new vehicle model [J]. Journal of Structural Engineering,1991,117(7):2099-2116.
    [77]Wang T L. Impact in a railway truss bridge. Computers and Structures [J],1993,49(6):1045-1054.
    [78]松浦章夫.高速铁路たおける车辆と桥桁の动的相互作用[J].铁道技术研究资料,1974,31(5):14-17.
    [79]松浦章夫. 新干线铁路の桥梁竖向允许挠度[R].铁道技术研究报告(日),1974,31(10):445-449.
    [80]松浦章夫.高速铁路たおける车辆と桥桁の动的举动た关する研究[G].土木学会论文报告集,1976,258(12):35-47.
    [81]阿部英彦,谷口纪久.钢铁道设计标准の改订[G].日本土木学会论文报告集,1984,(4):27-37.
    [82]Tanabe M, Wakui H, Matsumoto N. The finite element analysis of dynamic interactions of high-speed Shinkansen, rail and bridge [J]. ASME Computers in Engineering,1993, G0813A:17-22.
    [83]Tanabe M, Wakui H, Matsumoto N, et al. Dynamic interactions of Shinkansen train, track and bridge [C]. IABSE Symposium, Antwerp, Belgium,2003.
    [84]Fryba L. Dynamic of railway bridges [M]. London:Thomas Telford,1996.
    [85]Fryba L. Vibration of solids and structures under moving loads [M]. London:Thomas Telford,1999.
    [86]Fryba L. A rough assessment of railway bridges for high speed trains [J]. Engineering Structures, 2001,23(5):548-556.
    [87]Diana G, Cheli F. Dynamic interaction of railway systems with large bridges [J]. Vehicle System Dynamic,1989,18(1):71-106.
    [88]Olsson M. Finite element model co-ordinate analysis of structures subjected to moving loads [J]. Journal of Sound and Vibration,1985,99(1):1-12.
    [89]Olsson M. On the foundational moving load problems [J]. Journal of Sound and Vibration,1991, 145(2):299-307.
    [90]Bogaert V. Dynamic response of trains crossing large span double-track bridges [J]. Journal of Constructional Steel Research,1993,24(1):57-74.
    [91]李国豪.桁梁桥的扭转、稳定和振动[M].北京:人民交通出版社,1975.
    [92]陈英俊.车辆荷载下桥梁振动理论的演进[J].桥梁建设,1975,2:21-36.
    [93]胡人礼.普通桥梁结构振动[M].北京:中国铁道出版社,1988.
    [94]何度心.桥梁振动研究[M].北京:地震出版社,1989.
    [95]许慰平.大跨度铁路桥梁车桥空间耦合振动研究[D].北京:铁道科学研究院,1988.
    [96]孙建林.大跨度斜拉桥横向振动特性分析[D].北京:铁道科学研究院,1988.
    [97]杨岳民.大跨度铁路桥梁车桥动力响应理论分析及试验研究[D].北京:铁道科学研究院,1995.
    [98]王贵青.大跨度铁路斜拉桥车激空间振动线性及非线性分析[D].北京:铁道科学研究院,1996.
    [99]高芒芒.高速铁路列车-线路-桥梁耦合振动及列车走行性研究[D].北京:铁道科学研究院,2002.
    [100]张煅,柯在田,邓蓉等.既有线提速至160km/h桥梁评估的研究[J].中国铁道科学,1996,17(1):9-20.
    [101]刘汉夫,杨孚衡,张煅.对铁路上承式钢板梁横摆振动的剖析[J].中国铁路,1999,(5):29-32.
    [102]高岩,张煅.高速铁路中小跨度桥梁竖、横向刚度限值及合理分布的研究[J].铁道建筑技术,2000,(4):11-14.
    [103]夏禾.列车过桥时高桥墩的动力响应及其对车辆运行稳定的影响[D].北京:北京交通大学,1984.
    [104]夏禾,陈英俊.车-梁-墩体系动力相互作用分析[J].土木工程学报,1992,25(2):3-12.
    [105]夏禾,陈英俊.风和列车荷载同时作用下车桥系统的动力可靠性[J].土木工程学报,1994,27(2):14-21.
    [106]阎贵平,夏禾,陈英俊.铁路斜拉桥的地震响应特性研究[J].北方交通大学学报,1995,19(6):137-142.
    [107]Xia H, Xu Y L, Chan T H T. Dynamic interaction of long suspension bridges with running trains [J]. Journal of Sound and Vibration,2000,237(2):263-280.
    [108]Xu Y L, Zhang N, Xia H. Vibration of coupled train and cable-stayed bridge system in cross wind [J]. Journal of Engineering Structures,2004,26(10):1389-1406.
    [109]Xia H, Zhang N, Gao R. Experimental analysis of railway bridge under high-speed trains [J]. Journal of Sound and Vibration,2005,282(1-2):517-528.
    [110]Xia H, de Roeck G, Zhang N,. et al. Experimental analysis of a high-speed railway bridge under Thalys trains [J]. Journal of Sound and Vibration,2003,268(1):103-113.
    [111]张楠.高速铁路铰接式列车的车桥动力耦合问题的理论分析与试验研究[D].北京:北方交通大学,2002.
    [112]Xia H, Zhang N, de Roeck G. Dynamic analysis of high speed railway bridge under articulated trains [J]. Computers and structures,2003,81(26-27):2467-2478.
    [113]Xia H, Han Y, Zhang N, et al.. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitaions [J]. Earthquake Engineering and Structural Dynamic,2006,35(12):1563-1579.
    [1J4]韩艳.地震作用下高速铁路桥梁动力响应及行车安全性研究[D].北京:北京交通大学,2006.
    [115]姚锦宝,夏禾,陈建国,等.运行列车对附近建筑物振动影响的试验研究和数值分析[J].工程力学,2009,30(5):129-134.
    [116]曾庆元,杨平.形成矩阵的“对号入座”法则与桁梁空间分析的桁段有限元法[J].铁道学报,1986,8(2):48-58.
    [117]曾庆元.列车桥梁时变系统的横向振动分析.铁道学报,1991,13(2):38-46.
    [118]朱汉华.列车桥梁时变系统振动能量随机分析理论:(博士学位论文).长沙:长沙铁道学院,1993.
    [119]郭向荣.高速铁路桥梁-列车时变系统空间振动分析[D].长沙:长沙铁道学院,1999.
    [120]向俊,曾庆元,娄平.再论列车脱轨能量随机分析[J].中国铁道科学,2002,23(2):26-32.
    [121]向俊,曾庆元,周智辉.桥上列车脱轨的力学机理、能量随机分析理论及其应用[J].铁道学报,2004,26(2):97-104.
    [122]曾庆元,向俊,娄平,等.列车脱轨的力学机理与防止脱轨理论[J].铁道科学与工程学报,2004,1(1):19-31.
    [123]Lou P, Zeng Q Y. Formulation of equations of motion of finite element form for vehicle-track-bridge interaction system with two types of vehiche model [J]. International Journal for Numerical Methods in Enginerring,2005,62(12):435-474.
    [124]沈锐利.高速铁路桥梁与车辆耦合振动研究[D].成都:西南交通大学,1998.
    [125]沈锐利.高速铁路简支梁桥竖向振动响应研究[J].中国铁道科学,1996,17(3):24-34.
    [126]李小珍,强士中.高速列车-大跨度钢斜拉桥空间耦合振动响应研究[J].桥梁建设,1998,(4):65-68.
    [127]李小珍,王应良,强士中.大跨度连续拱桁组合钢桥空间振动分析[J].振动与冲击,1999,18(4):35-39.
    [128]李小珍,喻璐,强士中.不同主梁竖曲线下大跨度斜拉桥的车桥耦合振动分析[J].振动与冲击,2003,22(2):43-46.
    [129]李小珍.高速铁路列车桥梁系统耦合振动理论及应用研究[D].成都:西南交通大学,2000.
    [130]单德山,李乔.铁路曲线连续梁桥车桥耦合振动分析[J].中国铁道科学,2004,25(5):61-66.
    [131]何发礼.高速铁路中下跨度曲线桥梁车桥耦合振动研究[D].成都:西南交通大学,1999.
    [132]葛玉梅,袁向荣.机车-桁架桥梁耦合振动研究[J].西南交通大学学报,1998,33(2):138-142.
    [133]曹雪琴.列车通过时桥梁结构竖向振动分析[J].上海铁道学院学报,1981,2(3):1-15.
    [134]曹雪琴,陈晓.轮轨蛇行引起桥梁横向振动随机分析[J].铁道学报,1986,8(1):89-97.
    [135]曹雪琴.钢桁梁桥横向振动[M].北京:中国铁道出版社,1991.
    [136]凌知民,曹雪琴,项海帆.铁路高墩连续梁桥车桥耦合振动响应分析[J].铁道学报,2002,24(5):98-102.
    [137]杨永斌,姚达忠.高速铁路车桥互制理论[M].台北:图文技术服务有限公司,2000.
    [138]Yau J D. Dynamic response of bridges traveled by trains (Analytical and numerical approaches) [D]. Taipei:Taiwan National University,1996.
    [139]Yang Y B, Lin B H. Vehicle-bridge interaction analysis by dynamic condensation method [J]. Journal of Structural Engineering,1995,121(11):1636-1643.
    [140]Yang Y B, Yau J D. Vehicle-bridge interaction element for dynamic analysis [J]. Journal of Structural Engineering,1997,123(11):1512-1518.
    [141]Yang Y B, Wu Y S. Dynamic stability of trains moving over bridges shaken by earthquakes [J]. Journal of Sound and Vibration,2002,258(1):65-94.
    [142]Fryba L. Non-stationary response of a beam to a moving random force [J]. Journal of Sound and Vibration,1976,46(3):323-338.
    [143]Iwankiewicz R, Sniady P. Vibration of a beam under a random stream of moving forces [J]. Journal of Structure Mechanics,1984,12(1):13-26.
    [144]Ricciardi G. Random vibration of beam under moving loads [J]. Journal of Engineering Mechanics, ASCE,1994,120(11):2361-2380.
    [145]Wang R T, Lin T Y. Random vibration of multi-span timoshenko beam due to a moving load [J]. Journal of Sound and Vibration,1998,213(1):127-138.
    [146]Sniady P, Biernat S, Sieniawska R, et al. Vibration of the beam due to a load moving with stochastic velocity [J]. Probabilistic Engineering Mechanics,2001,16(1):53-59.
    [147]Zibdeh H S, Rackwitz R. Response moments of an elastic beam subjected to possionian moving loads [J]. Journal of Sound and Vibration,1995,188(4):479-495.
    [148]Zibdeh H S, Rackwitz R. Moving loads on beams with general boundary conditions [J]. Journal of Sound and Vibration,1996,195(1):85-102.
    [149]Zibdeh H S, Juma H S. Dynamic response of a rotating beam subjected to a random moving load [J]. Journal of Sound and Vibration,1999,223(5):741-758.
    [150]盛国刚,李传习,赵冰.桥梁表面不平顺对车桥耦合振动系统动力效应的影响[J].应用力学学报,2007,24(1):124-127.
    [151]Au F T K, Cheng Y S, Cheung Y K. Effects of random road surface roughness and long-term deflection of prestressed concrete girder and cable-stayed bridge on impact due to moving vehicles [J]. Computers and Structures,2001,79(8):853-872.
    [152]Au F T K, Wang J J, Cheung Y K. Impact study of cable-stayed railway bridge with random rail irregularities [J]. Engineering Structures,2002,24(5):529-541.
    [153]王解军.运行列车作用下桥梁的动力响应[D].长沙:湖南大学,2000.
    [154]晋智斌.车-线-桥耦合系统及车-桥随机振动[D].成都:西南交通大学,2007.
    [155]Saiidi M, Maragakis E, O'Connor D. Seismic performance of the madrone bridge during the 1989 loma prieta earthquake [D]. Structural Engineering Review,1995,7(3):19-23.
    [156]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992.
    [157]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [158]范立础.大跨度桥梁抗震[M].北京:人民交通出版社,2001.
    [159]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展[J].力学进展,2001,31(3):350-360.
    [160]张亚辉,林家浩.香港青马桥抗震分析[J].应用力学学报,2002,19(3):25-31.
    [161]林家浩,李建俊,张文首.大跨度结构考虑行波效应时非平稳随机地震响应[J].固体力学学报,1996,17(1):65-68.
    [162]Diana G. A numerical method to define the dynamic behavior of a train running on deformable structure [J]. MECCANICA, Special Issue,1988,:27-42.
    [163]Miyamoto T, Ishida H, Matsuo M. Running safety of railway vehicle as earthquake occurs [J]. Quarterly Report of RTRI,1997,38(3):117-122.
    [164]马坤全,朱金龙.高速列车-连续刚架桥系统地震反应分析[J].上海铁道大学学报,1998,19(10):29-36.
    [165]Luo X. An applicable assessment methodology for running safety of railway vehicles during earthquakes [J]. J. JSCE,2001, (197-206)
    [166]Matsumoto N, Sogabe M, Wakui H, et al. Running safety analysis of vehicles on structures subjected to earthquake motion [J]. Quarterly Report of RTRI,2004,45(3):116-122.
    [167]Fryba L, Yau J D. Suspended bridges subjected to moving loads and support motions due to earthquake [J]. Journal of Sound and Vibration,2009,319(1-2):218-227.
    [168]Yau J D, Fryba L. Response of suspended beams due to moving loads and vertical seismic ground excitations [J]. Engineering Structures,2007,29(12):3255-3262.
    [169]张楠,夏禾.地震对多跨简支桥梁上列车运行安全的影响[J].世界地震工程,2001,17(4):43-49.
    [170]张志勇.地震作用下高速铁路连续钢桁梁桥的车桥耦合振动研究[D].长沙:中南大学,2008.
    [171]李波.地震作用下高速铁路钢管混凝土拱桥的车桥耦合振动研究[D].长沙:中南大学,2008.
    [172]董永财,杨长春.地震力对高架桥轨道车辆影响之动态模型[J].世界地震工程,2005,21(2):70-74.
    [173]董永财,杨长春.在地震力作用下高架桥梁上轨道车辆的动态分析与安全性研究[J].地震工程与工程振动,2005,25(5):153-159.
    [174]李忠献,黄健,张媛等.地震作用对轻轨铁路车桥系统耦合振动的影响[J].地震工程与工程振动,2005,25(6):183-188.
    [175]张国忠,闫维明,李洪泉.地震作用下磁悬浮车-桥垂向耦合动力学研究[J].世界地震工程,2006,22(3):148-155.
    [176]熊建珍,高芒芒,俞翰斌.天兴洲长江大桥斜拉桥在地震作用下的车-桥耦合振动分析[J].中国铁道科学,2006,27(5):54-59.
    [177]谭长建,祝兵.地震作用下高速列车与桥梁耦合振动分析[J].振动与冲击,2009,28(1):4-8.
    [178]Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitations [J]. Earthquake Engineering and Structural Dynamics,1992,21(3):713-740.
    [179]Ernesto H Z, Vanmarcke E H. Seismic random vibration analysis of multi-support structural systems [J]. Journal of Engineering mechanics,1994,120(5):1107-1128.
    [180]曹资,薛素铎.空间结构抗震理论与设计[M].北京:科学出版社,2005.
    [181]吕峰.车辆与结构相互作用随机动力分析[D].大连:大连理工大学,2008.
    [182]Lv F, Lin J H, Kennedy D, et al. An algorithm to study non-stationary random vibration of vehicle-bridge systems [J]. Computer and Structures,2009,87:177-185.
    [183]庄表中,陈乃立,高瞻.非线性随机振动理论及应用[M].杭州:浙江大学出版社,1986.
    [184]Zhu X Q, Law S S. Precise time-step integration for the dynamic response of a continuous beam under moving loads [J]. Journal of Sound and Vibration,2001,240(5):962-970.
    [185]翟婉明.车辆-轨道耦合动力学(第三版)[M].北京:科学出版社,2007.
    [186]铁路第三勘察设计院.京沪高速铁路设计暂行规定[S].北京:中国铁道出版社,2003.
    [187]张亚辉,李丽媛,陈艳,等.大跨度结构地震行波效应研究[J].大连理工大学学报,2005,45(4):480-486
    [188]Housner G W. Characteristic of strong motion earthquakes [J]. Bull. Seism. Soc. Am.,1947, 37:17-31.
    [189]Kanai K. An empirical formula for the spectrum of strong earthquake motions [J]. Bull. Earthquake Res. Int., Univ. Tokyo,1961,39(1):85-95.
    [190]胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应[R].地震工程研究所报告集,第一集,1962.
    [191]Ruiz P, Penzien J. Probabilistic study of the behavior of structures during earthquakes [R]. Earthquake Eng. C., UCB, CA, Report No. EERC 69-03,1969.
    [192]林家浩,张亚辉,孙东科,等.受非均匀调制演变随机激励结构响应快速精确算法[J].计算力学学报,1997,14(1):2-8.
    [193]Davenport A G. Note on the distribution of the largest value of a random function with application to gust loading [J]. Proc. Inst. Civil Eng.,1964.28:187-196.
    [194]江近仁,洪峰.功率谱与反应谱的转换和人造地震波[J].地震工程与工程振动,1984,4(3):1-10
    [195]李桂青,李秋胜.工程结构时变可靠度理论及其应用[M].北京:科学出版社,2001:152-190.
    [196]Oliveira C S, Hao H, Penzien J. Ground motion modeling for multiple-input structural analysis [J]. Structural Safety,1991,10:79-93.
    [197]Harichandran R S. Estimating the spatial variation of earthquake ground motion from dense array recordings [J]. Structural Safety,1991,10:219-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700